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Abstract. We understand a sociotechnical system (STS) as a microso-
ciety in which social entities interact about and via technical entities.
A protocol specifies an STS by describing how its members collaborate
by giving meaning to their interactions. We restrict ourselves to protocols
that specify messages between roles in terms of how they create and affect
commitments among the roles. A key idea of our approach, Positron,
is that a protocol specifies the accountability of one role to another in
addition to the requirements from each role. Specifically, Positron incor-
porates role accountability and role requirements as two integral aspects
of protocol composition. In this way, it seeks to promote collaboration in
STSs through natural requirements elicitation; flexibility enactment; and
compliance and validation (ascribing accountability for each requirement
to a specific role). Positron maps composite protocols to the representa-
tions of a well-known model checker as a way to verify protocols to assist
in their correct formulation. We evaluate Positron by demonstrating it
on real-life protocols.

Keywords: Commitments · Commitment protocols · Agent communi-
cation · Communication protocols · Protocol composition · Verification
of multiagent systems · Model checking

1 Introduction

We study sociotechnical systems (STSs) wherein autonomous parties interact
about and through technical entities [29]. STSs arise in a variety of collaborative
settings, including cross-organizational service engagements. A protocol specifies
an STS in abstract terms by describing two or more roles and the messages those
roles may exchange along with meanings of those messages [7]. Protocols arise
commonly in business, e.g., RosettaNet [25], and healthcare, e.g., HL7 [16]. By
bringing forth collaboration requirements, protocols separate implementations
from interactions, thereby promoting the flexibility of autonomous collaborators,
such as is needed in sociotechnical systems.
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Existing protocol approaches [16,25], however, standardize the message for-
mats and operational constraints, but not the meanings of those messages, which
are left informally stated. The past several years have seen the development of
approaches that apply commitments [26] to specify the meanings of the messages
in a protocol [3,34], where protocol designers define meanings. The commitment-
based approaches help deal with the autonomy and heterogeneity of participants
and promote flexibility in interactions. The benefits of commitments for model-
ing service engagements are well established. For example, Telang and Singh [30]
demonstrated an error in a published RosettaNet guideline when modeled using
commitments. Therefore, for brevity, we do not review the extensive literature
on commitments here. Singh [28] provides a conceptual summary.

Challenge: Composition. Composition is a key construct in software engineer-
ing as a way to promote reuse and modularity. Existing approaches for protocols,
whether operational or commitment-based, do not adequately support their com-
position, because they incorporate internal details or lack a formal semantics of
interactions. Existing approaches, e.g., HL7 [16] and RosettaNet [25], provide
atomic two-party protocols with the intent for them to be composed but do
not support the composition as such and do not provide a construct by which
two or more protocols could be composed. Thus the separation of interaction
and implementation fails above the level of the atomic (predefined) protocols.
Section 5 reviews the literature in detail. Suffice it to state here that previous
relevant research falls into these categories: (a) composition but no commitments
[22,27]; (b) commitments but no composition [14]; and (c) composition and com-
mitments. The last subcategory can be further refined as (c1) purely abstract
description without a specification language or tools [19]; (c2) composition of
commitment-based protocols based on axioms [9,11] or regulative constraints [4]
but without producing a composite protocol for further reuse and composition;
and (c3) our present approach to composition of commitment-based protocols
based on role responsibilities and accountabilities.

Motivating Research Questions and Contributions. How can we (1) for-
malize accountability, a crucial element of secure collaboration, as a basis for
formal modeling and verification of STSs and (2) support composition of pro-
tocols to specify STSs? We address this question by restricting ourselves to
composition and verification of commitment protocols, deferring representing
other normative relationships [29] and their mapping to agent decision-making
to future work.

Specifically, we propose Positron, a language and verification approach that
supports composing commitment-based protocols and formally reasoning about
them to verify desired properties. Positron (a) introduces role requirements,
which capture a role’s motivation, and role accountability, which captures the
commitments a role makes to other creditor roles (that benefit from those com-
mitments) as elements of a composite protocol specification; (b) shows how to
recursively expand nested constituent protocols; (c) supports a methodology
for composing commitment protocols; and (d) provides a decision procedure
and mechanical verification of protocols with respect to role requirements, role
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accountabilities, and enactments. Positron compiles protocol specifications into
MCMAS [17] models and checks protocols against temporal logic formulas. It
then employs the MCMAS model checker to verify if the composite protocol
satisfies those temporal formulas. The Positron verifier builds upon the Pro-
ton [14], verifier for commitment protocol refinement, expanding it to tackle
protocol composition.

2 Background and Motivation

We write C{debtors},{creditors}(antecedent, consequent) [14] to denote a com-
mitment from the specified debtors to the specified creditors that if the
antecedent begins to hold, the debtors will bring about the consequent.
The antecedent and consequent are Boolean expressions. For example,
CPH,{CC,Re} (deliverReq ∧ approval,deliverCar) denotes that PolicyHolder
(PH) commits to CallCenter (CC) and Repairer (Re) that he will deliver
his car to Repairer whenever requested and the repair request is approved.

When the antecedent becomes true, the commitment is detached, and the
debtors become unconditionally committed to the creditors. When the conse-
quent becomes true, the commitment is discharged. Debtors should discharge
their detached commitments. However, debtors are autonomous and may violate
a commitment, for simplicity, by canceling it. The only computational require-
ment for commitments is: each detached commitment must eventually be dis-
charged (satisfied, delegate, assigned, or released) or canceled. A commitment
imposes no ordering constraint between the antecedent and consequent, although
in specific settings there may be a practical constraint.

Running Example: AGFIL. The following real-life case involves automobile
insurance claims processing for AGF Irish Life Holding (AGFIL) [5], as Fig. 1
summarizes. This case involves four parties plus PolicyHolder and Adjuster
(not shown). AGFIL underwrites automobile insurance policies and covers losses
incurred by policy holders. Europ Assist (EA) provides a 24-h help-line service for
receiving claims. Approved Repairers provide repair services. Lee Consulting
Services (Lee) coordinates with AGFIL, repairers, and adjusters to handle a
claim.

Figure 1 describes the workflows of each participant along with how they
relate to one another. Notwithstanding that one could adopt a standard process
notation, the main point is that such a description tightly couples the inner
workings of the participants. Conventional protocol approaches [16,25,32] deem-
phasize the inner workings and capture the interactions between the participants
via a formal notation in terms of constraints on the ordering of the messages
exchanged between the participants.

In contrast, a commitment protocol emphasizes the social state of an interac-
tion, expressed in terms of commitments. A commitment protocol describes the
roles involved, the messages they exchange, and any preconditions and effects of
the messages on the social state. An agent adopts a role and enacts the specified



22 S.N. Gerard et al.

Fig. 1. Traditional process model of cross-organizational insurance claim processing [5].

protocol by autonomously choosing (in accordance with its internal policies) how
to interact.

3 Technical Approach

Positron provides a formal language in which to express composite protocols based
on existing constituent protocols. Positron is a Java application that reads pro-
tocols described in the Positron language (examples shown in Listings 1 and 2),
flattens any hierarchically nested protocols, and generates input to the MCMAS
model checker.

Recall that Proton [14] provides a language for capturing roles, propositions,
commitments, and messages. Positron augments the Proton language by adding
constructs to define a composite protocol using a set of parameterized constituent
protocols and defines a protocol composition methodology.

Further, while it accepts and verifies any CTL expression, Positron introduces
five constructs for common verification patterns when composing protocols: Func-
tion Req for role requirements, coupling commitments for role accountabilities,
and three path expressions for good and bad enactments.

Definition 1. A Positron protocol is a six-tuple of PR, a set of role names;
PP, a set of role-qualified propositions; PC, a set of commitments; PM, a set of
guarded messages; PF, a set of CTL expressions to be verified; and PU, a set of
use (include) statements.

For brevity, we omit the Positron grammar in favor of examples. Listing 1
specifies AGFIL’s Claim Handling protocol as roles (insured and claims handler),
propositions, commitments, and messages (with their guards and effects on the
propositions).
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Listing 1. Claim constituent protocol
1: protocol Claims (role In, roleCH, propnotify, prop estimate, prop invoice, proppay) {
2: role In; CH;

3: prop notify; estimate; invoice; pay;

4: commitment

5: cc = CIn,CH (estimate and invoice, pay);

6: notify.cc1 = CCH,In(notify, estimate);

7: pay.c1 = CIn,CH (invoice,pay);

8: pay.c2 = CCH,In(pay, invoice);

9: message

10: In → CH : [true] notify requestMsg means {notify};
11: CH → In : [notify.isSet()] notify responseMsg means {estimate};
12: In → CH : [true] pay do1 means {pay};
13: CH → In : [true] pay do2 means {invoice};
14: }

Listing 2 describes the AGFIL composite protocol. In the statement begin-
ning on Line 4, this protocol uses the Claims protocol in Listing 1, mapping
roles and propositions in protocol AGFIL to equivalent versions in protocol
Claims. We omit the other constituent protocols for space. It turns out that the
AGFIL protocol has no additional messages since all its messages derive from its
constituents. The AGFIL protocol includes formulas describing the correctness
requirements.

Listing 2. Positron specification for AGFIL protocol (partial)
1: protocol AGFIL {
2: role PH; In; CC; CH; Re; Ad;
3: prop accident; deliver; repair; paid; . . .
4: use In-CH : Claims(agfil.Claims,
5: role In = In, roleCH=CH,
6: propnotify = true, prop estimate=reportCH,
7: proppay = payCH, prop invoice=repairIn);
8: . . .
9: commitment

10: CC1 : CCC,{PH, Re}(deliverReq, notifyRe);
11: PH1 : CPH,{CC,Re}(deliverReq ∧ approval, deliver);
12: . . .
13: formula
14: AG(paid ∧ accident → AF(repair ∨ anyCancel));
15: Req(In, coverage ∧ premium ∧ accident, repair);
16: AG(¬(repair ∧ ¬inspectCH));
17: . . .
18: EFPath(accident, deliverReq, payCa, reportCH, reportRe, . . . , repair);
19: ¬EFPath(repair, accident);
20: . . .
21: }
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Definition 2. An MCMAS representation is a tuple of Magent, a set of agent
names, including a distinguished agent Env representing the environment; Mstate,
a set of agent-qualified variable names; Mmsg, a set of agent-qualified guarded
transition functions; Mevol, a set of agent-qualified evolution expressions; Minit,
a set of agent-qualified variable initializations; Meval, a mapping from proposi-
tions to expressions over variables in Mstate; Mfair, a set of fairness expressions;
and Mctl, a set of CTL expressions to be verified.

Protocol Composition. Positron supports nested composition of protocols.
A composite protocol P can use (include) a parameterized constituent protocol
with a use statement q : Q(x = p) specifying protocol name (q), protocol type
(Q), a set of arguments p passed by a composite protocol P, and a matching set of
parameters x accepted by constituent Q. Arguments and parameters are named
and have a type of either role or proposition. The argument and parameter
sets must contain matching names and types. Positron expands any hierarchical
nesting in P to produce a single, flat protocol P ′. Expansion gives every element
in Q a new, unique name, and replaces each parameter with its corresponding
argument. Unique names are constructed by prepending the constituent name q
to each element name in Q. Positron supports using multiple copies or instances
of the same constituent Q by using distinct names q and q′.

Definition 3. Given a set of arguments p, a parameterized constituent protocol
type Q accepts a set of parameters x, where the sets p and x agree in both name
and type. Define Qx

p as Q in which all elements in Q are given unique names,
and every parameter in x is replaced with its corresponding argument in p.

Expanding a composite P containing a constituent q : Q(x = p) yields the
union of P and Qx

p , and removing P ’s use statement q : Q(x = p).

Definition 4. Given a composite protocol P that uses a constituent protocol
q : Q(x = p), where P passes a set of arguments p, Q accepts a set of parameters
x, and the sets p and x agree in name and type. Then protocol P ′ = expand(P, q :
Q(x = p)) is the expanded version of P and Q, and is defined as follows, where
x ∈ {R,P,C,M,F}

Px(P ′) := Px(P ) ∪ Px(Qx
p)

PU(P ′) := (PU(P ) − q) ∪ PU(Qx
p).

Positron Conversion to MCMAS. The conversion of a Positron protocol, P,
to an MCMAS representation M = conv(P) is a two-step process. First, con-
stituent protocol expansion (Protocol Composition) flattens all nested
protocols, ensuring PU is the empty set. Second, additional conversion func-
tions, convpm(Px), convert each element of a Positron protocol to elements of an
MCMAS representation. The final MCMAS representation consolidates these
generated elements. The ISPL source input into MCMAS is generated from the
above-mentioned MCMAS representation.
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Role Requirements. A role requirement reflects a role-desired goal of an agent
playing a role in the composite protocol. In Positron, Req(r, p, q) means that
role r requires that q will occur whenever p occurs. In AGFIL, one of Pol-
icyHolder’s role requirements is: if Insurer offers coverage, I paid the pre-
mium, and I have an accident, then my car will be repaired: Req(PH, coverage ∧
premium ∧ accident, repair)

It is incorrect to formalize a role requirement as the CTL specification:
AG(accident → AF repair), which ignores commitment violations that dis-
rupt a collaboration: a commitment may fail because its debtor either chooses
not to, or is prevented by circumstances from, discharging it. In verifying a role
requirement, we cannot assume commitments are never canceled. Rather, we
express role r’s requirement as: if r fulfills all its own commitments and p holds
at any state, then on each branch eventually, either q holds or a role other than
r canceled one of its commitments. If r’s requirement fails because r cancels a
commitment, that is not a fault of the protocol; it is r’s fault.

A Positron role requirement maps to an MCMAS CTL expression as

Req(r, p, q) := AG(p → AF(q ∨
∨

r′ �=r

r′.anyCancel))

where r′.anyCancel is true if and only if role r′ cancels any of its commitments.

Enactment Requirements. Although capturing all possible enactments is not
feasible for all protocols, designers and other stakeholders often know of specific
good and bad enactments. We use these enactments for partially verifying a
composite protocol as a way to assist designers refine protocol specifications (e.g.,
its constituent protocols and coupling commitments) or other requirements. An
enactment corresponds to a scenario in requirements engineering [13] and yields
a unit test. In Positron, the enactment specifications can be “good” (must exist)
or “bad” (must not exist).

We use model checking to verify enactments. We introduce three recursive
functions to simplify enactment specification. An enactment E is an ordered list
of Boolean expressions over states and messages. head(E) is the first element in
list E, and tail(E) is E without the first element, and EX, EF and EU are CTL
operators. Define

EXPath(E) :=
{
head(E) ∧ EX(EXPath(tail(E))) if |E| > 1
EX(P ) if |E| = 1

EFPath(E) :=
{
EF(head(E) ∧ EFPath(tail(E))) if |E| > 1
EF(P ) if |E| = 1

EUPath(r, E) :=
{
E(¬r U (head(E) ∧ EUPath(r, tail(E)))) if |E| > 1
E(¬r U P ) if |E| = 1

EXPath specifies a path of states that must appear consecutively. EXPath
is often too strong a constraint, since it precludes interleaving of constituent
protocols. EFPath specifies a path of states that must appear in order, but not
necessarily consecutively. EUPath specifies a path of states that must appear in
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order, and constrains which states can be interleaved in the path. Expression r
identifies which states must not be interleaved in the path. An EUPath require-
ment is stronger than EFPath and weaker than EXPath. Two example require-
ments from AGFIL include ¬EFPath(repair, accident) and EFPath(accident,
deliverReq,deliverCar, . . . , repair).

Coupling Commitments. A composite protocol would in general relate
its constituent protocols. All roles are jointly accountable for ensuring con-
stituent protocols are properly interrelated. We capture each role’s role
accountabilities as coupling commitments. A coupling commitment’s debtor
is the accountable role, and its creditors are (in general) the union of all
roles connected by the interrelated constituent protocols, minus the debtor:
Caccountable role,{interrelated roles}(antecedent, consequent).

Consider two coupling commitments from AGFIL. (1) CallCenter
commits to PolicyHolder and Repairer that it will notify Repairer
whenever it receives a request: CCC,{PH, Re}(deliverReq,notifyRe). (2) Pol-
icyHolder commits to CallCenter and Repairer that he will deliver
his car to Repairer whenever requested and the repair request is approved:
CPH,{CC,Re} (deliverReq ∧ approval,deliverCar).

Verification. Positron reads specifications of the composite and constituent
protocols and generates a single MCMAS input file. MCMAS reads the input,
builds the appropriate model, and reports whether each CTL formula holds in
the model.

Fig. 2. Selected states and transitions for AGFIL.

Figure 2 shows a portion of the state space Positron generates for verification
from AGFIL’s constituent protocols and coupling commitments. The start state
is s0. Solid lines are valid transitions (messages); dashed lines are transitions
that must not occur infinitely often. Since the message guard for coverage is
premium, coverage can occur only after premium, making s1 . . . s8 invalid start
states. Notice that the top row (premium, coverage, accident, and repair) begins
a good enactment. Positron can verify the existence of this path using an EFPath
requirement. Further, Positron can ensure that the model is free of specific bad
enactments, for example, that s1 must not be a start state.

Positron generates a model checking fairness constraint for each commitment:
a commitment must not remain unconditional and unresolved forever. Dashed
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loops are invalid because they violate a commitment fairness constraint. A com-
posite protocol may fail to satisfy role or enactment requirements for different
reasons:

– FailRR: If a role requirement (Req) formula fails, then coupling commitments
are missing; add coupling commitments that require agents to act as appro-
priate.

– FailG: If a good enactment formula fails, then either (FailGG) some message
guards are too strong; weaken guards to enable additional good transitions.
Or (FailGC) some commitment can become detached, but can never resolve;
weaken guards to enable transitions that satisfy the commitment’s consequent.

– FailB : If a bad enactment formula fails, then some message guards are too
weak; strengthen guards to disable existing incorrect transitions.

4 Evaluation of Positron Modeling and Tools

We evaluate our contributions by modeling real-life protocols from the insur-
ance, manufacturing, and healthcare domains. Table 1 summarizes our iterative
methodology to develop a composite protocol such as in Listing 2.

AGFIL Evaluation. We extend the AGFIL scenario by adding (a) Policy-
Holder role and accident reporting; (b) Adjuster role and the redirection
of two messages between ClaimHandler and Repairer through Adjuster;
(c) payments from Insurer to ClaimHandler and Repairer; (d) a proto-
col for premiums and coverage between PolicyHolder and Insurer; and
(e) Repairer returning the car.

We create the AGFIL protocol of Listing 2 as follows. Roles: Identify roles:
Insurer (In) for agent AGFIL, CallCenter (CC) for Europ Assist,
ClaimHandler (CH) for Lee, PolicyHolder (PH), Repairer (Re), and

Table 1. Inputs and outputs for each step of the methodology.

Step Name Inputs Outputs

1 Roles Background and
requirements

Composite roles

2 Constituent selection Role relationships and
protocol library

Constituent protocols

3 Role requirements Role’s needs Role requirements

4 Enactments Background knowledge
of requirements

Good and bad enactments

5 Coupling Enactments Coupling commitments

Composite protocol

6 Positron All artifacts Protocol specification

7 Verification Protocol specification Model checker results
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Adjuster (Ad). Constituent Selection: Identify constituent protocols:
RequestResponse, Exchange (where two roles swap items), Claims for In-CH
and ApprovedWork for CH-Re. Role Requirements: Identify role require-
ments: PolicyHolder requires: (1) if he has coverage, pays his premium, and
has an accident, his car is repaired; (2) if he delivers his car to Repairer, his car
is returned. Insurer requires: if a claim is filed, the claim is finalized. All roles
except PolicyHolder require payment if they perform their tasks. All these
are described as Req functions. Enactments: Identify enactments: (a) Poli-
cyHolder reports an accident to CallCenter (PH-CC); (b) CallCenter
assigns and notifies Repairer to repair the car (CC-Re); (c) CallCenter asks
PolicyHolder to deliver his car to a specific Repairer (PH-CC); (d) Pol-
icyHolder delivers car to Repairer (PH-Re); remaining steps are omitted.
Performing repairs before an accident is reported is a bad enactment: (e) car
repaired; (f) accident reported. Coupling: Identify coupling commitments: (1)
Between messages (a) and (b) of the accident-reporting enactment (see previous
step), if PolicyHolder reports an accident, CallCenter assigns and notifies
Repairer and (2) between messages (c) and (d), if CallCenter asks Pol-
icyHolder to deliver his car to Repairer, he does so. Positron: Generate
the Positron specification for AGFIL. Listing 2 shows snippets of the Positron
specification for AGFIL protocol. Lines 2 and 3 declare roles and propositions.
Line 4 instantiates constituent Claims named In-CH. Lines 10 and 11 are two
coupling commitments. Line 15 lists one of PolicyHolder’s role requirements.
Line 16 lists an Insurer requirement as explicit CTL. Line 18 verifies the good,
accident-reporting enactment that must exist in the composite, and Line 19 veri-
fies a bad enactment that must not exist. Listing 1 is the Claims protocol used as
a constituent protocol. From all previous artifacts, generate the MCMAS input
files. Verification: Run MCMAS model checker.

Quote To Cash Evaluation. Quote To Cash (QTC) is an important busi-
ness process that supports manufacturing supply chains [24]. Roles: Identify
roles: Customer, Reseller, Distributor, Seller, Shipper1, and Ship-
per2. Constituent Selection: Identify constituent protocols: Customer
orders goods and services from Reseller using constituent protocol Commer-
cialTran (ComTran), Reseller fulfills the order by Outsourcing to Distribu-
tor, Distributor orders good from Seller using CommercialTran, Seller
arranges shipping with Shipper2, and Distributor arranges shipping with
Shipper1, using additional instances of Outsourcing, and Seller provides a cus-
tomer support contract to Customer though StandingService. Role Require-
ments: Identify role requirements; if Customer pays, he receives goods and
services, if Reseller pays Distributor, he receives shipment, and for Cus-
tomer whenever a role performs its task, it gets paid. Enactments: Identify
two enactments for Customer placing an order and ending with fulfillment: one
if Distributor has goods in stock, one if it restocks from Seller. Fulfilling an
order before it is verified is a bad enactment. Coupling: Identify coupling com-
mitments: (1) Customer couples Cu-Re and Cu-Re-Di: if Customer receives
a shipment, he pays Reseller, (2) Reseller couples Cu-Re and Cu-Re-Di:
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whenever Reseller receives an order, he orders from Distributor. Positron:
Generate Positron specification for QTC. Verification: Run MCMAS model
checker.

Healthcare (ASPE) Evaluation. We consider the healthcare process for
breast cancer diagnosis, as described by an HHS committee [2]. The resulting
ASPE protocol contains five roles (for convenience, we associate feminine pro-
nouns with Patient, Radiologist, and Registrar and masculine pronouns
with Physician and Pathologist.) The process begins when Patient visits
a primary care physician (Physician), who detects a suspicious mass in her
breast. He sends Patient to Radiologist for a mammography. If Radiolo-
gist notices suspicious calcifications, she sends a report to Physician recom-
mending a biopsy. Physician requests the Radiologist to perform a biopsy,
who collects a tissue specimen from Patient and sends it to a Pathologist.
Pathologist analyzes the specimen, and performs ancillary studies. If neces-
sary, Pathologist and Radiologist confer to reconcile their results and pro-
duce a consensus report. Physician reviews the integrated report with Patient
to create a treatment plan. Pathologist forwards his report to Registrar
who adds Patient to a state-wide cancer registry. There are only two cou-
pling commitments in ASPE. Physician has no coupling commitments because
it is his choice whether Patient needs mammogram and biopsy exams from
Radiologist.

Table 2. Statistics. (M is 106, G is 109, s is seconds.)
Composite metric AGFIL QTC ASPE
Constituent instances 11 6 12
Roles 6 6 5
Propositions 22 37 18
Commitments (total) 24 43 12

Coupling commitments 9 21 2
Messages 22 55 20
CTL formulas (total) 9 17 14

Role requirements 8 13 7
Enactment requirements 1 4 7

Positron statements 94 164 81
State space size 120 M 381 G 1.47 M
Positron processing time 1.98 s 3.16 s 1.68 s
MCMAS processing time 4.29 s 1274 s 5.78 s
Total time 6.27 s 1278 s 7.46 s

Real-Life Results:
Positron and MCMAS
were run on all three,
hierarchical examples
with the statistics and
timings for the final,
corrected protocols
shown in Table 2.
Positron processing was
quick at less than 4 s,
and total processing of
AGFIL and ASPE were
also quick at less than
8 s. QTC, with a 1000
times larger state space
and the most CTL
formulas, required 21
minutes.

Model Verification: Resolving verification errors is a challenging task, requir-
ing careful consideration of the interactions between the generated MCMAS
model and CTL statements.

Positron helped identify and fix several verification failures. Good enactment
failures (FailGG and FailGC) were generally easier to fix, since they only require
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that some path exist. One or more requirements or coupling commitments were
slightly weakened to allow additional branches at appropriate points. Bad enact-
ment failures (FailB) were harder to fix as they required the impossibility of a
particular enactment. One or more role requirements or coupling commitments
were added. Hand checking was insufficient to ensure the changes would elimi-
nate all bad paths; only reruns of Positron and MCMAS could confidently verify
the changes.

Model Validation: Although identifying requirements was easy, some initial
specifications were incorrect because preconditions were missed. For example,
PolicyHolder’s role requirement initially failed (FailRR) because coupling com-
mitment among CallCenter, PolicyHolder, and Repairer did not include
approval; Repairer will not repair a car just because it is delivered to him. And,
an accident is insufficient to getPolicyHolder’s car is repaired;PolicyHolder
must also have a policy and pay the premium. Positron generates model checking
fairness conditions to ensure all unconditional commitments eventually resolve.
Initially, one of the AGFIL’s good enactment mysteriously failed because, even
though the model allowed all the transitions, the good enactment had unresolv-
able commitments (invalid by commitment fairness conditions). We corrected the
model so all commitments could resolve.

5 Discussion: Literature and Future Work

Positron gains an advantage over both traditional process modeling and existing
(operational) protocol approaches by focusing on high-level relationships realized
as constituent protocols, and by focusing on commitments rather than control
flow. Because role accountabilities are stated as commitments, if a requirement
fails, we can trace the failure back to a specific failing role.

Composite protocols provide a formal means to capture how constituent pro-
tocols may be composed to realize an STS specification. Because these protocols
capture meanings as commitments (generalizable to norms), yet have a formal
semantics that maps to sound enactments, they can provide a natural approach
to support secure policy-governed collaboration in ways that are not visible to
low-level, operational approaches.

Literature. Table 3 compares Positron with other work. Some papers propose
a protocol specification language, and some propose an accompanying proto-
col specification methodology. Some papers address single protocols in isolation;
some address common patterns within protocols; some address the composi-
tion of multiple protocols to create new composite protocols. Of those papers
that address verification, some address sociotechnical requirements; some address
verification properties between two protocols or models (such as protocol refine-
ment); some address protocol-wide properties; some verify properties that must
hold between the constituents of a composite protocol; some formulate role-
specific properties; some formulate good or bad enactment properties; and some
address other verification topics not addressed above.
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Table 3. Approach comparison. Column abbreviations and citations are Po= Positron;
Pr = Proton; DA, DO, Dv and DM = Desai et al.; T = Telang and Singh; Y =
Yolum; Mi = Miller and McBurney; G = Günay et al.; C = Cheong and Winikoff,
Mc = McGinnis and Robertson, L = Lomuscio et al., B = Baldoni et al. Check marks
show the significant topics addressed by each paper. The cell contents of the verifica-
tion rows indicate whether the paper discusses (D) or mechanizes (M) verification of
known good or bad paths.

Significant topics Po Pr DA DO Dv DM T Y Mi G C Mc L B

Verification topics [14] [9] [10] [8] [11] [31] [33] [21] [15] [6] [20] [18] [4]

Protocol specification � � � � – � � � � � � � – �
Methodology � – � � – – � – – � � – – –

Single protocol – � � � � – – � � � – � � �
Protocol patterns – – – – – – � – – – – – – –

Protocol-to-protocol verification – � – – – – ? – – – – ? ? –

Protocol composition � – � � � � – – � – � – � �
Requirements verification

Sociotechnical M – – – M – M – – D – – M M

Protocol-to-protocol – M – – – – M – – – – – M –

Protocol M – – – M – – M M D D – – M

Inter-constituent M – – – – M – – – – – – – –

Role-specific M – – – – – – – – D – – M –

Enactments M – – – – – M – – – D – M M

Other M M – – M M M M M D – – M M

Desai et al. [9] propose OWL-P [10] and MAD-P [11] for specifying and ver-
ifying commitment protocols and their compositions. They employ axioms to
specify a composition. These approaches suffer from a key drawback: axiom vio-
lations are not assigned to any particular role. In contrast, Positron employs
coupling commitments with clear role accountability for the effects of one con-
stituent protocol on others. Further, Amoeba is purely manual, whereas Positron
incorporates mechanical verification. Adopting Amoeba’s event ordering idea
would add flexibility to our approach, but more granular parameterizations of
constituents provides the same functionality.

Telang and Singh [31] (T&S) describe a methodology for modeling STSs
that captures the commitments to be created among the parties by melding
selected collaboration patterns. In contrast, a protocol in Positron additionally
specifies the messages and guards, and the protocols are first-class entities that
retain their identity in the composite protocol, yielding improved modularity and
modifiability. Most significantly, T&S’s approach verifies if one implementation
is sound with respect to the model. In contrast, Positron verifies if the model
itself is sound.

Yolum [33] proposes generic correctness properties of commitment protocols
for design-time verification, but does not address composite protocols. She con-
siders generic properties, whereas we consider role-specific STS requirements.
It would be interesting to formulate Yolum’s generic correctness properties in
Positron.
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Miller and McBurney [21] (M&M) propose the RASA language based on
propositional dynamic logic (PDL) to specify and compose protocols. RASA’s
preconditions, actions and postconditions correspond to Positron’s guards, mes-
sages and meanings. Positron additionally incorporates role requirements,
coupling commitments, and good and bad enactment paths, making Positron
practically viable. Theses are important in naturally describing STS protocols,
as we demonstrated above. Whereas M&M describe a custom reasoner, we rely
on standard CTL semantics as realized in MCMAS.

Günay et al. [15] treat protocols as sets of commitments and propose auto-
matically generating such sets from an agent’s beliefs, goals, and capabilities.
In contrast, we offer a semiautomatic approach where a tool helps designers
compose existing protocols. Automatic generation is attractive but may not be
feasible for complex settings, although a hybrid approach of developing atomic
protocols mechanically and composite protocols with human assistance might
be viable.

Cheong and Winikoff [6] describe the Hermes system for goal-oriented inter-
action. They focus on interaction-level goals, whereas we focus on role-level
requirements and commitments. Their action sequence diagrams capture only
good enactments.

McGinnis and Robertson [20] propose an approach in which an agent sends
a protocol specification to other agents at runtime, as a way to accomplish
dynamic, runtime, protocol adaptation. They remark that their approach lacks
a way to prevent agents from making an undesirable change to a protocol. If
their protocols were augmented with commitments, Positron could help address
this gap. For example, an agent may not remove a message from a protocol that
brings about the consequent of a detached commitment. While they describe
rules for dynamically changing protocols, they do not address formal verification
of interaction properties.

Lomuscio et al. [18] semiautomatically compile and verify contract-regulated
service compositions with compliance expressed in temporal-epistemic logic using
MCMAS (which we adopt). A crucial difference is that Lomuscio et al. consider
service compositions; we consider protocol compositions. Since a protocol has
a distributed footprint, protocol compositions are inherently more subtle than
service compositions. A potential benefit from adopting MCMAS is that it sup-
ports more expressive logics such as Alternating-Time Temporal Logic (ATL) [1],
which could help capture subtle correctness criteria for protocols.

We propose a methodology and use role responsibilities and role account-
abilities using expressions in CTL. Others describe the complementary issue of
temporal pattern languages which assist users to correctly capture their high
level requirements as temporal expressions. Dwyer et al. [12] describe a pattern
language for temporal expressions in CTL, LTL and other formalisms. Baldoni
et al. [4] compose protocols using regulative specifications as LTL constraints.

BPMN 2.0 [23] is a standard notation for business process modeling. BPMN
addresses both orchestration and choreography; in taking a multiagent app-
roach, Positron focuses on choreography. Our protocols are similar to BPMN
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Conversation objects. Both protocols and Conversations can involve two or more
roles (Participants), and both can have simple or complex message sequencing
relationships. But, BPMN does not specify how to describe the relationships
between messages in a complex Conversation, except through internal orchestra-
tion; our complex protocols fully specify message sequencing relationships using
external guard statements. Both support arbitrary nesting. We formally verify
our compositions using temporal logic; model verification is explicitly out-of-
scope in the BPMN specification. Positron’s primary building blocks are proto-
cols and commitments. BPMN has no counterpart to our coupling commitments,
which are key to our interrelating constituent protocols and formal verification.

Threats, Limitations, and Future Directions. One limitation of Positron is
that it does not handle varieties of accountability besides commitments [29] and
does not show how to evaluate agent goals and decision making with respect to
protocols [15]. Importantly, we have not established that practitioners employing
Positron can obtain the benefits in abstraction, reusability, and correctness the
motivate it.

These threats and limitations lead to useful future directions. At the theo-
retical level, treating the goals of the participants is natural. At the practical
level, generating enactments via tooling would be valuable. At the empirical
level, evaluating the effectiveness of Positron (the approach and the tool) with
professional developers on collaboration in STSs would be necessary to promote
adoption by industry. To this end, we have developed a graphical notation for
protocol composition called composite protocol diagrams (CPDs). CPDs seek to
succinctly visualize the essence of a composite protocol both to analysts and
technical designers, who collaborate in its construction. We defer an empirical
evaluation of CPDs and competing notations as a way to determine if the high-
level abstractions of Positron can help analysts and designers combat complexity
and communicate more effectively with each other.

Acknowledgments. Thanks to the anonymous reviewers for helpful comments and
to the US Department of Defense for partial support through a Science of Security
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