
Quantifier Alternation for Infinite Words

Théo Pierron, Thomas Place(B), and Marc Zeitoun

LaBRI, UMR 5800, University of Bordeaux, 33400 Talence, France
tplace@labri.fr

Abstract. We investigate the expressive power of the quantifier alter-
nation hierarchy of first-order logic over words. This hierarchy includes
the classes Σi (sentences having at most i blocks of quantifiers starting
with an ∃) and BΣi (Boolean combinations of Σi sentences). So far, this
expressive power has been effectively characterized for the lower levels
only. Recently, a breakthrough was made over finite words, and decidable
characterizations were obtained for BΣ2 and Σ3, by relying on a decision
problem called separation, and solving it for Σ2.

The contribution of this paper is a generalization of these results to
the setting of infinite words: we solve separation for Σ2 and Σ3, and
obtain decidable characterizations of BΣ2 and Σ3 as consequences.

Regular word languages form a robust class, as they can be defined either by
operational, algebraic, or logical means: they are exactly those that can be defined
equivalently by finite state machines (operational view), morphisms into finite
algebras (algebraic view) and monadic second order (“MSO”) sentences [4,5,8,27]
(logical view). To understand the structure of this class in depth, it is natural to
classify its languages according to their descriptive complexity. The problem is to
determine how complicated a sentence has to be to describe a given input lan-
guage. This is a decision problem parametrized by a fragment of MSO: given an
input language, can it be expressed in the fragment? This problem is called mem-
bership (is the language a member of the class defined by the fragment?).

The seminal result in this field is the membership algorithm for first-order logic
(FO) over finite words, which is arguably the most prominent fragment of MSO.
This algorithm was obtained in two steps. McNaughton and Papert [10] observed
that the languages definable in FO are exactly the star-free languages: those that
may be expressed by a regular expression in which complement is allowed while
the Kleene star is disallowed. Furthermore, an earlier result of Schützenberger [23]
shows that star-free languages are exactly the ones whose syntactic monoid is ape-
riodic. The syntactic monoid is a finite algebra that can be computed from any
input regular language, and aperiodicity can be formulated as an equation that has
to be satisfied by all elements of this algebra. Therefore, Schützenberger’s result
makes it possible to decide whether a regular language is star-free (and therefore
definable in FO by McNaughton-Papert’s result).

Following this first result, the attention turned to a deeper question: given
an FO-definable language, find the “simplest” FO-sentences that define it. The
standard complexity measure for FO sentences is their quantifier alternation,
c© Springer-Verlag Berlin Heidelberg 2016
B. Jacobs and C. Löding (Eds.): FOSSACS 2016, LNCS 9634, pp. 234–251, 2016.
DOI: 10.1007/978-3-662-49630-5 14

Quantifier Alternation for Infinite Words 235

which counts the number of switches between blocks of ∃ and ∀ quantifiers.
This measure is justified not only because it is intuitively difficult to understand
a sentence with many alternations, but also because the nonelementary com-
plexity of standard problems for FO [25] (e.g, satisfiability) is tied to quantifier
alternation. In summary, we classify FO definable languages by counting the
number of quantifier alternations needed to define them and we want to be able
to decide the level of a given language (which amounts to solving membership
for each level).

This leads to define the following fragments of FO: an FO sentence is Σi if
its prenex normal form has at most i blocks of ∃ or ∀ quantifiers and starts with
a block of existential ones. Note that Σi is not closed under complement (the
negation of a Σi sentence is called a Πi sentence). A sentence is BΣi if it is a
Boolean combination of Σi sentences (cf. figure). Clearly, we have Σi ⊆ BΣi ⊆
Σi+1, and these inclusions are known to be strict [3,26]: Σi � BΣi � Σi+1.

Solving membership for levels of this hierarchy is a longstanding open problem.
Following Schützenberger’s approach, it was first investigated for languages of
finite words. However, the question also makes sense for more complex structures,
in particular for the most natural extension: infinite words. Schützenberger’s
result was first generalized to infinite words by Perrin [11], and a suitable alge-
braic framework for languages of infinite words was set up by Wilke [28]. Since
a regular language of infinite words is determined by regular languages of finite
words, finding a membership algorithm for languages of infinite words does not
usually require to start over. Instead these algorithms are obtained by building
on top of the algorithms for finite words, adding new arguments, specific to infi-
nite words.

Regarding the hierarchy, membership is easily seen to be decidable for Σ1.
For BΣ1, the classical result of Simon [24] was generalized from finite to infinite
words by Perrin and Pin [12]. For finite words, membership to Σ2 is known to be
decidable [1,15], a result lifted to infinite words in [2,7]. Following these results,
the understanding of the hierarchy remained stuck for years until the framework
was extended to new and more general problems than membership.

Rather than asking whether a language is definable in a fragment F , these
problems ask what is the best F-definable “approximation” of this language
(with respect to specific criteria). The simplest example is F-separation, which
takes two regular languages as input and asks whether there exists a third lan-
guage definable in F that contains the first language and is disjoint from the
second. Separation is more general than membership: asking whether a regular
language is definable in F is the same as asking whether it can be F-separated
from its (also regular) complement. A consequence is that deciding these
more general problems is usually more challenging than deciding membership.
However, their investigation in the setting of finite words has also been very

236 T. Pierron et al.

rewarding. A good illustration is the transfer result of [18], which states that
for all i, decidability of separation for Σi entails decidability of membership for
Σi+1. Combined with an algorithm for Σ2-separation [18], this proved that Σ3

has decidable membership. This result was strengthened in [16], which shows
that Σ3-separation is decidable as well, thus obtaining decidability of member-
ship for Σ4. Finally, in [18], it was shown that BΣ2 has decidable membership by
using a generalization of separation for Σ2 and analyzing an algorithm solving
this generalization.

It remained open to know whether it was possible to generalize with the
same success this new approach to the setting of infinite words. This is the
investigation that we carry out in the paper. More precisely, we rely on the crucial
notion of Σi-chains, designed in [18] for presenting and proving membership and
separation algorithms for finite words. We generalize this concept to infinite
words and successfully use it to prove that the following problems are decidable:
Σ2-separation, Σ3-separation, and BΣ2 membership. This demonstrates that Σi-
chains remain a suitable framework for presenting arguments in the setting of
infinite words. On the other hand, new issues specific to infinite words arise, for
example, we were not able to generalize the transfer result from Σi-separation to
Σi+1-membership (as a consequence, membership for Σ4 remains open). Note
also that, for each problem, we pre-compute some information by using the
corresponding algorithm designed in [16,18] for finite words. This means that
the involved algorithms from [16,18] are used as subroutines of our algorithms.

It is worth noting that the decidability of the membership problem for BΣ2

over infinite words has been obtained independently in [9]. While the algorithm
is essentially the same as our own, its proof is completely different.

We now present the problems in depth in Sect. 1, and we solve them in the
rest of the paper. A detailed outline is provided at the end of Sect. 1. Due to lack
of space, some proofs are postponed to the full version of this paper, see [13].

1 Presentation of the Problem

In this section, we first define the quantifier alternation hierarchy of first-order
logic. Then, we present the membership problem and the separation problem.

1.1 The Quantifier Alternation Hierarchy of First-Order Logic

We fix a finite alphabet A. We denote by A+ the set of all finite nonempty
words, and by A∞ the set of all infinite words over A. We use the term “word”
for “finite word”. We call language (resp. language of infinite words) a subset of
A+ (resp. of A∞). If u is a word and v is a word (resp. an infinite word), we
denote by uv the word (resp. the infinite word) obtained by concatenating u to
the left of v. If u is a word, we denote by u∞ the infinite word uuuu · · · obtained
as the infinite concatenation of u with itself. If u is a word or an infinite word,
we denote by alph(u) the alphabet of u, i.e., the set of letters of u.

Quantifier Alternation for Infinite Words 237

First-Order Logic. Any word or infinite word can be viewed as a logical struc-
ture made of a linearly ordered sequence of positions (finite for words and infinite
for infinite words) labeled over alphabet A. In first-order logic “FO”, one can
quantify over these positions and use the following predicates.

– for each a ∈ A, a unary predicate Pa selecting all positions labeled with an a.
– a binary predicate’<’ interpreted as the (strict) linear order over the positions.

Since any FO sentence may be interpreted both on words and infinite words,
each sentence ϕ defines two objects: a language L+ = {w ∈ A+ | w |= ϕ} and a
language of infinite words L∞ = {w ∈ A∞ | w |= ϕ}. For example, the sentence
∃x∃y (x < y ∧ Pa(y)) defines the language A+a ∪ A+aA+ and the language of
infinite words A+aA∞. Thus, we may associate two classes of objects with FO:
a class of languages (we speak of FO over words) and a class of languages of
infinite words (we speak of FO over infinite words).

Quantifier Alternation. It is usual to classify FO sentences by counting the
quantifier alternations inside their prenex normal form. Let i ∈ N, a sentence is
said to be Σi (resp. Πi) if its prenex normal form has either:

– exactly i − 1 quantifier alternations (i.e., exactly i quantifier blocks) starting
with an ∃ (resp. ∀), or

– strictly less than i− 1 quantifier alternations (i.e., strictly less than i blocks).

For example, the sentence ∃x1∀x2∀x3∃x4 ϕ, with ϕ quantifier-free, is Σ3. Note
that in general, the negation of a Σi sentence is not a Σi sentence – it is called
a Πi sentence. Hence, it is also usual to define BΣi sentences as those that are
Boolean combinations of Σi and Πi sentences.

As for full first-order logic, each level Σi, Πi or BΣi defines two classes of
objects: a class of languages and a class of languages of infinite words. Therefore,
we obtain two hierarchies: a hierarchy of classes of languages and a hierarchy of
classes of languages of infinite words, both of which are known to be strict [3,26].

1.2 Decision Problems

Our objective is to investigate the quantifier alternation hierarchy of first-order
logic over infinite words. We rely on two decision problems in order to carry out
this investigation: the membership problem and the separation problem. The
input of these problems are regular languages of finite and infinite words. They
are those languages that can be equivalently defined by monadic second-order
logic, finite Büchi automata or finite Wilke algebras. We will use Wilke algebras,
whose definition is recalled in Sect. 2. Both problems are parametrized by a level
in the hierarchy and come therefore in two versions: a ‘language’ one and a
‘language of infinite words’ one. Let F be a level in the hierarchy.

238 T. Pierron et al.

Membership. The membership problem for level F is as follows:

Separation. The separation problem is more general. Given three languages or
three languages of infinite words K,L1, L2, we say that K separates L1 from L2

if L1 ⊆ K and L2 ∩K = ∅. For F a level in the hierarchy, L1 is said F-separable
from L2 if there exists an F-definable language or language of infinite words that
separates L1 from L2. Note that when F is not closed under complement (e.g.,
for F = Σi), the definition is not symmetrical: L1 may be F-separable from L2

while L2 is not F-separable from L1. The separation problem for F is as follows:

An important remark is that membership reduces to separation. A regular
language of words or infinite words is definable in F iff it is F-separable from
its (also regular) complement: separation is a more general problem than mem-
bership.

Both problems have been extensively studied in the literature. Indeed, it has
been observed that obtaining an algorithm for the membership or separation
problem associated to a particular level F usually yields a deep insight on F .
This is well illustrated by the most famous result of this kind, Schützenberger’s
Theorem [10,23], which yields a membership algorithm for FO over words. The
result was later generalized to FO over infinite words by Perrin [11]. These
results and the techniques used to obtain them provide not only a way to decide
whether a regular language of finite or infinite words is FO-definable, but also
a generic method for constructing a defining FO sentence, when possible. Since
these first results, many efforts have been devoted for obtaining membership and
separation algorithms for each level in the hierarchy. An overview of the results
is presented in the following table (omitted levels are open in all cases).

Quantifier Alternation for Infinite Words 239

Our objective is to bridge the gap between the knownledge for languages and
that for languages of infinite words. More precisely, we want to extend the results
of [16,18] to the setting of infinite words, i.e., to obtain membership algorithms
for BΣ2, Σ3 and Σ4 as well as separation algorithms for Σ2 and Σ3. We were able
to obtain these algorithms for Σ2, Σ3 and BΣ2 as stated in the next theorem.
Note that the Σ3-membership algorithm follows from its separation algorithm.
We leave open the case of Σ4-membership for languages of infinite words.

Theorem 1. The following properties hold:

(a) the separation problem is decidable for Σ2 over infinite words.
(b) the membership problem is decidable for BΣ2 over infinite words.
(c) the separation problem is decidable for Σ3 over infinite words.

Our proof of Theorem 1 consists in three algorithms, one for each item in
the theorem. An important remark is that each of these three algorithms
depends upon an algorithm of [18] or [16] solving the corresponding problem
for finite words:

– We present all algorithms in a specific framework which is adapted from the
one used in [18]. In particular, we reuse the key notion of “Σi-chain” (gener-
alized to infinite words in a straightforward way).

– We actually reuse the algorithms for finite words of [16,18] as subprocedures
in our algorithms for languages of infinite words.

The remainder of the paper is devoted to proving Theorem 1. In Sect. 2, we
recall classical notions required for our definitions and proofs: the algebraic def-
inition of regular languages of infinite words and logical preorders. In Sect. 3, we
present the general framework that we use. In particular, we introduce a notion
that will be at the core of all our algorithms: “Σi-chains” (which are adapted
and reused from [18]). We then devote a section to each algorithm: Sect. 4 to
Σ2-separation, Sect. 5 to BΣ2-membership and Sect. 6 to Σ3-separation.

2 Preliminaries

We recall some classical notions that we will need. First, we present the definition
of regular languages of infinite words in terms of Wilke algebras. Then, we define
the logical preorders that one may associate to each level Σi in the hierarchy.

2.1 Semigroups and Wilke Algebras

We briefly recall the definition of regular languages and languages of infinite
words in terms of semigroups and Wilke algebras. For details, see [12].

Semigroups. A semigroup is a set S equipped with an associative operation s ·t
(often written st). In particular, A+ equipped with concatenation is a semigroup.
Given a finite semigroup S, it is easy to see that there is an integer ω(S) (denoted
by ω when S is understood) such that for all s of S, sω is idempotent: sω = sωsω.

240 T. Pierron et al.

Given a language L and a morphism α : A+ → S, we say that L is recognized
by α if there exists F ⊆ S such that L = α−1(F). It is well-known that a
language is regular if and only if it may be recognized by a finite semigroup.

Wilke Algebras. A Wilke algebra is a pair (S+, S∞), where S+ is a semigroup
and S∞ is a set. Moreover, (S+, S∞) is equipped with two additional products:
a mixed product S+ × S∞ → S∞ mapping s, t ∈ S+, S∞ to an element st of S∞,
and an infinite product (S+)∞ → S∞ mapping an infinite sequence s1, s2, · · · ∈
(S+)∞ to an element s1s2 · · · of S∞. We require these products to satisfy all
possible forms of associativity. For s ∈ S+, we let s∞ be the infinite product
sss · · · ∈ S∞. Note that (A+, A∞) is a Wilke algebra. See [12] for further details
(we use a distinct notation from [12], where what we write sω, s∞ is noted sπ, sω,
respectively).

We say that (S+, S∞) is finite if both S+ and S∞ are. Note that even if a
Wilke algebra is finite, it is not clear how to represent the infinite product, since
the set of infinite sequences of S+ is uncountable. However, it has been shown by
Wilke [28] that the infinite product is fully determined by the mapping s �→ s∞.
This makes it possible to finitely represent any finite Wilke algebra.

Morphisms of Wilke algebras are defined in the natural way. In particular,
observe that any morphism of Wilke algebra α : (A+, A∞) → (S+, S∞) defines
two maps: a semigroup morphism α+ : A+ → S+ and a map α∞ : A∞ → S∞
(when there is no ambiguity, we shall write α(w) to mean α+(w) if w ∈ A+

or α∞(w) if w ∈ A∞). Therefore, a morphism recognizes both languages (the
languages α−1

+ (F+) for F+ ⊆ S+) and languages of infinite words (the languages
of infinite words α−1

∞ (F∞) for F∞ ⊆ S∞). A language of infinite words is regular
iff it may be recognized by a morphism into a finite Wilke algebra.

Syntactic Morphisms. It is known that given any regular language (resp. lan-
guage of infinite words) L, there exists a canonical morphism αL : A+ → S
(resp. αL : (A+, A∞) → (S+, S∞)) recognizing L. This object is called the syn-
tactic morphism of L. We refer the reader to [12] for the detailed definition of
this object. In the paper we only use two properties of the syntactic morphism.
The first is that given any regular language of infinite words L, one can com-
pute its syntactic morphism from any representation of L. We state the second
one below.

Fact 2. Let i � 1 and let L be a regular language of infinite words. Then L is
definable in BΣi iff so are all languages of words and infinite words recognized
by its syntactic morphism.

The proof of Fact 2 may be found in [12] (in fact, this holds for any class
of languages of infinite words which forms a “variety” of languages of infinite
words, not just for BΣi). In view of this, the syntactic morphism is central for
membership questions: deciding if a language is definable in BΣi amounts to
deciding a property of its syntactic morphism. This is the approach used in our
membership algorithm for BΣ2 (see Sect. 5).

Morphisms and Separation. When working on separation, we are given two
input languages or languages of infinite words. It is convenient to consider a

Quantifier Alternation for Infinite Words 241

single recognizing object for both inputs rather than two separate objects. This
is not restrictive: given two languages (resp. two languages of infinite words)
and two associated recognizing morphisms, one can define and compute a single
morphism that recognizes them both. For example, if L0 ⊆ A∞ is recognized by
α0 : (A+, A∞) → (S+, S∞) and L1 ⊆ A∞ by α1 : (A+, A∞) → (T+, T∞), then
L0 and L1 are both recognized by α : (A+, A∞) → (S+ × T+, S∞ × T∞) with
α(w) = (α0(w), α1(w)).

Alphabet Compatible Morphisms. It will be convenient to work with mor-
phisms that satisfy an additional property. A morphism α : (A+, A∞) →
(S+, S∞) is said to be alphabet compatible if for all u, v ∈ A+ ∪A∞, α(u) = α(v)
implies alph(u) = alph(v). Note that when α is alphabet compatible, for all
s ∈ S+ ∪ S∞, alph(s) is well defined as the unique B ⊆ A such that for all
u ∈ α−1(s), we have alph(u) = B (if s has no preimage then we simply set
alph(s) = ∅).

To any morphism α : (A+, A∞) → (S+, S∞), we associate a morphism β,
called the alphabet completion of α. The morphism β recognizes all languages
of infinite words recognized by α and is alphabet compatible. If α is already
alphabet compatible, then β = α. Otherwise, observe that 2A is a semigroup
with union as the multiplication and (2A, 2A) is therefore a Wilke algebra. Hence,
we let β be the morphism: β : (A+, A∞) → (S+ × 2A, S∞ × 2A) with β(w) =
(α(w), alph(w)).

2.2 Logical Preorders

To each level Σi in the hierarchy, one may associate preorders on the sets of words
and infinite words. The definition is based on the notion of quantifier rank. The
quantifier rank of a first-order formula is the length of the longest sequence of
nested quantifiers inside the formula. For example, the following sentence,

∃x Pb(x) ∧ ¬(∃y (y < x ∧ Pc(y)) ∧ (∀y∃z x < y < z ∧ Pb(y)))

has quantifier rank 3. It is well-known (and easy to show) that for a fixed k, there
is a finite number of non-equivalent first-order sentences of rank less than k.

We now define the preorders. Note that while we define two preorders for each
level Σi (one on A+, one on A∞), we actually use the same notation for both. Let
i � 1 be a level in the hierarchy and k � 1 as a quantifier rank. Given two words
w,w′ ∈ A+ (resp two infinite words w,w′ ∈ A∞), we write w �k

i w′ if and only
if any Σi sentence of rank at most k satisfied by w is satisfied by w′ as well. By
contrapositive, since the negation of a Σi sentence is in Πi, we have w �k

i w′ iff
any Πi sentence of rank at most k satisfied by w′ is also satisfied by w.

One may verify that �k
i is preorder. Moreover, it is immediate that the

preorders get refined when k or i increase: w �k+1
i w′ or w �k

i+1 w′ imply
w �k

i w′. Since a Πi+1 sentence is in Σi, w �k
i+1 w′ also implies w′ �k

i w.
Denote by ∼=k

i the equivalence generated by �k
i : w ∼=k

i w′ when w �k
i w′ and

w′ �k
i w. That is, w ∼=k

i w′ if and only if w,w′ satisfy the same Σi sentences (or

242 T. Pierron et al.

equivalently the same BΣi sentences, which are nothing but Boolean combina-
tions of Σi sentences). The following fact sums up what we just observed.

Fact 3. Let k, i � 1 and let u, v be two words or two infinite words, then

(1) u �k+1
i v ⇒ u �k

i v, (2) u ∼=k+1
i v ⇒ u ∼=k

i v (3) u �k
i+1 v ⇒ u ∼=k

i v.

We finish the section with a few properties about the preorders �k
i . The

proofs are easy and omitted (they are obtained with standard Ehrenfeucht-
Fräıssé arguments). We start with decomposition and composition lemmas.

Lemma 4 (Decomposition Lemma). Let i, k � 1 and let u, v be two words
or two infinite words such that u �k

i v. Then for any decomposition u = u1u2

of u, there exist v1, v2 such that v = v1v2, u1 �k−1
i v1 and u2 �k−1

i v2 .

Lemma 5 (Composition Lemma). Let i, k � 1, let u1, v1 be two words such
that u1 �k

i v1, and u2, v2 be either two words or two infinite words such that
u2 �k

i v2. Then u1u2 �k
i v1v2 and u∞

1 �k
i v∞

1 .

The last composition that we state is specific to infinite words.

Lemma 6. Let i, k � 1, u ∈ A+ be a word and v ∈ A∞ be an infinite word such
that v �k

i u∞. Then for any � � 2k, we have u∞ �k
i+1 u�v.

In particular we will use the special case of Lemma 6 in which i = 1. In this
case, one can verify that given u ∈ A+ and v ∈ A∞, when alph(u) = alph(v), we
have v �k

1 u∞ for any k � 1. Hence we have the following corollary of Lemma 6.

Corollary 7. Let k � 1, u ∈ A+ be a word and let v ∈ A∞ be an infinite word
such that alph(u) = alph(v). Then for any � � 2k, we have u∞ �k

2 u�v.

3 Σi-Chains for Language of Infinite Words

All algorithms for infinite words of this paper are strongly related to the finite
words algorithms of [16,18]. In particular, we adapt and reuse the key notion of
“Σi-chain” which was introduced in [18]. The section is devoted to the presen-
tation of this notion. First, we define Σi-chains. We then detail the link between
Σi-chains and our decision problems, first for Σi, then for BΣi.

Σi-Chains were initially introduced in [18] as a tool designed to investigate
the separation problem over finite words for the logics Σi and BΣi. A set of Σi-
chains can be associated to any morphism α : A+ → S into a finite semigroup S.
Intuitively, this set captures information about what Σi and BΣi can express
about the languages recognized by α (including which ones are separable with
Σi and BΣi). The definition is based on the following classical lemma.

Lemma 8. Let i, k � 1 and L1, L2 be two languages or two languages of infinite
words. Then L1 is not Σi-separable (resp. not BΣi-separable) from L2 iff for all
k � 1, there exist w1 ∈ L1 and w2 ∈ L2 such that w1 �k

i w2 (resp. w1
∼=k

i w2).

Quantifier Alternation for Infinite Words 243

Lemma 8 states simple criteria equivalent to Σi- and BΣi-separability. How-
ever, both criteria involve a quantification over all natural numbers. Therefore,
it is not immediate that they can be decided. Indeed, since both A+ and A∞

are infinite sets, �k
i and ∼=k

i are endlessly refined as k gets larger.
Σi-Chains are designed to deal with this issue. The separation problem takes

two regular languages or languages of infinite words as input. Therefore, we have
a single morphism that recognizes them both. For example, in the case of infinite
words, we have α : (A+, A∞) → (S+, S∞), with (S+, S∞) a finite Wilke algebra,
that recognizes both inputs. Intuitively, S+ and S∞ are finite abstractions of
A+ and A∞. Consequently, we may abstract the preorders �k

i on these two
finite sets: this is what Σi-chains are. For example, we say that (s, t) ∈ (S∞)2

is a Σi-chain (of length 2) for α if for all k, there exist u, v ∈ A∞ such that
α(u) = s, α(v) = t and u �k

i v. For languages of infinite words recognized by
α, it is then easy to adapt the two criteria of Lemma 8 to work directly with
the Σi-chains associated to α. In other words, we reduce separation to the (still
difficult) problem of computing the set of Σi-chains associated to a given input
morphism.

Chains. Let us now define chains. Given a finite set S, a chain over S is simply a
finite word over S (i.e., an element of S+). We shall only consider chains over S+

and over S∞, where S+ and S∞ are the two components of some Wilke algebra
(S+, S∞). A remark about notation is in order: a word is usually denoted as
the concatenation of its letters. However, since S+ is a semigroup, this would be
ambiguous: when st ∈ (S+)+, st could either mean a word with 2 letters s and t,
or the product of s and t in S+. To avoid confusion, we will write (s1, . . . , sn) for
a chain of length n. We denote chains by s̄, t̄, . . . and sets of chains by S, T ,. . .

If (S+, S∞) is a Wilke algebra, then for all n ∈ N, (S+)n is a semigroup
when equipped with the componentwise multiplication (s1, . . . , sn)(t1, . . . , tn) =
(s1t1, . . . , sntn). Moreover, the pair ((S+)n, (S∞)n) is a Wilke algebra (in which
the mixed and infinite products are defined componentwise as well).

Σi-Chains. Fix i � 1 and x ∈ {+,∞}. We associate a set of Σi-chains to any
map β : Ax → S where S is a finite set. The set Ci[β] ⊆ S+ of Σi -chains for β
is defined as follows. Let s̄ = (s1, . . . , sn) ∈ S+ be a chain. We have s̄ ∈ Ci[β] if
and only if for all k ∈ N, there exist w1, . . . , wn ∈ Ax such that:

w1 �k
i w2 �k

i · · · �k
i wn and for all j, β(wj) = sj .

We let Ci,n[β] be the restriction of this set to chains of length n: Ci,n[β] =
Ci[β] ∩ Sn.

Σi-Chains Associated to a Morphism. It follows from the definition of Σi-
chains that one may associate a set Ci[α] to any semigroup morphism α : A+ →
S. This set is exactly the set of Σi-chains associated to α as defined in [18].

Moreover, given a morphism α : (A+, A∞) → (S+, S∞) into a finite Wilke
algebra (S+, S∞), one may associate two sets of Σi-chains to α: one to the
morphism α+ : A+ → S+ (Ci[α+] ⊆ (S+)+) and one to the map α∞ : A∞ → S∞
(Ci[α∞] ⊆ (S∞)+). We may now link Σi-chains to the separation problem.

244 T. Pierron et al.

3.1 Σi-Chains and Separation for Σi

We now connect Σi-chains to the separation problem. We begin with the simplest
connection, which is between Σi-chains of length 2 and separation for Σi.

Theorem 9. Let i � 1, x ∈ {+,∞} and β : Ax → S a map into a finite set S.
Given F1, F2 ⊆ S, L1 = β−1(F1) and L2 = β−1(F2), the following are equivalent

1. L1 is not Σi-separable from L2.
2. there exist s1 ∈ F1 and s2 ∈ F2 such that (s1, s2) ∈ Ci,2[β].

Theorem 9 is a straightforward consequence of the statement for Σi in
Lemma 8. In view of the theorem, our approach for the Σi-separation prob-
lem is as follows:

– for languages, we look for an algorithm computing Ci,2[α] from an input mor-
phism α : A+ → S into a finite semigroup S.

– for languages of infinite words, we look for an algorithm computing Ci,2[α∞]
from an input morphism α : (A+, A∞) → (S+, S∞) into a finite Wilke algebra
(S+, S∞). Typically, this algorithm involves computing Ci,2[α+] first, which
can be achieved by reusing the first item, i.e., the algorithm for word lan-
guages.

This approach is exactly the one used in [16,18] to solve separation for Σ2 and
Σ3 over finite words: the following theorems are proven in these papers.

Theorem 10 (see [18]). Given as input a morphism α : A+ → S into a finite
semigroup S, one can compute the set C2,2[α] of Σ2-chains of length 2 for α.

Theorem 11 (see [16]). Given as input a morphism α : A+ → S into a finite
semigroup S, one can compute the set C3,2[α] of Σ3-chains of length 2 for α.

We generalize these two theorems in Sect. 4 (for Σ2) and Sect. 6 (for Σ3) for
infinite words by presenting two new algorithms. These algorithms both take a
morphism α : (A+, A∞) → (S+, S∞) as input and compute the sets C2,2[α∞] and
C3,2[α∞] respectively. The algorithms of Theorems 10 and 11 are reused as sub-
procedures in these new algorithms for languages of infinite words: computing
C2,2[α∞] and C3,2[α∞] requires to first compute C2,2[α+] and C3,2[α+].

Remark 12. The algorithms of Theorems 10 and 11 both work with objects
that are actually more general than Σi-chains: the Σ2 algorithm works with
“Σ2-junctures” and the Σ3 algorithm with an even more general notion: “Σ2,3-
trees”. We do not present these more general notions because we do not need
them outside of the algorithms of Theorems 10 and 11, which we use as black
boxes.

Quantifier Alternation for Infinite Words 245

3.2 Σi-Chains and Separation for BΣi

We finish by presenting the connection between the separation problem for BΣi

and Σi-chains. This time, the connection depends on the whole set of Σi-chains.
More precisely, it depends on yet another notion called alternation.

Let x ∈ {+,∞} and β : Ax → S be a map into a finite set S. We say that
a pair (s, t) ∈ S2 is Σi-alternating for β iff for all n � 1, we have (s, t)n ∈ Ci[β]
(where by (s, t)n, we mean the chain (s, t, s, t, . . . , s, t) of length 2n).

Theorem 13. Let i � 1, x ∈ {+,∞} and β : Ax → S a map into a finite
set S. Given F1, F2 ⊆ S, L1 = β−1(F1) and L2 = β−1(F2), the following are
equivalent:

1. L1 is not BΣi-separable from L2.
2. there exist s1 ∈ F1 and s2 ∈ F2 such that (s1, s2) is Σi-alternating.

The proof of Theorem 13 is based on the second part of Lemma 8. In view of
the theorem, the separation problem for BΣi reduces to the computation of the
Σi-alternating pairs, which is unfortunately open for i � 2, even on finite words.

Regarding membership however, Theorem 13 yields an immediate corollary.
For x ∈ {+,∞} and β : Ax → S a map into a finite set S, we say that β has bounded
Σi -alternation iff every Σi-alternating pair (s, t) ∈ S2 for β satisfies s = t.

Corollary 14. Let i � 1, x ∈ {+,∞} and β : Ax → S be a map into a finite
set S. Then all sets β−1(F) for F ⊆ S are BΣi-definable if and only if β has
bounded Σi-alternation.

Combining Corollary 14 with Fact 2 yields a criterion for BΣi-membership:
a regular language of finite or infinite words is definable in BΣi iff its syntactic
morphism has bounded Σi-alternation. This is used in [18] to obtain a (language)
membership algorithm for BΣ2. More precisely, the following result is proved.

Theorem 15 (see [18]). Given as input a morphism α : A+ → S into a finite
semigroup S, one can decide whether α has bounded Σ2-alternation or not.

In Sect. 5 we obtain our algorithm for BΣ2-membership over infinite words
by proving that given a morphism α : (A+, A∞) → (S+, S∞) as input, one can
decide whether α∞ has bounded Σ2-alternation or not. More precisely, we prove
that α∞ having bounded Σ2-alternation is equivalent to two decidable properties
of α. The first is that α+ has bounded Σ2-alternation (which we can decide by
Theorem 15). The second is a simple equation that (S+, S∞) needs to satisfy.

4 A Separation Algorithm for Σ2

In this section, we present an algorithm for the separation problem associated to
Σ2 over infinite words. As expected, this algorithm is based on the computation
of Σ2-chains of length 2 (see Theorem 9): we prove that given a morphism α
into a finite Wilke algebra, one can compute C2,2[α∞].

246 T. Pierron et al.

For an alphabet compatible morphism α : (A+, A∞) → (S+, S∞) into a finite
Wilke algebra, we denote by CalcΣ2(α) the set of all pairs:

(r1(s1)∞, r2(s2)ωt2) ∈ S∞ × S∞

with (r1, r2) ∈ C2,2[α+], (s1, s2) ∈ C2,2[α+], t2 ∈ α(A∞) and alph(s1) = alph(t2).
Note that this last condition is well defined since α is alphabet compatible. Recall
that s∞

1 is the infinite product s1s1 . . ., and sω
2 the idempotent power of s2 in S+.

Proposition 16. Let α : (A+, A∞) → (S+, S∞) be an alphabet compatible mor-
phism into a finite Wilke algebra (S+, S∞). Then, C2,2[α∞] = CalcΣ2(α).

A consequence of Proposition 16 is that the separation problem is decidable for
Σ2 over infinite words. Indeed, recall that for any two regular languages of infinite
words, one may compute a single alphabet compatible Wilke algebra morphism
that recognizes them both. Therefore, it follows from Theorem 9 that deciding
Σ2-separation amounts to having an algorithm that computes C2,2[α∞] from α.

We obtain this algorithm from Proposition 16 since CalcΣ2(α) may be com-
puted, given α as input. Indeed, by Theorem 10, we already know that the set
C2,2[α+] can be computed from α. Hence, we obtain the desired corollary.

Corollary 17. Over infinite words, the separation problem is decidable for Σ2.

An important remark is that we use Theorem 10 as a black box: we do not
reprove that C2,2[α+] may be computed from α+. This is not an immediate result.
In fact, the proof of [18] requires to use a framework that is more general than
Σ2-chains (that of “Σ2-junctures”) as well as arguments that are independent
from those that we are going to use to prove Proposition 16.

It remains to prove Proposition 16. We illustrate the algorithm by prov-
ing the easier inclusion: C2,2[α∞] ⊇ CalcΣ2(α) (this proves correctness: all com-
puted chains are indeed Σ2-chains). The converse inclusion (corresponding to
completeness: all Σ2-chains are computed) is available in the long version of
the paper.

Correctness Proof: C2,2[α∞] ⊇ CalcΣ2(α). Let (r1, r2) ∈ C2,2[α+], (s1, s2) ∈
C2,2[α+] and t2 ∈ α(A∞) such that alph(s1) = alph(t2). Our objective is to prove
that (r1(s1)∞, r2(s2)ωt2) ∈ C2,2[α∞]. Let k � 1. By definition, we need to find
two infinite words w1 �k

2 w2 such that α(w1) = r1(s1)∞ and α(w2) = r2(s2)ωt2.
By hypothesis, we have four words x1, x2, y1, y2 ∈ A+ such that x1 �k

2 x2,
y1 �k

2 y2, α(x1) = r1, α(x2) = r2, α(y1) = s1 and α(y2) = s2. Moreover,
we have an infinite word z ∈ A∞ such α(z) = t2 and alph(y1) = alph(z). Let
w1 = x1(y1)∞ and w2 = x2(y2)2

kωz. Observe that by definition, we have α(w1) =
r1(s1)∞ and α(w2) = r2(s2)ωt2. Therefore, it remains to prove that w1 �k

2 w2.
By Corollary 7, we obtain that (y1)∞ �k

2 (y1)2
kωz. Moreover, using y1 �k

2 y2
and z �k

2 z together with Lemma 5, we obtain (y1)2
kωz �k

2 (y2)2
kωz. Therefore,

by transitivity (y1)∞ �k
2 (y2)2

kωz. Finally, we use the fact that x1 �k
2 x2 and

Lemma 5 to conclude that x1(y1)∞ �k
2 x2(y2)2

kωz, i.e., that w1 �k
2 w2. ��

Quantifier Alternation for Infinite Words 247

5 A Membership Algorithm for BΣ2

We now present our membership algorithm for BΣ2 over infinite words. The
algorithm is stated as a decidable characterization of BΣ2 over infinite words.

Theorem 18. Let L ⊆ A∞ be regular and let α : (A+, A∞) → (S+, S∞) be the
alphabet completion of its syntactic morphism. The following are equivalent:

1. L is definable in BΣ2.
2. α∞ has bounded Σ2-alternation.
3. α+ has bounded Σ2-alternation and α satisfies the following equation:

(stω)∞ = (stω)ωst∞ for all s, t ∈ α(A+) such that alph(s) = alph(t) (1)

We know that Item 3 in Theorem 18 is decidable. Indeed, Theorem 15 states that
whether α+ has bounded Σ2-alternation is decidable (note however that this is
a difficult result of [18] whose proof is independent from that of Theorem 18).
Moreover, verifying that (1) is satisfied may be achieved by checking all possible
combinations. Therefore, we obtain the following corollary of Theorem 18.

Corollary 19. The membership problem over infinite words is decidable
for BΣ2.

It now remains to prove Theorem 18. That 2) ⇒ 1) is immediate from
Corollary 14. The most difficult (and interesting) direction is 3) ⇒ 2). Due
to lack of space, it is proved in the long version of this paper. As we did in
the previous section, we illustrate the theorem by proving the easier 1) ⇒ 3)
direction.

Proof of 1) ⇒ 3). Let L be BΣ2-definable. In particular, this means that every
language of finite or infinite words recognized by α is definable in BΣ2 (we know
from Fact 2 that it is true for the syntactic morphism of L, so this is true as well
for its alphabet completion α, as one can test the alphabet of a word in BΣ2).

Since every language recognized by α is definable in BΣ2, Corollary 14 entails
that α+ has bounded Σ2-alternation. It remains to establish Eq. (1). For s, t ∈
α(A+) such that alph(s) = alph(t), let us show that (stω)∞ = (stω)ωst∞.

Let k such that for any r ∈ S∞, α−1(r) may be defined by a BΣ2 sentence
of quantifier rank less than k (k exists since all these languages of infinite words
are definable in BΣ2). By choice of k, for any two infinite words u, v ∈ A∞, we
have u ∼=k

2 v ⇒ α(u) = α(v). Therefore, in order to conclude, it suffices to find
two infinite words u, v of images (stω)∞ and (stω)ωst∞ and such that u ∼=k

2 v.
By definition of s, t, we have words x, y ∈ A+ such that α(x) = s, α(y) = t

and alph(x) = alph(y). Let u = (xy2kω)∞ and v = (xy2kω)2
kωxy∞. It is imediate

that u and v have images (stω)∞ and (stω)ωst∞. It remains to prove that u ∼=k
2 v.

We prove that u �k
2 v and v �k

2 u. Observe that alph(xy2kω) =
alph(xy∞). Hence, we get u �k

2 v from Corollary 7. Conversely, we know that
alph((xy2kω)∞) = alph(y). Therefore, we may use Corollary 7 again to obtain
y∞ �k

2 y2kω(xy2kω)∞. That v �k
2 u is then immediate from this inequality by

Lemma 5.

248 T. Pierron et al.

6 A Separation Algorithm for Σ3

We present our algorithm for the separation problem associated to Σ3 over infi-
nite words. As for Σ2, this algorithm is based on Theorem 9: we give a procedure
computing C3,2[α∞] from an input morphism α : (A+, A∞) → (S+, S∞).

However, in this case, this computation requires a new ingredient. This new
ingredient is a generalization of Σi-chains that we call mixed chains.

Mixed Chains. Let x ∈ {+,∞} and β : Ax → S as a map into some finite set S.
We define a set M[β] ⊆ S3. Let s̄ = (s1, s2, s3) ∈ S3 be a chain over S. We have
s̄ ∈ M[β] if and only if for all k ∈ N, there exist w1, w2, w3 ∈ Ax such that,

β(w1) = s1, β(w2) = s2, β(w3) = s3 and w1 �k
2 w2 �k

3 w3

Note the definition involves both the preorder “�k
2” associated to Σ2 and the

preorder “�k
3” associated to Σ3 (hence the name “mixed chains”). An important

remark is that we will not present any algorithm for computing mixed chains.
On the other hand, our algorithm for computing C3,2[α∞] from a morphism α is
parametrized by the set of mixed chains M[α+]. That M[α+] may be computed
from α+ is a very difficult result of [16], stated below.

Theorem 20 (see [16]). Given as input a morphism α : A+ → S into a finite
semigroup S, one can compute the set M[α] of mixed chains for α.

Remark 21. The presentation of Theorem 20 is different in [16]. It is proved that
one can compute the set of “Σ2,3-trees” associated to α. Essentially Σ2,3-trees
are trees of depth 3 whose nodes are labeled by elements of a finite set S and
mixed chains are the special case when there is only a single branch in the tree.

We may now present our separation algorithm for Σ3 over infinite words. Let
α : (A+, A∞) → (S+, S∞) be an alphabet compatible morphism into a finite
Wilke algebra (S+, S∞). We define CalcΣ3(α) ⊆ (S∞)2 as the set of all pairs

(
r2(s2(t2)ω)∞, r3(s3(t3)ω)ωs1(t1)∞)

with (r2, r3) ∈ C3,2[α+], (s1, s2, s3) ∈ M[α+], (t1, t2, t3) ∈ M[α+] and alph(s1) =
alph(t1). Since we know from Theorem 20 that one may compute M[α+] from
α, it is immediate from the definition that one may compute CalcΣ3(α) from α.

Proposition 22. Let α : (A+, A∞) → (S+, S∞) be an alphabet compatible mor-
phism into a finite Wilke algebra (S+, S∞). Then, C3,2[α∞] = CalcΣ3(α).

As for Σ2, Proposition 22 immediately yields an algorithm for Σ3-separation
over infinite words. Indeed, it provides an algorithm computing C3,2[α∞] from
any alphabet compatible morphism α, which suffices to decide Σ3-separation.

Corollary 23. The separation problem over infinite words is decidable for Σ3.

Quantifier Alternation for Infinite Words 249

It remains to prove Proposition 22. We proceed as for Σ2. Again, we
only prove the easier inclusion and postpone the other to the long version of
this paper.

Proof of C3,2[α∞] ⊇ CalcΣ3(α). Let (r2, r3) ∈ C3,2[α+], (s1, s2, s3) ∈ M[α+]
and (t1, t2, t3) ∈ M[α+] be chains such that alph(s1) = alph(t1). We have to
prove that (r2(s2(t2)ω)∞, r3(s3(t3)ω)ωs1(t1)∞) ∈ C3,2[α∞]. Let k � 1, we need
to find two infinite words w2 �k

3 w3 such that α(w2) = r2(s2(t2)ω)∞ and α(w3) =
r3(s3(t3)ω)ωs1(t1)∞. The definition gives words x2, x3, y1, y2, y3, z1, z2, z3 with:

– α(xj) = rj , α(yj) = sj , α(zj) = tj
– x2 �k

3 x3, y1 �k
2 y2 �k

3 y3 and z1 �k
2 z2 �k

3 z3.

Moreover, as alph(s1) = alph(t1), we have alph(y1) = alph(z1). We define
w2 = x2(y2(z2)2

kω)∞ and w3 = x3(y3(z3)2
kω)2

kωy1z
∞
1 . It is immediate from this

definition that α(w2) = r2(s2(t2)ω)∞ and that α(w3) = r3(s3(t3)ω)ωs1(t1)∞. It
remains to prove that w2 �k

3 w3.
We first prove y1z

∞
1 �k

2 (y2(z2)2
kω)∞. Since alph(y1) = alph(z1), we may use

Corollary 7 to obtain z∞
1 �k

2 (z1)2
kω(y1(z1)2

kω)∞. By Lemma 5 and transitivity,

y1z
∞
1 �k

2 (y1(z1)2
kω)∞ �k

2 (y2(z2)2
kω)∞ (2)

We may now use (2) together with Lemma 6 to obtain that (y2(z2)2
kω)∞ �k

3

(y2(z2)2
kω)2

kωy1z
∞
1 . Using Lemma 5 and transitivity again, we obtain that

x2(y2(z2)2
kω)∞ �k

3 x3(y3(z3)2
kω)2

kωy1z
∞
1

This exactly says that w2 �k
3 w3 which concludes the proof. ��

7 Conclusion

We proved that for languages of infinite words, the separation problem is decid-
able for Σ2 and Σ3 and that the membership problem is decidable for BΣ2.
Note that using a theorem of [21], these results may be lifted to the variants of
these logics whose signature has been enriched with a predicate “+1”, that is
interpreted as the successor relation. This means that over infinite words, sep-
aration is decidable for Σ2(<,+1) and Σ3(<,+1) and membership is decidable
for BΣ2(<,+1).

A gap remains between languages and languages of infinite words: we leave
open the case of Σ4-membership for languages of infinite words while it is known
to be decidable for languages [16]. The language algorithm was based on two
ingredients: (1) the decidability of Σ3-separation [16] and (2) an effective reduc-
tion of Σi+1-membership to Σi-separation [18] (which is generic for all i � 1). In
the setting of languages of infinite words, we are missing the second result and
it is not clear whether a similar reduction exists.

250 T. Pierron et al.

Acknowledgements. This study has been carried out with financial support from
the French State, managed by the French National Research Agency (ANR) in the
frame of the “Investments for the future” Programme IdEx Bordeaux -CPU (ANR-10-
IDEX-03-02).

References

1. Arfi, M.: Polynomial operations on rational languages. In: Brandenburg, F.J.,
Vidal-Naquet, G., Wirsing, M. (eds.) STACS’87. LNCS, vol. 247, pp. 198–206.
Springer, Heidelberg (1987)

2. Bojańczyk, M.: The common fragment of ACTL and LTL. In: Amadio, R.M. (ed.)
FOSSACS 2008. LNCS, vol. 4962, pp. 172–185. Springer, Heidelberg (2008)

3. Brzozowski, J.A., Knast, R.: The dot-depth hierarchy of star-free languages is
infinite. J. Comput. Syst. Sci. 16(1), 37–55 (1978)

4. Büchi, J.R.: Weak second-order arithmetic and finite automata. Math. Logic Q.
6(1–6), 66–92 (1960)

5. Büchi, J.R.: On a decision method in restricted second order arithmetic. In: Logic,
Methodology and Philosophy of Science (Proc. 1960 Internat. Congr.), pp. 1–11.
Stanford Univ. Press, Stanford (1962)

6. Czerwiński, W., Martens, W., Masopust, T.: Efficient separability of regular lan-
guages by subsequences and suffixes. In: Fomin, F.V., Freivalds, R., Kwiatkowska,
M., Peleg, D. (eds.) ICALP 2013, Part II. LNCS, vol. 7966, pp. 150–161. Springer,
Heidelberg (2013)

7. Diekert, V., Kufleitner, M.: Fragments of first-order logic over infinite words. The-
ory Comput. Syst. 48(3), 486–516 (2011)

8. Elgot, C.C.: Decision problems of finite automata design and related arithmetics.
Trans. Am. Math. Soc. 98(1), 21–51 (1961)

9. Kufleitner, M., Walter, T.: Level two of the quantifier alternation hierarchy over
infinite words. CoRR, abs/1509.06207 (2015)

10. McNaughton, R., Papert, S.A.: Counter-Free Automata. MIT Press, Cambridge
(1971)

11. Perrin, D.: Recent results on automata and infinite words. In: Chytil, M.P.,
Koubek, V. (eds.) MFCS 1984. LNCS, vol. 176, pp. 134–148. Springer,
Heidelberg (1984)

12. Perrin, D., Pin, J.É.: Infinite Words. Elsevier, Amsterdam (2004)
13. Pierron, T., Place, T., Zeitoun, M.: Quantifier alternation for infinite words. CoRR,

abs/1511.09011 (2015)
14. Pin, J.É.: Positive varieties and infinite words. In: Lucchesi, C.L., Moura, A.V.

(eds.) LATIN 1998. LNCS, vol. 1380, pp. 76–87. Springer, Heidelberg (1998)
15. Pin, J.É., Weil, P.: Polynomial closure and unambiguous product. Theory Com-

put.Syst. 30(4), 383–422 (1997)
16. Place, T.: Separating regular languages with two quantifier alternations. In: Pro-

ceedings of the 30th Annual ACM/IEEE Symposium on Logic in Computer Science
(LICS 2015), pp. 202–213. IEEE (2015)

17. Place, T., van Rooijen, L., Zeitoun, M.: Separating regular languages by piecewise
testable and unambiguous languages. In: Chatterjee, K., Sgall, J. (eds.) MFCS
2013. LNCS, vol. 8087, pp. 729–740. Springer, Heidelberg (2013)

18. Place, T., Zeitoun, M.: Going higher in the first-order quantifier alternation hierar-
chy on words. In: Esparza, J., Fraigniaud, P., Husfeldt, T., Koutsoupias, E. (eds.)
ICALP 2014, Part II. LNCS, vol. 8573, pp. 342–353. Springer, Heidelberg (2014)

Quantifier Alternation for Infinite Words 251

19. Place, T., Zeitoun, M.: Separating regular languages with first-order logic. In:
2014 Proceedings of the Joint Meeting of the 23rd EACSL Annual Conference
on Computer Science Logic (CSL 2014), 29th Annual ACM/IEEE Symposium on
Logic in Computer Science (LICS 2014), pp. 75:1–75:10. ACM, New York (2011)

20. Place, T., Zeitoun, M.: Separating ω-languages without quantifier alternation
(2015) (Unpublished)

21. Place, T., Zeitoun, M.: Separation and the successor relation. In preparation, long
version of [22] (2015)

22. Place, T., Zeitoun, M.: Separation and the successor relation. In: Mayr, E.W.,
Ollinger, N. (eds.) 32nd International Symposium on Theoretical Aspects of Com-
puter Science (STACS 2015). Leibniz International Proceedings in Informatics
(LIPIcs), vol. 30, pp. 662–675. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik,
Dagstuhl (2015)

23. Schützenberger, M.P.: On finite monoids having only trivial subgroups. Inf. Control
8(2), 190–194 (1965)

24. Simon, I.: Piecewise testable events. In: Brakhage, H. (ed.) Automata Theory and
Formal Languages. LNCS, vol. 33, pp. 214–222. Springer, Heidelberg (1975)

25. Stockmeyer, L.J., Meyer, A.R.: Word problems requiring exponential time (pre-
liminary report). In: Proceedings of the Fifth Annual ACM Symposium on Theory
of Computing, STOC 1973, pp. 1–9. ACM, New York (1973)

26. Thomas, W.: A concatenation game and the dot-depth hierarchy. In: Börger, E.
(ed.) Computation Theory and Logic. LNCS, vol. 270, pp. 415–426. Springer,
Heidelberg (1987)

27. Trakhtenbrot, B.A.: Finite automata and logic of monadic predicates. Dokl. Akad.
Nauk SSSR 149, 326–329 (1961). In Russian

28. Wilke, T.: An Eilenberg theorem for ∞-languages. In: Leach Albert, J., Monien, B.,
Rodŕıguez Artalejo, M. (eds.) ICALP 1991. LNCS, vol. 510, pp. 588–599. Springer,
Heidelberg (1991)

	Quantifier Alternation for Infinite Words
	1 Presentation of the Problem
	1.1 The Quantifier Alternation Hierarchy of First-Order Logic
	1.2 Decision Problems

	2 Preliminaries
	2.1 Semigroups and Wilke Algebras
	2.2 Logical Preorders

	3 Chains for Omega-Languages
	3.1 i-Chains and Separation for i
	3.2 i-Chains and Separation for Bi

	4 A Separation Algorithm for Sigma2
	5 A Membership Algorithm for B-Sigma2
	6 A Separation Algorithm for 3
	7 Conclusion
	References

