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Abstract. Action recognition (AR) is one of the most important tasks
in computer vision and there are a large number of related research works
along this line. While most of these works are investigated on AR datasets
collected from the visible spectrum, the AR problem on infrared scenar-
ios still has not attracted much attention, and there is even few public
infrared datasets available for supporting this research. This study aims
to emphasize the importance of the infrared AR problem in real applica-
tions and arouse researchers’ attention on this task. Specifically, we con-
struct a new infrared action dataset and evaluate the state-of-the-art AR
pipeline, including widely-used low-level local descriptors, coding meth-
ods and fusion strategies, on it. Through these evaluations, we find some
interesting results. E.g., dense trajectory feature can achieve the best per-
formance while the appearance features, e.g., HOG, has relatively poorer
performance; the coding method of vector of locally aggregated descrip-
tors is evidently better than that of the widely-used fisher vector; the late
fusion facilitates a better performance than early fusion. Furthermore, the
best performance achieved on our dataset is 70%, leaving a relative large
space for promoting new methods on this infrared AR task.

Keywords: Infrared action dataset - Action recognition - Local descrip-
tors - Feature fusion

1 Introduction

Action recognition (AR) is one of the most important tasks in computer vision.
Its potential applications include video surveillance, video indexing, human-
computer interaction (HCI), etc. [1]. Over the past decades, human action recog-
nition has attracted extensive attention and a number of methods have been
proposed to address this task [24]. Basically, most of the efforts have been put
into visible imaging videos and many existing methods follow the pipeline: raw
feature extraction, feature coding and classifier learning. Generally speaking, the
description ability of the adopted features is very important to the performance
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of the method. So far, many good feature descriptors have been widely used for
action recognition, such as STIP [18], HOG3D [14], 3DSIFT [23], etc.

The development of feature descriptors needs to be refined and substantiated
on proper AR datasets. Recently, many AR datasets have been constructed to
research purposes, such as KTH [22], UCF sports [26], HMDB51 [16],WEB-
interaction (8], etc. The recently proposed AR datasets [15] more and more
simulate real scenarios. While benefited from these datasets, recently designed
methods for AR can better adapt real applications, these methods still often
encounter great challenges, such as illumination change, shadow, background
clutter, occlusion of the object, etc. Actually, these challenges also make other
computer vision tasks, like object detection, very hard to be effective only based
on the provided visible information.

Compared to visible spectrum imaging, the infrared thermal imaging have
many complementary advantages over the aforementioned challenges [10], e.g.,
the infrared imaging is able to work well under poor light condition, like imaging
at night. These advantages have been utilized in pedestrian detection [30], face
recognition [13] and other computer vision tasks, but still have not been attracted
much attention in AR community [9]. Especially,to the best of our knowledge,
there is still no public dataset available for AR research purpose so far.

To the aforementioned issues, we set up a new infrared dataset, called infrared
action dataset (IAD), for the infrared AR task. Following the approach of con-
struction of existing AR datasets in visible spectrum [3], the new dataset collects
12 kinds of common human actions. The samples vary from simple to complex
scenes. We further evaluate the state-of-the-art AR pipeline on our dataset.
Specifically, our evaluation emphasis is put on widely-used low-level local descrip-
tors, the coding strategies and the fusion strategies. This work is expected to
establish a benchmark and baseline for infrared AR research, like KTH dataset
for AR of visible spectrum.

The rest of this paper is organized as follows: Section 2 introduces details of
the newly constructed dataset. Section 3 introduces the employed local descrip-
tors and the utilized evaluation methods. Section 4 presents experimental setup
and evaluation results on the dataset. The conclusion is drawn in Section 5.

2 Infrared Action Dataset(IAD)

Following the approach to construct a AR dataset from the visible spectrum [3],
we collect 12 common human actions from infrared videos. As shown in Fig. 1,
the action types include one hand wave(wavel), multiple hands wave(wave2),
handclapping, walk, jog, jump, skip, handshake, hug, push, punch and fight.
Each action type has 30 video clips. All actions are performed by 25 different
volunteers. The videos are captured by a handled infrared camera IR300A. Each
clip lasts 4 seconds in average. The frame rate is 25 frames per second and
the resolution is 293x256. Each video contains one person or several persons
performing one action or more actions. Some of them are interactions between
multiple persons. Table 1 lists the detailed information of our IAD and some
known existing visible AR datasets.
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Skip
Fig. 1. 12 actions of the newly constructed infrared AR dataset.

Table 1. Comparison of existing AR datasets and the new IAD dataset.

KTH IXMAS UCF sports HMDB51 IAD

Video clips 600 2236 156 (min)5151 360
Action Class 6 13 13 51 12
Resolution 160%x120 390x291 480x360 320x240 293x256
Frame Rate 25 25 25 30 25
Average Length(s) 4 3 3 3 4
Data Type visible  visible visible visible infrared
Reference [29] (28] [21] [29] -

In order to make our dataset more representative for real-world varying sce-
narios, we consider four intra-class variations: (a) The background varies from
simple scene (clean background) to complex one (including real-life background
with moving humans). For some clips with simple background, there are only
the person performing actions with clean background, as shown in Fig. 2(a). On
the contrary, for some other clips with complex background, there are interrupt-
ing pedestrian activities concurring with the action, as shown in Fig. 2(b)-(f).
(b) We specify 2-3 video clips with over 50% occlusion in each class, as shown
in Fig. 2(c). (¢) The pose variation is considered even for the same person, as
shown in Fig. 2(d)-(f). (d) The viewpoint variation is also considered. Around
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(a) Static Side-view (b) Dynamic Front-view (c) Oclussion Front-view

(d) Posturel (e) Posture2 (f) Posture3

Fig. 2. Examples of intra-class variations of the handclapping action. (a) the ideal
case with side-view angle and single person. (b) and (¢) two cases with dynamic and
occlusion variations in the background. (d), (e) and (f) cases with different postures.

20 video clips are taken under the front-view, and the remaining are taken under
side-view, as shown in Fig. 2(a) and (b)-(c).

3 Evaluation Pipeline

3.1 Local Descriptors

Seven widely-employed low-level local descriptors are extracted from infrared
video, including STIP [18], HOG3D [14], 3DSIFT [23], trajectory feature
TRAJ [27], appearance feature HOG [4], and motion features HOF [19] and
MBH [5]. Combination of TRAJ, HOG, HOF and MBH forms the dense tra-
jectory feature [27], denoted as Dense-traj. In order to further introduce our
evaluation settings, we briefly review these descriptors below.

STIP: The spatio-temporal interest points (STIP) is proposed by Laptev
et al. [18] based on the idea from the Harris and Forstner interest point opera-
tors [11], which is widely used as a video representation to handle videos with
complex and dynamic background recently [31]. As actions often have charac-
teristic extending both in spatial and temporal domain, Laptev el al. extended
the notion of interest points into the spatio-temporal domain and adapted both
spatial and temporal scales of the detected features. In our experiment, we use
the off-the-shelf binary package available online to extract this feature.

HOGS3D: This feature is the local descriptor proposed by Klaser et al. [14],
which is based on histograms of oriented 3D spatio-temporal gradients. It com-
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putes 3D gradient from an integral video representation. Then regular polyhe-
drons are used to quantize orientation of 3D gradient. The author divided a 3D
patch from videos into n, X ny, x ny. The corresponding descriptor concatenates
gradient histograms of all cells and is then normalized. In our paper, we firstly
detect interest points with Harris corner detector, and then represent them with
the HOG3D descriptor. We use executable programs from the author website
and apply their recommend parameter setting as: n, = n, = 4,n: = 3, where
ng, Ny and ny are numbers of spatial and temporal cells, respectively.

3DSIFT: The 3 Dimensional Scale-Invariance Feature Transform (3DSIFT)
descriptor was proposed by Scovanner el at. [23] which encodes gradient charac-
teristics in 3 dimensional space. First the gradient magnitude and orientations
in 3D are computed, and then A sub-histogram is created by sampling sub-
regions surrounding the interest points. For each sub-region the orientations are
accumulated into sub-histogram. The final descriptor is a vectorization of the
sub-histogram. Here we detect interest points using the Harris Corner detec-
tor. We use the publicly available code from the Scovanner’s website with the
suggested parameter settings.

TRAJ: Want et al. [27] put forward a trajectory descriptor which encodes local
motion of the densely-sampled interest points. The trajectory shapre is described
by the sequence of the relative motion between every two consecutive frames,
and the feature points are sampled on the trajectory with a fixed number of
frames. This feature can well capture the motion characteristics of the video,
which is significant in action recognition.

HOG /HOF': The Histogram of Gradients (HOG) and the Histogram of Optical
flow (HOF) descriptors are introduced by Laptev et al. [19]. The authors com-
pute histograms of spatial gradient and optical flow accumulated in space-time
neighborhoods of detected points, which can be detected using any interest point
detectors [7,18]. In our experiment, these points are selected along the motion
trajectory [27] and features are computed within a N x N volume around these
points. Each volume is subdivided into a space-time grid of size n, X n, X nr.
The default parameters for our experiments are N = 32,n, =2,np =3 .

MBH: The Motion Boundary Histogram (MBH) descriptor is proposed in the
work of Dalal et al. [5], where derivatives are computed separately for the hor-
izontal and vertical components of the optical flow. The descriptor encodes the
relative motion between pixels. Since MBH represents the gradient of the optical
flow, constant motion information is suppressed and only the information con-
cerning changes in the flow field (i.e., motion boundaries) is kept. This descrip-
tor yields good performance when combined with other local descriptors. In our
evaluation, we used the same MBH parameters as used in the work of Wang
et al. [27].

3.2 Feature Encoding Methods

In this paper, two encoding methods, namely the Fisher Vector [20] and the
Vector of Locally Aggregated Descriptors (VLAD) [12], are used. The former
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utilizes Maximum Likelihood (ML) estimation to train a Gaussian mixture model
(GMM), which is later employed to form the description of low level features.
The latter, however, utilizes the k-means technique to assign each feature to the
closest cluster of a vocabulary with size k.

3.3 Fusion Strategy

At present, early-fusion and late-fusion are the basic feature fusion strategies.
Early fusion [25] combines multiple features before classification. In our work,
the concatenation of multiple features is employed since it is a commonly-used
way in early fusion. Late fusion [17] requires more computation, since it combines
the outputs of each type of feature. In our work, the average of the output scores
is adopted for late-fusion.

4 Experiments

In this section, we first describe the implementation details, and then present the
evaluation results of low-level local descriptors, including the encoding strategies
on our TAD dataset. Besides, the fusion strategies are also evaluated.

4.1 Implementation Details

In our experiments, we follow the widely-used pipeline of raw feature extraction,
feature encoding and classifier training in general AR systems. Basically, the
raw feature extraction adopted the off-the-shelf coding and the default param-
eter configure as aforementioned. For the Fisher Vector, the number K of the
Gaussian distributions model is an important parameter. We tested many values
and empirically found that K = 90 can get relative better performance. For the
VLAD, the size K of the codebook is also empirically determined as 500. We
adopted the SVM [6] as the classifier and the libSVM [2] software in our exper-
iments. We tested two kernels of Linear kernel and RBF kernel for two coding
methods. The corresponding optimal parameters C' and ~ are obtained using 5
fold cross validations with a grid searching algorithm. Using the Fisher Vector
and VLAD encoding methods, the searching results are as follows: For the linear
kernel the optimal C is 30 and 80, respectively, and for the RBF kernel, the
optimal C is 50 and 8, and 7 is 2.7 x 1073 and 5.0 x 10~!, respectively.

4.2 Evaluations on Low-Level Local Descriptors

We evaluate 8 local feature descriptors as aforementioned with respect to dif-
ferent coding methods and different classifier kernels. For each evaluation, we
randomly select 20 samples as the training set out of a sample set containing
30 samples and the rest 10 samples are used as the test set. We conduct the
experiments of the same settings five times and the average is used as the final
result. All evaluation results are shown in Table 2.
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Table 2. The average precision (%) of different local descriptors with different kernels
and coding methods.

Fisher Vector =~ VLAD
Linear RBF Linear RBF
TRAJ 55.74 51.66 62.5 60.49
Dense-Traj 68.15 65.83 74.83 72
HOG 48.61 43.66 52.5 50.83
HOF 66.94 65.5 69.16 69.16
MBH 64.53 64.16 70 68.83
STIP 62.66 45.66 61.83 58.16
HOG3D 57.16 37.83 56.66 56
3DSIFT 53.66 20.33 58.33 54.16

Descriptor

From Table 2, we can observe that the best performance is from the Dense-
traj [27]. This is basically in accordance with the situation on some other avail-
able datasets of visible spectrum [3]. Overall, the performance of the HOG is
relatively bad among these descriptors. The reason may be caused by the lack of
local texture information in infrared images (please see Fig. 2). Since the HOG
descriptor is good at appearance description, its strength may not be revealed
in the situations where local texture is relatively weak.

It can be also observed that the performance of linear kernel is much better
than the RBF one, especially for those descriptors with higher feature dimensions
(e.g., HOG3D, 3DSIFT) under the Fisher vector coding strategy. One possible
reason is that the RBF kernel causes over-fitting in our task. It is also interesting
to see that the performance of VLAD is better than Fisher Vector. This may be
the fact that the codewords generated by HOG3D, MBH, etc. are not suitable
to be described as the GMM model.

4.3 Early Fusion and Late Fusion

The early fusion and late fusion strategies are evaluated on the IAD dataset. We
mainly consider STIP, TRAJ, HOG, HOF and MBH descriptors since they are
of different and complementary types. The combinations of different numbers of
features are tested, respectively, and the results are shown in Table 3. We can
observe that the late fusion benefits more to the overall performance than the
early fusion. Besides, the number of features for fusion does not determinate the
final performance. In our case, the best performance for both fusion strategies
is obtained when using STIP, HOF and MBH.

In order to further explore the classification performance for each action, we
illustrate two confusion matrices shown in Fig. 3. The left one is the result of early
fusion of STIP and HOF, and the right one is the result of late fusion of STIP
and MBH. It can be seen that four actions of handshaking, hugging, punching and
pushing have relative lower precisions. These actions are easily confused with other
actions, e.g., handshaking and hugging, punching and pushing, pushing and hug-
ging, etc. Fig. 4 shows two pairs of frames from four action videos. From the left pair
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Table 3. The evaluation results (AP) of Early vs. Late Fusion with the same coding

method of fisher vector.

Fusion Type Descriptor Early Fusion Late Fusion

STIP+TRAJ 63.33 62.5
. STIP+HOG 58.33 61.67
Two features fusion STIP+HOF 70.83 7417
STIP+MBH 69.16 75.83

STIP+TRAJ+HOG 63.33 65

Three features fusion STIP+HOG+HOF 70 72.5
STIP+HOF+MBH 78.33 77.50
Four feature fusion STIP+TRAJ+HOG+HOF 70.83 71.67
STIP+HOG+HOF+MBH 72.5 72.5
Five feature fusion STIP+TRAJ+HOG+HOF+MBH 73.33 72.5

fight hc  hs  hug jog jump punch push skip walk wavelwave2

fight hc hs hug jog jump punch push skip walk wavel wave2
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Fig. 3. The comparative results of two fusion strategies, where the left is from early
fusion strategy of STIP and HOF, while the right is from the late fusion strategy of
STIP and MBH. Note that “hc” stands for “handclapping”, “hs” stands for “hand-
shake”.

pushing

punching

handshaking hugging

Fig. 4. Two pairs of easily confused actions. The left shows two actions of handshaking
and hugging with heavy occlusion, while the right shows two similar actions of punching
and pushing.

of frames, we can see that the handshaking and hugging actions are both occluded
by crowded persons around. These background clutter would bring big confusion.
From the right pair, we can see that punching and pushing are so similar that it
may even be deceitful for human eyes to recognize.
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5 Conclusion

In this paper, we introduce a new infrared action dataset and evaluate the state-
of-the-art AR pipeline on it. The evaluation results reveal that the dense trajec-
tory feature can achieve the best performance on our dataset and the appearance
features have relative poorer performance. Besides, the coding method of vector
of locally aggregated descriptors is better than the widely-used fisher vector,
and the late fusion benefits more to performance than early fusion. In addition,
the best average precision on our infrared action dataset is around 70%, which
leaves sufficient space for promoting new infrared-oriented AR methods.
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