Skip to main content

Advanced Glycation End Products (AGEs): Emerging Mediators of Skin Aging

  • Reference work entry
  • First Online:
Textbook of Aging Skin

Abstract

Advanced glycation end products (AGEs) derive from nonenzymatic reactions between reducing sugars and proteins, lipids or nucleic acids. In this chapter, we highlight the role of AGEs as an emerging class of mediators of skin aging. After a short section on the biochemistry and biology of AGEs we will put these molecules into the context of skin aging. Evidence will be provided that: (1) AGEs are detectable in skin, (2) that they accumulate over time in aged skin, and (3) that they act via diverse mechanisms (receptor and nonreceptor-mediated) on various cellular and noncellular targets of the skin. Special emphasis will be devoted to the connections between AGEs and reactive oxygen species, the latter established players of cutaneous aging. Finally, current and future strategies are described by which the impact of AGEs on skin aging may be counteracted.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 1,099.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 1,699.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ahmed N. Advanced glycation endproducts-role in pathology of diabetic complications. Diabetes Res Clin Pract. 2005;67:3–21.

    Article  CAS  PubMed  Google Scholar 

  2. Maillard LC. Action des acides amines sur les sucres: formation des melanoidines par voie methodique. C R Acad Sci (Paris). 1912;154:66–8.

    CAS  Google Scholar 

  3. Hodge JE. Dehydrated foods, chemistry of browning reactions in model systems. J Agric Food Chem. 1953;1:928–43.

    Article  CAS  Google Scholar 

  4. Vlassara H, Cai W, Crandall J, Goldberg T, Oberstein R, Dardaine V, et al. Inflammatory mediators are induced by dietary glycotoxins, a major risk factor for diabetic angiopathy. Proc Natl Acad Sci U S A. 2002;99:15596–601.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. DeGroot J, Verzijl N, Wenting-Van Wijk MJ, Bank RA, Lafeber FP, Bijlsma JW, et al. Age-related decrease in susceptibility of human articular cartilage to matrix metalloproteinase-mediated degradation: the role of advanced glycation end products. Arthritis Rheum. 2001;44:2562–71.

    Article  CAS  PubMed  Google Scholar 

  6. Kawabata K, Yoshikawa H, Saruwatari K, Akazawa Y, Inoue T, Kuze T, et al. The presence of N(ε)-(carboxymethyl) lysine in the human epidermis. Biochim Biophys Acta. 2011;1814:1246–52.

    Article  CAS  PubMed  Google Scholar 

  7. Jeanmaire C, Danoux L, Pauly G. Glycation during human dermal intrinsic and actinic ageing: an in vivo and in vitro model study. Br J Dermatol. 2001;145:10–8.

    Article  CAS  PubMed  Google Scholar 

  8. Dyer DG, Dunn JA, Thorpe SR, Bailie KE, Lyons TJ, McCance DR, et al. Accumulation of Maillard reaction products in skin collagen in diabetes and aging. J Clin Invest. 1993;91:2463–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Mizutari K, Ono T, Ikeda K, Kayashima K, Horiuchi S. Photo-enhanced modification of human skin elastin in actinic elastosis by N(epsilon)-(carboxymethyl)lysine, one of the glycoxidation products of the Maillard reaction. J Invest Dermatol. 1997;108:797–802.

    Article  CAS  PubMed  Google Scholar 

  10. Kueper T, Grune T, Prahl S, Lenz H, Welge V, Biernoth T, et al. Vimentin is the specific target in skin glycation. Structural prerequisites, functional consequences, and role in skin aging. J Biol Chem. 2007;282:23427–36.

    Article  CAS  PubMed  Google Scholar 

  11. Fan X, Sell DR, Zhang J, Nemet I, Theves M, Lu J, et al. Anaerobic vs aerobic pathways of carbonyl and oxidant stress in human lens and skin during aging and in diabetes: a comparative analysis. Free Radic Biol Med. 2010;49:847–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Frye EB, Degenhardt TP, Thorpe SR, Baynes JW. Role of the Maillard reaction in aging of tissue proteins. Advanced glycation end product-dependent increase in imidazolium cross-links in human lens proteins. J Biol Chem. 1998;273:18714–9.

    Article  CAS  PubMed  Google Scholar 

  13. Reddy S, Bichler J, Wells-Knecht KJ, Thorpe SR, Baynes JW. N epsilon-(carboxymethyl) lysine is a dominant advanced glycation end product (AGE) antigen in tissue proteins. Biochemistry. 1995;34:10872–8.

    Article  CAS  PubMed  Google Scholar 

  14. Sell DR, Monnier VM. Isolation, purification and partial characterization of novel fluorophores from aging human insoluble collagen-rich tissue. Connect Tissue Res. 1989;19:77–92.

    Article  CAS  PubMed  Google Scholar 

  15. Thornalley PJ, Langborg A, Minhas HS. Formation of glyoxal, methylglyoxal and 3-deoxyglucosone in the glycation of proteins by glucose. Biochem J. 1999;344:109–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Cerami C, Founds H, Nicholl I, Mitsuhashi T, Giordano D, Vanpatten S, et al. Tobacco smoke is a source of toxic reactive glycation products. Proc Natl Acad Sci U S A. 1997;94:13915–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Uribarri J, Cai W, Peppa M, Goodman S, Ferrucci L, Striker G, et al. Circulating glycotoxins and dietary advanced glycation endproducts: two links to inflammatory response, oxidative stress, and aging. J Gerontol A Biol Sci Med Sci. 2007;62:427–33.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Goldberg T, Cai W, Peppa M, Dardaine V, Baliga BS, Uribarri J, et al. Advanced glycoxidation end products in commonly consumed foods. J Am Diet Assoc. 2004;104:1287–91.

    Article  CAS  PubMed  Google Scholar 

  19. Leslie RD, Beyan H, Sawtell P, Boehm BO, Spector TD, Snieder H. Level of an advanced glycated end product is genetically determined: a study of normal twins. Diabetes. 2003;52:2441–4.

    Article  CAS  PubMed  Google Scholar 

  20. Xue M, Rabbani N, Thornalley PJ. Glyoxalase in ageing. Semin Cell Dev Biol. 2011;22:293–301.

    Article  CAS  PubMed  Google Scholar 

  21. Van Schaftingen E, Collard F, Wiame E, Veiga-da-Cunha M. Enzymatic repair of Amadori products. Amino Acids. 2012;42:1143–50.

    Article  PubMed  Google Scholar 

  22. Grimm S, Horlacher M, Catalgol B, et al. Cathepsins D and L reduce the toxicity of advanced glycation end products. Free Radic Biol Med. 2012;52:1011–23. doi:10.1016/j.freeradbiomed.2011.12.021.

    Article  CAS  PubMed  Google Scholar 

  23. Bierhaus A, Humpert PM, Morcos M, Wendt T, Chavakis T, Arnold B, et al. Understanding RAGE, the receptor for advanced glycation end products. J Mol Med (Berl). 2005;83:876–86.

    Article  CAS  Google Scholar 

  24. Ramasamy R, Vannucci SJ, Yan SS, Herold K, Yan SF, Schmidt AM. Advanced glycation end products and RAGE: a common thread in aging, diabetes, neurodegeneration, and inflammation. Glycobiology. 2005;15:16R–28.

    Article  CAS  PubMed  Google Scholar 

  25. Vazzana N, Santilli F, Cuccurullo C, et al. Soluble forms of RAGE in internal medicine. Intern Emerg Med. 2009;4:389–401. doi:10.1007/s11739-009-0300-1.

    Article  PubMed  Google Scholar 

  26. Lu C, He JC, Cai W, Liu H, Zhu L, Vlassara H. Advanced glycation endproduct (AGE) receptor 1 is a negative regulator of the inflammatory response to AGE in mesangial cells. Proc Natl Acad Sci U S A. 2004;101:11767–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Lohwasser C, Neureiter D, Weigle B, Kirchner T, Schuppanm D. The receptor for advanced glycation end products is highly expressed in the skin and upregulated by advanced glycation end products and tumor necrosis factor-alpha. J Invest Dermatol. 2006;126:291–9.

    Article  CAS  PubMed  Google Scholar 

  28. Meerwaldt R, Links T, Graaff R, Thorpe SR, Baynes JW, Hartog J, et al. Simple noninvasive measurement of skin autofluorescence. Ann N Y Acad Sci. 2005;1043:290–8.

    Article  CAS  PubMed  Google Scholar 

  29. Corstjens HM, Dicanio D, Muizzuddin N, Neven A, Sparacio R, Declercq L, et al. Glycation associated skin autofluorescence and skin elasticity are related to chronological age and body mass index of healthy subjects. Exp Gerontol. 2008;43:663–7.

    Article  CAS  PubMed  Google Scholar 

  30. Dunn JA, McCance DR, Thorpe SR, Lyons TJ, Baynes JW. Age-dependent accumulation of N epsilon-(carboxymethyl)lysine and N epsilon-(carboxymethyl)hydroxylysine in human skin collagen. Biochemistry. 1991;30:1205–10.

    Article  CAS  PubMed  Google Scholar 

  31. Pageon H. Reaction of glycation and human skin: the effects on the skin and its components, reconstructed skin as a model. Pathol Biol (Paris). 2010;58:226–31.

    Article  CAS  Google Scholar 

  32. Smit AJ, Gerrits EG. Skin autofluorescence as a measure of advanced glycation endproduct deposition: a novel risk marker in chronic kidney disease. Curr Opin Nephrol Hypertens. 2010;19:527–33.

    Article  CAS  PubMed  Google Scholar 

  33. Avery NC, Bailey AJ. The effects of the Maillard reaction on the physical properties and cell interactions of collagen. Pathol Biol (Paris). 2006;54:387–95.

    Article  CAS  Google Scholar 

  34. Haitoglou CS, Tsilibary EC, Brownlee M, Charonis AS. Altered cellular interactions between endothelial cells and nonenzymatically glucosylated laminin/type IV collagen. J Biol Chem. 1992;267:12404–7.

    CAS  PubMed  Google Scholar 

  35. Haucke E, Navarrete-Santos A, Simm A, et al. Glycation of extracellular matrix proteins impairs migration of immune cells. Wound Repair Regen. 2014;22:239–45. doi:10.1111/wrr.12144.

    Article  PubMed  Google Scholar 

  36. Yoshinaga E, Kawada A, Ono K, Fujimoto E, Wachi H, Harumiya S, et al. N(ɛ)-(carboxymethyl)lysine modification of elastin alters its biological properties: implications for the accumulation of abnormal elastic fibers in actinic elastosis. J Invest Dermatol. 2012;132:315–23.

    Article  CAS  PubMed  Google Scholar 

  37. Jacobsen JN, Steffensen B, Häkkinen L, et al. Skin wound healing in diabetic β6 integrin-deficient mice. APMIS. 2010;118:753–64. doi:10.1111/j.1600-0463.2010.02654.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Reihsner R, Melling M, Pfeiler W, Menzel EJ. Alterations of biochemical and two-dimensional biomechanical properties of human skin in diabetes mellitus as compared to effects of in vitro non-enzymatic glycation. Clin Biomech. 2000;15:379–86.

    Article  CAS  Google Scholar 

  39. Yoon HS, Baik SH, Oh CH. Quantitative measurement of desquamation and skin elasticity in diabetic patients. Skin Res Technol. 2002;8:250–4.

    Article  PubMed  Google Scholar 

  40. Uchiki T, Weikel KA, Jiao W, Shang F, Caceres A, Pawlak D, et al. Glycation-altered proteolysis as a pathobiologic mechanism that links dietary glycemic index, aging, and age-related disease (in non diabetics). Aging Cell. 2012;11:1–13.

    Article  CAS  PubMed  Google Scholar 

  41. Ukeda H, Hasegawa Y, Ishi T, Sawamiura M. Inactivation of Cu, Zn-superoxide dismutase by intermediates of Maillard reaction and glycolytic pathway and some sugars. Biosci Biotechnol Biochem. 1997;61:2039–42.

    Article  CAS  PubMed  Google Scholar 

  42. Baynes JW. The Maillard hypothesis on aging: time to focus on DNA. Ann N Y Acad Sci. 2002;959:360–7.

    Article  CAS  PubMed  Google Scholar 

  43. Giardino I, Edelstein D, Brownlee M. Nonenzymatic glycosylation in vitro and in bovine endothelial cells alters basic fibroblast growth factor activity. A model for intracellular glycosylation in diabetes. J Clin Invest. 1994;94:110–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Portero-Otín M, Pamplona R, Bellmunt MJ, Ruiz MC, Prat J, Salvayre R, et al. Advanced glycation end product precursors impair epidermal growth factor receptor signaling. Diabetes. 2002;51:1535–42.

    Article  PubMed  Google Scholar 

  45. Zhu P, Yang C, Chen LH, Ren M, Lao GJ, Yan L. Impairment of human keratinocyte mobility and proliferation by advanced glycation end products-modified BSA. Arch Dermatol Res. 2011;303:339–50.

    Article  CAS  PubMed  Google Scholar 

  46. Berge U, Behrens J, Rattan SI. Sugar-induced premature aging and altered differentiation in human epidermal keratinocytes. Ann N Y Acad Sci. 2007;1100:524–9.

    Article  CAS  PubMed  Google Scholar 

  47. Wondrak GT, Roberts MJ, Jacobson MK, Jacobson EL. Photosensitized growth inhibition of cultured human skin cells: mechanism and suppression of oxidative stress from solar irradiation of glycated proteins. J Invest Dermatol. 2002;119:489–98.

    Article  CAS  PubMed  Google Scholar 

  48. Zhu P, Ren M, Yang C, Hu YX, Ran JM, Yan L. Involvement of RAGE, MAPK and NF-κB pathways in AGEs-induced MMP-9 activation in HaCaT keratinocytes. Exp Dermatol. 2012;21:123–9.

    Article  CAS  PubMed  Google Scholar 

  49. Alikhani Z, Alikhani M, Boyd CM, Nagao K, Trackman PC, Graves DT. Advanced glycation end products enhance expression of pro-apoptotic genes and stimulate fibroblast apoptosis through cytoplasmic and mitochondrial pathways. J Biol Chem. 2005;280:12087–95.

    Article  CAS  PubMed  Google Scholar 

  50. Molinari J, Ruszova E, Velebny V, Robert L. Effect of advanced glycation endproducts on gene expression profiles of human dermal fibroblasts. Biogerontology. 2008;9:177–82.

    Article  CAS  PubMed  Google Scholar 

  51. Sejersen H, Rattan SI. Dicarbonyl-induced accelerated aging in vitro in human skin fibroblasts. Biogerontology. 2009;10:203–11.

    Article  CAS  PubMed  Google Scholar 

  52. Schmidt AM, Hori O, Chen J, Li JF, Crandall J, Zhang J, et al. Advanced glycation endproducts interacting with their endothelial receptor induce expression of vascular cell adhesion molecule-1 (VCAM-1): a potential mechanism for the accelerated vasculopathy of diabetes. J Clin Invest. 1995;96:1395–403.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Lan CC, Wu CS, Huang SM, et al. High-glucose environment reduces human β-defensin-2 expression in human keratinocytes: implications for poor diabetic wound healing. Br J Dermatol. 2012;166:1221–9. doi:10.1111/j.1365-2133.2012.10847.x.

    Article  CAS  PubMed  Google Scholar 

  54. Iotzova-Weiss G, Dziunycz PJ, Freiberger SN, et al. S100A8/A9 stimulates keratinocyte proliferation in the development of squamous cell carcinoma of the skin via the receptor for advanced glycation-end products. PLoS One. 2015;10, e0120971. doi:10.1371/journal.pone.0120971.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Masaki H, Okano Y, Sakurai H. Generation of active oxygen species from advanced glycation end-products (AGE) under ultraviolet light A (UVA) irradiation. Biochem Biophys Res Commun. 1997;235:306–10.

    Article  CAS  PubMed  Google Scholar 

  56. San Martin A, Foncea R, Laurindo FR, Ebensperger R, Griendling KK, Leighton F. Nox1-based NADPH oxidase-derived superoxide is required for VSMC activation by advanced glycation end-products. Free Radic Biol Med. 2007;42(11):1671–9. Epub 2007 Feb 12.

    Article  CAS  PubMed  Google Scholar 

  57. Zhang M, Kho AL, Anilkumar N, Chibber R, Pagano PJ, Shah AM, Cave AC. Glycated proteins stimulate reactive oxygen species production in cardiac myocytes: involvement of Nox2 (gp91phox)-containing NADPH oxidase. Circulation. 2006;113(9):1235–43. Epub 2006 Feb 27.

    Article  CAS  PubMed  Google Scholar 

  58. Loughlin DT, Artlett CM. Precursor of advanced glycation end products mediates ER-stress-induced caspase-3 activation of human dermal fibroblasts through NAD(P)H oxidase 4. PLoS One. 2010;5(6), e11093. doi:10.1371/journal.pone.0011093.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Omori K, Ohira T, Uchida Y, Ayilavarapu S, Batista Jr EL, Yagi M, et al. Priming of neutrophil oxidative burst in diabetes requires preassembly of the NADPH oxidase. J Leukoc Biol. 2008;84(1):292–301. doi:10.1189/jlb.1207832. Epub 2008 Apr 7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Yim MB, Yim HS, Lee C, Kang SO, Chock PB. Protein glycation: creation of catalytic sites for free radical generation. Ann N Y Acad Sci. 2001;928:48–53.

    Article  CAS  PubMed  Google Scholar 

  61. Elosta A, Ghous T, Ahmed N. Natural products as anti-glycation agents: possible therapeutic potential for diabetic complications. Curr Diabetes Rev. 2012;8:92–108.

    Article  CAS  PubMed  Google Scholar 

  62. Reddy VP, Beyaz A. Inhibitors of the Maillard reaction and AGE breakers as therapeutics for multiple diseases. Drug Discov Today. 2006;11:646–54.

    Article  CAS  PubMed  Google Scholar 

  63. Cadau S, Leoty-Okombi S, Pain S, et al. In vitro glycation of an endothelialized and innervated tissue-engineered skin to screen anti-AGE molecules. Biomaterials. 2015;51:216–25. doi:10.1016/j.biomaterials.2015.01.066.

    Article  CAS  PubMed  Google Scholar 

  64. Degenhardt TP, Alderson NL, Arrington DD, Beattie RJ, Basgen JM, Steffes MW, et al. Pyridoxamine inhibits early renal disease and dyslipidemia in the streptozotocin-diabetic rat. Kidney Int. 2002;61:939–50.

    Article  CAS  PubMed  Google Scholar 

  65. Vasan S, Foiles P, Founds H. Therapeutic potential of breakers of advanced glycation end product-protein crosslinks. Arch Biochem Biophys. 2003;419:89–96.

    Article  CAS  PubMed  Google Scholar 

  66. Xue M, Rabbani N, Momiji H, Imbasi P, Anwar MM, Kitteringham N, et al. Transcriptional control of glyoxalase 1 by Nrf2 provides a stress-responsive defence against dicarbonyl glycation. Biochem J. 2012;443:213–22.

    Article  CAS  PubMed  Google Scholar 

  67. Dearlove RP, Greenspan P, Hartle DK, Swanson RB, Hargrove JL. Inhibition of protein glycation by extracts of culinary herbs and spices. J Med Food. 2008;11:275–81.

    Article  CAS  PubMed  Google Scholar 

  68. Wu CH, Yen GC. Inhibitory effect of naturally occurring flavonoids on the formation of advanced glycation endproducts. J Agric Food Chem. 2005;53:3167–73.

    Article  CAS  PubMed  Google Scholar 

  69. Draelos ZD, Yatskayer M, Raab S, Oresajo C. An evaluation of the effect of a topical product containing C-xyloside and blueberry extract on the appearance of type II diabetic skin. J Cosmet Dermatol. 2009;8:147–51.

    Article  PubMed  Google Scholar 

  70. Ohno R, Moroishi N, Sugawa H, et al. Mangosteen pericarp extract inhibits the formation of pentosidine and ameliorates skin elasticity. J Clin Biochem Nutr. 2015;57:27–32. doi:10.3164/jcbn.15-13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Yamagishi S, Ueda S, Okuda S. Food-derived advanced glycation end products (AGEs): a novel therapeutic target for various disorders. Curr Pharm Des. 2007;13:2832–6.

    Article  CAS  PubMed  Google Scholar 

  72. Peppa M, Brem H, Ehrlich P, Zhang JG, Cai W, Li Z, et al. Adverse effects of glycotoxins on wound healing in genetically diabetic mice. Diabetes. 2003;52:2805–13.

    Article  CAS  PubMed  Google Scholar 

  73. Monnier VM, Bautista O, Kenny D, Sell DR, Fogarty J, Dahms W, et al. Skin collagen glycation, glycoxidation, and crosslinking are lower in subjects with long-term intensive versus conventional therapy of type 1 diabetes: relevance of glycated collagen products versus HbA1c as markers of diabetic complications. DCCT Skin Collagen Ancillary Study Group. Diabetes Control and Complications Trial. Diabetes. 1999;48:870–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Hudson BI, Bucciarelli LG, Wendt T, Sakaguchi T, Lalla E, Qu W, et al. Blockade of receptor for advanced glycation endproducts: a new target for therapeutic intervention in diabetic complications and inflammatory disorders. Arch Biochem Biophys. 2003;419:80–8.

    Article  CAS  PubMed  Google Scholar 

  75. Goova MT, Li J, Kislinger T, Qu W, Lu Y, Bucciarelli LG, et al. Blockade of receptor for advanced glycation end-products restores effective wound healing in diabetic mice. Am J Pathol. 2001;159:513–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Babizhayev MA, Nikolayev GM, Nikolayeva JG, Yegorov YE. Biologic activities of molecular chaperones and pharmacologic chaperone imidazole-containing dipeptide-based compounds: natural skin care help and the ultimate challenge. Implication for adaptive responses in the skin. Am J Ther. 2012;19:69–89.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Markus Böhm .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Gkogkolou, P., Böhm, M. (2017). Advanced Glycation End Products (AGEs): Emerging Mediators of Skin Aging. In: Farage, M., Miller, K., Maibach, H. (eds) Textbook of Aging Skin. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-47398-6_137

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-47398-6_137

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-47397-9

  • Online ISBN: 978-3-662-47398-6

  • eBook Packages: MedicineReference Module Medicine

Publish with us

Policies and ethics