
Interactive Registration and Segmentation
for Multi-Atlas-Based Labeling

of Brain MR Image

Qian Wang1, Guorong Wu2, Min-Jeong Kim2, Lichi Zhang1,
and Dinggang Shen2(B)

1 Med-X Research Institute, School of Biomedical Engineering,
Shanghai Jiao Tong University, Shanghai, China

{wang.qian,lichizhang}@sjtu.edu.cn
2 Department of Radiology and BRIC, University of North Carolina at Chapel Hill,

Chapel Hill, NC, USA
{grwu,minjeong kim,dinggang shen}@med.unc.edu

Abstract. In the conventional multi-atlas-based labeling methods,
atlases are registered with each unlabeled image, which is then seg-
mented by fusing the labels of all registered atlases. The registration
is typically ignorant about the segmentation while the segmentation of
each individual unlabeled image is independently considered, both of
which potentially undermine the accuracy in labeling. In this work, we
propose the interactive registration-segmentation scheme for multi-atlas-
based labeling of brain MR images. First, we learn the distribution of
all images (including atlases and unlabeled images) and register them
to their common space in the groupwise manner. Then, we segment all
unlabeled images simultaneously, by fusing the labels of the registered
atlases in the common space as well as the tentative segmentation of
the unlabeled images. Next, the (tentative) labeling feeds back to refine
the registration, thus all images are more accurately aligned within the
common space. The improved registration further boosts the accuracy
to determine the segmentation of the unlabeled images. According to
our experimental results, the iterative optimization to the interactive
registration-segmentation scheme can improve the performances of the
multi-atlas-based labeling significantly.

1 Introduction

It is needed by many studies that certain medical images should be labeled into
different anatomical regions-of-interest (ROIs), in order to facilitate the follow-
ing region-based analysis. Manual labeling, though probably accurate with well-
trained experts, costs high especially for the large-scale population of images.
On the contrary, automatic labeling method shows the advantage in reducing
the needs of human interactions. Therefore, the technique is highly desirable in
medical image analysis and has been intensively investigated recently.

To label (also known as to segment or to parcellate) brain MR images can be
attained in many different ways. Among them, atlas-based segmentation provides
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an efficient solution that yields comparable accuracy with respect to manual
labeling. Specifically, after registering the atlas to an unlabeled image, the label-
ing information associated with the atlas then propagates to the unlabeled image
and further segments it. If image registration is accurate, the well-established
correspondences between the two images can guarantee that the propagated
segmentation is highly reliable.

Instead of using a single atlas, the multi-atlas-based labeling strategy is more
preferred in recent studies to alleviate the potential errors in registering a single
atlas. To this end, the unlabeled image can be parcellated by fusing contributions
from several registered atlases. For example, after all atlases are spatially nor-
malized with the unlabeled image via registration, the majority voting scheme
determines the to-be-estimated label at a specific voxel of the unlabeled image
as the most frequent label from the same voxel locations of all registered atlases.
In this way, the labeling accuracy is usually higher since the potential errors in
registering certain atlases with the unlabeled image become less influential.

A typical scenario for multi-atlas-based labeling is to segment a population
of images, in which only a few atlases are pre-labeled. Both registration and
segmentation, the two major components in multi-atlas-based labeling, can thus
be specially adapted for better performances. Though the labeling can propa-
gate by registering atlases with each unlabeled image directly, more advanced
registration schemes are beneficial for the sake of accurate labeling. In [12] , for
instance, the population of images is embedded into a high-dimensional mani-
fold where similar images are closely distributed. Higher labeling accuracy can
be achieved, since the labeling is always propagated between similar images and
the related registration is more reliable.

After (roughly) registering atlases with a certain unlabeled image, the seg-
mentation of the unlabeled image can be determined in various ways [1,5,8,11].
Most methods in the literature apply the mono-directional label fusion by propa-
gating the labeling from the atlases to the unlabeled image only. However, recent
studies [8,4] show that the segmentation of an unlabeled image can also benefit
from other unlabeled images. Specifically, a certain unlabeled image can finally
be segmented from fusing both the labels of atlases and the tentative segmen-
tation of other unlabeled images. In this way, not only the consistency across
the segmentation of each unlabeled image and the atlases, but also the intrinsic
consistency among all unlabeled images, are well preserved.

Though the multi-atlas-based labeling can split into registration followed by
segmentation, the two components are usually independently considered. The
interaction between them, which could improve the labeling accuracy, is mostly
ignored. To this end, we propose a novel multi-atlas-based labeling method,
which applies the interactive registration-segmentation scheme and thus signifi-
cantly differs from other methods in the literature. The proposed method iter-
atively refines the registration of all images and then the segmentation of the
unlabeled images. In particular, the groupwise registration [9,10,13] learns the
distribution of the entire image population that consists of all atlases as well as
unlabeled images, and deforms all images to a common space. We then segment
the unlabeled images simultaneously in the common space, by fusing both the
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labeling of the registered atlases and the tentative segmentation of the unlabeled
images. The (tentative) labeling of all images feeds back to further improve the
registration accuracy in two folds: (1) the labeling helps better understand the
distribution of the entire image population after all images are roughly aligned
in the common space; (2) the labeling is regarded as additional image descriptors
and can be used to guide the registration of all images directly. In this way, the
segmentation contributes to register all images more accurately in the common
space, which in turn leads to better estimation of the segmentation.

2 Method

We propose to solve the multi-atlas-based labeling problem via interactive regis-
tration and segmentation. Specifically, we register the image population, includ-
ing atlases and unlabeled images, to a common space in the groupwise manner
(Section 2.1). Then, the segmentation of each unlabeled image is derived from
fusing not only the labeling of the registered atlases, but also the tentative seg-
mentation of other unlabeled images (Section 2.2). Further, the tentative seg-
mentation guides to register all images more accurately in the common space
(Section 2.3). The proposed methodology will be summarized in Section 2.4.

2.1 Image Registration via Minimum Spanning Tree

We register all atlases and unlabeled images to their common space in the group-
wise manner, by taking advantage of the distribution of the entire image popu-
lation. In particular, all images are first embedded into a fully connected graph,
where the nodes indicate individual images and the edge linking each pair of
images records their in-between distance, i.e., the sum of square differences (SSD)
of intensities. A minimum spanning tree (MST) is then extracted from the graph.
The root of the tree is determined to represent the geometric median image in
the population, from which the sum of distances to other images is the minimal.
All images are connected with the root of the tree either directly or via other
images/nodes. More detailed explanations on the construction of the MST can
be found in [2,3,4]. Note that the node at the root of the tree, or the median
image of the population, will act as the common space to which all images in
the population are registered.

The learned MST helps register all images in the population to the root in a
recursive manner. In particular, given each non-root image, its path that traverses
along edges to the root of the tree can be easily identified. If the parent node of the
image under consideration is the root, the direct registration (i.e., via diffeomor-
phic Demons [6]) will be computed immediately. Otherwise, the non-root image
will utilize the deformation belonging to its parent node as an initialization and
further refine to generate its own deformation towards the root. The recursive call-
backs can eventually deform all images to the common space. Compared with the
direct registration of two images that might be very different in anatomies, the
MST provides robust initialization in estimating the deformation field.



Interactive Registration and Segmentation 243

Due to the essentially high-dimensional image data and the limited size of the
image population, the estimation of the MST might be inaccurate. Here, we build
the tree from an augmented population that consists of more simulated images.
The simulated images are derived by perturbing the pre-determined median
image in five steps [4]: (1) A set of images is directly registered with the median
image; (2) All deformations are then inverted; (3) Principal component analysis
(PCA) is applied to capture the variation within all inverted deformations; (4)
By perturbing coefficients in the learned PCA model, a set of deformations can
be simulated; (5) All simulated deformations are applied to warp the median
image and generate a set of simulated images in the final. We follow the same
setting in [4] to specify the number of the simulated images to be twice the size
of the original image population. The augmented population, including atlases,
unlabeled images, and simulated images, leads to the MST that better captures
the distribution of the image population.

2.2 Segmentation via Label Fusion

After all images are registered to the common space, we are able to segment
the unlabeled images given the atlases. We apply the local voting strategy for
stochastic label fusion. Denoting the m-th (m = 1, · · · ,M) registered atlas as
Im and Lm as its label, the label for the n-th (n = 1, · · · , N) unlabeled image
In at x, or Ln(x), can be assigned with the label l at the following likelihood

p(Ln(x) = l) =
M∑

m=1

w(Im, In, x)δ(Lm(x), l). (1)

In the equation above, δ(Lm(x), l) returns 1 if and only if Lm(x) = l; oth-
erwise 0. The weight w(Im, In, x) indicates the contribution of Im to label In
by Lm, and obviously relates to the similarity between Im and In at x. By
using d(Im, In, x) to denote the distance of the two respective intensity patches
centered at x of both Im and In (with the size 3 × 3 × 3 in voxel), we define
w(Im, In, x) = exp(−d2(Im, In, x)/2σ2) as σ relates to the standard deviation
of all patch-to-patch distances. The exact label of Ln(x) is determined as the
value l of the maximal likelihood in the final.

To segment a certain unlabeled image consistently with the entire population,
the tentative labeling of other unlabeled images should also participate into the
local voting. Therefore, the likelihood in labeling In(x) can be calculated by

p(Ln(x) = l) :=
M∑

m=1

w(Im, In, x)δ(Lm(x), l) +
N∑

k=1

w(Ik, In, x)δ(Lk(x), l). (2)

Stable solution to the above can be iteratively attained [4]. Eq.2 implies
that the label Ln(x) complies with both the atlases and other unlabeled
images. Also note that the simulated images, though participating into regis-
tration (Section 2.1), are not included in label fusion. All simulated images are
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instantiated by perturbing the median image, which would arbitrarily dominate
the segmentation result with the simulated images included in label fusion.

2.3 Interactive Registration and Segmentation

Though the unlabeled images can be segmented in Section 2.2, the tentative seg-
mentation is derived from the yet imperfect registration as in Section 2.1. On the
contrary, the tentative segmentation is capable of feeding back for more accurate
registration of all images in the common space, which can further improve the
performance in segmentation. In our method, the registration benefits from the
tentative segmentation in two folds:

1. The initial MST is estimated prior to the non-rigid registration. The high
variation among all images, as well as the simple image distance measure (i.e.,
SSD of intensities), may lead to improperly estimated MST and thus limit the
registration accuracy. On the other hand, after all images are roughly registered
to the common space, the distribution of the entire image population is rela-
tively compact and can be better learned by considering the consistency of the
segmentation of all images. That is, the MST can be updated by considering the
tentative segmentation.

2. The registration should also favor the consistency within the segmentation
of individual images, which is only pursuit in the segmentation part of conven-
tional methods though. In particular, we regard the tentative segmentation of
images as additional image descriptors other than intensities. Besides to min-
imize the intensity inhomogeneity, the registration aims to directly eliminate
the labeling inconsistency as well. In particular, we require the registration to
align the boundaries of corresponding labels of individual images. The estimated
deformation fields are then applied to register all images more accurately in the
common space.

Update MST. To learn the MST for representing the image distribution, we
propose to measure the image-to-image distance by the inconsistency between
their segmentation, after all images are (roughly) registered to the common
space. For any two (atlas or unlabeled) images Im and In, we calculate their
overall Dice overlap ratio upon all labels

r(Im, In) = (2
∑

x

δ(Lm(x), Ln(x)))/(||Im|| + ||In||), (3)

where || · || computes the size of the labeled volume. The distance of the two
images is then derived by exp(−r2(Im, In)/(2β2)), as β is manually specified.

Given pairwise distances of all images, we are then able to build a new MST.
Note that the root of the updated MST is still kept as the median image that
is previously selected in the initial MST (Section 2.1). In this way, the common
space in registration is fixed, though each non-root image will further refine its
own deformation field. Moreover, the updated MST consists of only atlases and
unlabeled images, while the simulated images are not incorporated. We argue
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that, after the initial registration in Section 2.1, the atlases and the unlabeled
images distribute tightly in the nearby of the median image. Thus we do not
need the simulated images to help update the tree.

Update Registration. We directly apply the (tentative) segmentation of all
images to refine the deformation fields, in order to compensate for the inconsis-
tency within the labeling. After deforming all images towards the median image,
we first extract the boundaries of all labels for every warped image (i.e., by apply-
ing the Canny edge detector on the labeling map). The boundary voxels for a
certain image then form a discrete pointset, which should be aligned with the
label boundaries of other images. Next, we apply a Gaussian kernel to smooth
the detected boundaries and convert the discrete boundary pointset into a con-
tinuous volume of Gaussian mixture [7] in the image space. Finally, the volumes
of Gaussian mixtures for the labeling of a pair of images can be easily registered,
i.e., via the diffeomorphic Demons [6]. The newly updated MST is also applied
in the above, as the registration upon the label boundaries is performed in the
recursive manner (c.f. in Section 2.1).

Note that all images further refine their registration to the common space
after being warped following their previously estimated deformation fields.
Therefore, we concatenate the previous deformation field of each image and its
new deformation for refinement into a single field, which warps the image from its
original space to the common space directly. To compensate for potential errors
in the above, the concatenated deformation functions as an initialization, and
is further adjusted by minimizing the intensity inhomogeneity between the spe-
cific image and the median image designating the common space. In particular,
the registration adjustment is also achieved through the diffeomorphic Demons
[6], yet with the high-resolution optimization only and very limited number of
iterations. In this way, both the image intensity and the tentative segmentation
contribute to update the registration.

2.4 Summary: The Interactive Registration-Segmentation Pipeline

We summarize the proposed method as follows:

1. Estimate the MST to organize all images in the population;
2. Register all images to the root of the tree and deform them to the common

space;
3. Segment all unlabeled images in the common space via label fusion;
4. Go to Step 1 if not converged, continue otherwise;
5. Pull the segmentation result back to the space of each unlabeled image.

The solution above is in the iterative fashion. We impose a fixed number (i.e.,
4) of iterations to be the convergence criterion, as the observed improvement
upon the labeling accuracy becomes tiny after 4 iterations in our experiment.
Then, after inverting the estimated deformations, the segmentation of each unla-
beled image can be warped to the original image space in Step 5. The simple
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pullback of the segmentation might be contaminated by the errors in deforming
the labels. Therefore, for each unlabeled image in Step 5, we register all atlases
and other unlabeled images back to its original image space, and apply the label
fusion (Section 2.2) for the final determination of the segmentation. The regis-
tration above can be efficiently solved, since the deformations between all images
and the common space are known already. Moreover, note that our method is
reduced to be MABMIS [4], if only a single iteration is allowed.

3 Experimental Results

We apply the proposed method to the NIREP dataset and compare with MAB-
MIS [4] in order to demonstrate the importance of the interaction between reg-
istration and segmentation. The NIREP dataset consists of 16 images, each of
which comes with 32 labeled ROIs. All images are resampled to the isotropic
size of 256 × 256 × 256 and properly pre-processed (including bias correction,
skull-stripping, etc.).

Fig. 1. (a) The average Dice ratios, as well as standard deviations, of 32 ROIs in
the NIREP dataset yielded by MABMIS and the proposed method; (b) The iteration
changes of the overall Dice ratio produced by our method.

We randomly partition all images into two equally sized subsets. By taking a
certain subset of images as atlases in turn, we are able to label the other subset.
The accuracy of the estimated segmentation is then evaluated against the ground
truth (i.e., the manual segmentation). The average Dice ratios on all 32 labels,
as well as the standard deviations, are plotted in Fig. 1(a). In particular, our
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method scores the overall Dice ratio at 77.45 ± 3.39% upon all labels, higher
(+2.14%) than 75.31±3.17% of MABMIS. The results imply that the interactive
registration-segmentation scheme lead to improved accuracy in multi-atlas-based
labeling.

We also plot the iterative changes of the overall Dice ratio, as well as the
standard deviations, in Fig. 1(b). Clearly the interaction between registration
and segmentation boosts the labeling accuracy within limited number of iter-
ations. By allowing 4 iterations in our experiment, it typically costs around 4
hours to label 8 images given another 8 atlases (single thread, Intel Core i5 CPU,
3.1GHz, 8G memory).

4 Discussion

In this work, we propose a novel multi-atlas-based labeling method for brain
MR images, by utilizing the interactive registration-segmentation scheme. Dif-
ferent from most conventional methods, we allow the (tentative) segmentation
of previously registered images to feed back, which results in better registration
of all images and thus more accurate labeling as confirmed by the experimental
result. Compared to [4], our method costs higher computation time in iterative
optimization. However, significant improvement upon the speed performance is
expected if introducing parallelization into our implementation. Moreover, large-
scale study will also be conducted in the future to evaluate the performance of
our method more comprehensively.
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