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Abstract. Two main computational problems serve as security founda-
tions of current fully homomorphic encryption schemes: Regev’s Learn-
ing With Errors problem (LWE) and Howgrave-Graham’s Approximate
Greatest Common Divisor problem (AGCD). Our first contribution is a
reduction from LWE to AGCD. As a second contribution, we describe
a new AGCD-based fully homomorphic encryption scheme, which out-
performs all prior AGCD-based proposals: its security does not rely on
the presumed hardness of the so-called Sparse Subset Sum problem, and
the bit-length of a ciphertext is only ˜O(λ), where λ refers to the security
parameter.
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1 Introduction

Fully homomorphic encryption has been a major focus of interest in cryptogra-
phy since Gentry’s first proposal of a fully homomorphic encryption scheme [21,
22]. The security of Gentry’s proposal relies on two hardness assumptions: some
relatively ad-hoc problem involving lattices arising in algebraic number theory
is assumed intractable, as is the Sparse Subset Sum Problem (SSSP), a variant
of the subset sum problem in which the subset is constrained to be very small.
The efficiency of Gentry’s scheme was later improved [23,45,46], but soon two
other design approaches were developed. The interest in Gentry’s original design
faded, as the latter approaches rely on better understood hardness assumptions
and lead to more efficient instantiations.

Chronologically, the first alternative design was proposed by van Dijk, Gen-
try, Halevi and Vaikuntanathan [20]. They constructed a fully homomorphic
scheme whose security relies on the hardness of SSSP as well as that of the
Approximate Greatest Common Divisor problem (AGCD). The AGCD prob-
lem, introduced by Howgrave-Graham in [28], is to recover a secret integer p
from many approximate multiples qi · p + ri of p (see Section 2 for a formal
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definition). The efficiency of the DGHV scheme has been improved in a series of
works [14,17–19,29], and recently adapted to devise a graded encoding scheme
serving as an approximation to cryptographic multilinear maps [16].

The other main family of fully homomorphic schemes was initiated by Brak-
erski and Vaikuntanathan, in [9,10]. They proposed two fully homomorphic
schemes with similar designs. One was relying on the hardness of the Learning
With Errors problem (LWE) from [40,41] while the other used the less under-
stood Ring Learning With Errors problem from [31] to gain on the efficiency
front. Note that in both cases, the SSSP hardness assumption is not required
anymore. A series of subsequent works proposed efficiency and security improve-
ments, as well as implementations [3,5,6,12,24,25,27].

The co-existence of these two main design strategies for fully homomorphic
encryption is due to the combination of circumstances. On one hand, it is not
known how the underlying hardness assumptions compare: there is no known
reduction from AGCD and SSSP to LWE (or its ring variants), and reciprocally.
On the other hand, both approaches seem to lead to implementations whose
performances are relatively comparable.

Contributions. This work contains two main results that together lead to a
better understanding of the relationship between the AGCD-based and LWE-
based fully homomorphic encryption schemes.

Our first contribution is a reduction from LWE to a new and quite natural
decision variant of AGCD. Informally, the goal is to distinguish between random
approximate multiples qip + ri of a random p and integers uniformly chosen
in an interval, with non-negligible distinguishing advantage and non-negligible
probability over the choice of p. This AGCD variant is clearly no easier than
the search variant considered in [20]. Our reduction implies that for certain
distributions for p, the ri’s and the qi’s, AGCD is no easier than LWE. It may be
combined with Regev’s quantum reduction [40,41] from the approximate variant
of the shortest independent vectors problem (SIVPγ) to LWE. Concretely, if we
assume that SIVPγ in dimension n with γ = poly(n) is exponentially hard to
solve (quantumly) with respect to n, which is compatible with the state of the
art algorithms for SIVP (see [34]), then AGCD is also exponentially hard to
solve, even for bit-sizes of p, ri, qi that are quasi-linear in n.

Our second contribution is a fully homomorphic encryption scheme with
security based on the hardness of our AGCD variant. In particular, the security
does not rely on the presumed hardness of SSSP.1 The scheme is a variant of
the DGHV encryption scheme that embeds the plaintext message in the most
significant bit modulo p of an AGCD sample: a ciphertext c corresponding to
a plaintext m is of the form c = qp + �p/2�m + r. Parameters may be set so
that security relies on the quantum hardness of SIVPγ in dimension n with γ =
nO(log n), while the secret key, public/evaluation key and ciphertext expansion
remain bounded as ˜O(λ), ˜O(λ3) and ˜O(λ), where λ is such that all known attacks
require time 2Ω(λ).
1 We still require a circular security assumption, like all known fully homomorphic

encryption schemes.
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Compared to DGHV, we obtain improved asymptotic efficiency and security
solely relying on the hardness of LWE. The security and performance are quite
similar to those of Brakerski’s LWE-based scheme [5]. This is no coincidence, as
both contributions build upon ideas from Brakerski’s work.

Technical Overview. The reduction from LWE to AGCD relies on several
sub-reductions. We use the dimension-modulus trade-off for LWE from [8] and
start from 1-dimensional LWE with an exponential modulus q. Informally, the
goal is to distinguish from uniform the distribution (a, a · s+ e) ∈ (1qZ)/Z×R/Z
with a uniform, e small and s an integer. We reduce this variant of LWE to
another one where a is instead uniformly sampled in R/Z. The computational
irrelevance of the discretization parameter q is implicit in [5,8]: we go one small
step further by simply removing it. We then reduce this one-dimensional scale-
invariant variant of LWE to the problem considered by Regev in [38] and inspired
from [1]. The problem consists in distinguishing from uniform samples of the form
(k + e)/s ∈ R/Z, where k is uniformly sampled in [0, s) and e is a small noise.
A converse reduction was sketched in the appendix of [42], and our reduction
was sketched by Oded Regev in a private communication [43]. We formalize the
latter reduction. Our chain of reductions improves over the result of [38] in that
for comparable hardness assumptions our reduction allows to take a bitsize for s
that is the square root of that allowed by [38]. Finally, we scale and re-discretize
samples (k + e)/s ∈ R/Z to obtain a reduction from the latter problem to a
decision variant of AGCD.

Our encryption scheme is inspired from that of [38] and the LWE-based
Brakerski’s fully homomorphic encryption scheme [5]. It is scale-invariant in the
sense that it remains unchanged if we multiply both the secret key p and the
ciphertext by the same quantity. It does not use a hidden greatest common divi-
sor that is a square as in the Coron et al. scale invariant version of the DGHV
scheme [17]. Homomorphic addition comes without extra work. For homomor-
phic multiplication, we adapt the dimension-reduction technique from [9], that
uses (invalid) encryptions of the bits of secret p (we assume that it is safe to
publish these data, hence making a circular-security assumption). Finally, we
bound the multiplicative depth of the decryption circuit is bounded as O(log λ)
where λ refers to the security parameter. As the parameters may be set so that
our homomorphic scheme supports this multiplicative depth, it is hence possible
to bootstrap it [22], leading to a fully homomorphic encryption scheme. This
allows us to circumvent the SSSP hardness assumption made in prior variants
of the DGHV encryption scheme.

Finally, we propose a modification of our scheme in which the ciphertext
bit-size is reduced. This is achieved by truncating the least significant bits of the
ciphertext, which is made possible by the fact that the plaintext is not embedded
into these. As a result, the ciphertext size is almost as low as γ − ρ, where γ is
the bit-length of the AGCD samples and ρ is the bit-length of the AGCD noise.
We remark that one can additionally use the technique of [19] to compress the
public key.
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Open Problems. Our results show that the DGHV fully homomorphic encryp-
tion scheme [20] can be made to fit into the LWE landscape. The modified
scheme asymptotically outperforms DGHV (and all subsequent variants), but
its performance only matches Brakerski’s LWE-based scheme [5]. Further, there
exist recent LWE-based fully homomorphic encryption schemes with strength-
ened security [3,11,27],2 and efficiency can be increased if one relies on the ring
variant of LWE problem.

With this state of affairs, it may be tempting to drop the AGCD approach
altogether. We prefer a more optimistic interpretation of our work. First, it
gives greater confidence into the hardness of AGCD and simplifies AGCD-based
encryption. This clearer landscape could serve as a firmer grounding for further
developments. The AGCD problem can be seen as another way of expressing
LWE: it may turn out to be more convenient for cryptographic design. Finally,
the analogy does not seem to be complete: some variants of DGHV rely on a
modification of AGCD in which a noiseless multiple of the secret integer p is
published [18] (the security of these variants relies on an extra hardness assump-
tion related to factoring). We are not aware of a similar problem in the LWE
landscape.

Our scheme is relatively slow (compared to those based on Ring LWE), but
several existing techniques could be exploited to accelerate it. For instance, it
may be possible to pack more plaintexts into a single ciphertext, similarly to [14].
It may also be possible to refine the bootstrapping step rather than looking
at decryption as a generic binary circuit. Finally, our variant with truncated
ciphertexts raises the question of taking AGCD instances with small (γ − ρ). To
thwart attacks based on exhaustive search, we should have γ −ρ ≥ λ+Ω(log λ).
If γ − ρ ≈ λ + Ω(log λ) turns out to be safe, then the ciphertext bit-sizes of our
variant scheme based on truncation can be made quite small.

Road-Map. We describe our LWE to AGCD reduction in Section 2. In Section 3,
we describe our AGCD-based scheme, and we show in Section 4 how it may be
extended into a fully homomorphic encryption scheme. Section 5 contains a
modification of the scheme with smaller ciphertexts.

Notation. We use standard Landau notations. When manipulating reals, we
in fact manipulate finite-precision approximations, with polynomially many bits
of precision. If x is a real, then �x� refers to the nearest integer to x, rounding
upwards in case of a tie. The notation log refers to the base-2 logarithm. We use
the notation (ai)i=1,...,k or simply (ai)i for a vector (a1, . . . , ak). Given x, p ∈ R,
we let [x]p denote the unique number in (−p/2, p/2] that is congruent to x
modulo p. The notation is extended to vectors x ∈ R

n in the obvious way. We
let T denote the torus R/Z. For an integer q ≥ 1, we let Tq denote the set
{0, 1/q, . . . , (q − 1)/q} with addition modulo 1.

We use a ← A to denote the operation of uniformly sampling an element
a from a finite set A. When D is a distribution, the notation a ← D refers to
2 Note that it may be possible to adapt these techniques to the AGCD framework. A

DGHV variant was proposed in appendix of [27].
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sampling a according to distribution D. We recall that the statistical distance
between two distributions D1 and D2 with supports contained in a common
measurable set is half the �1-norm of their difference.

If X is a set of finite weight, we let U(X) denote the uniform distribution
over X. For a parameter s > 0, we let Ds denote the (continuous) Gaussian
distribution of parameter s, i.e., the law over R with density function x �→
exp(−πx2/s2)/s. We write D≤s to refer to a Ds′ for some s′ ≤ s. If Λ ⊆ R

n is a
full-rank lattice, s > 0 and c ∈ R

n, we let DΛ,s,c denote the (discrete) Gaussian
distribution with support Λ and density function x �→ exp(−π‖x − c‖2/s2)/C
with C =

∑

x∈Λ exp(−π‖x − c‖2/s2). When c = 0, we omit the last subscript.
We recall a few properties of Gaussians in Appendix A.

We say that a distribution D over Zn is (B, ε)-bounded if Prx←D[‖x‖ ≤ B]] ≥
1 − ε. We say that D is (B, δ, ε)-contained if Prx←D[‖x‖ ∈ [δB,B]] ≥ 1 − ε. For
example, for all ε ∈ (0, 1/2), the distribution DZn,r is (B, ε)-bounded, with
B = O(r

√

n ln(n/ε)) (see [32]). If r = Ω(
√

ln(1/ε)), then the distribution DZ,r

is (B, δ, ε)-contained, with B = O(r
√

ln(1/ε)) and δ = ε/
√

ln(1/ε).
Throughout the paper, we let λ denote the security parameter: all known

valid attacks against the cryptographic scheme under scope should require 2Ω(λ)

bit operations to mount.

2 Hardness of Approximate GCD

We exhibit a reduction from the Learning With Errors problem (LWE) to a
variant of the Approximate Greatest Common Divisor problem (AGCD). We
first introduce the precise problems under scope.

We will consider the following decision variant of AGCD. The corresponding
search variant (consisting in finding the unknown p) is frequent in the literature.
There exists a (trivial) reduction from the search variant to the decision variant.
Other decision variants of AGCD were considered in [17,19,29]. We believe that
our decision variant of AGCD is more natural as it is less application-driven.

Definition 1 (AGCD). Let p,X ≥ 1, and φ a distribution over Z (that can
depend on p). We define AAGCD

X,φ (p) as the distribution over Z obtained by sam-
pling q ← Z ∩ [0,X/p) and r ← φ, and returning x = q · p + r.

Let D be a distribution over Z∩ [0,X). AGCDX,φ(D) consists in distinguish-
ing, given arbitrarily many independent samples, between the uniform distribu-
tion over Z ∩ [0,X) and the distribution AAGCD

X,φ (p) for a fixed p ← D. We use
the notation AGCDm

X,φ(D) to emphasize the number of samples m used by the
eventual distinguisher.

We say that an algorithm A is an (ε1, ε2)-distinguisher for AGCDX,φ(D) if,
with probability ≥ ε2 over the randomness of p ← D, its distinguishing advantage
between AAGCD

X,φ (p) and U(Z ∩ [0,X)) is ≥ ε1.3

3 We do not explicitly focus on the distinguishing run-times, as our reductions almost
preserve run-times.
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For ρ, η, γ ≥ 1, the (ρ, η, γ)-AGCD problem is AGCD2γ ,φ(D) with D the
uniform distribution over η-bit prime integers and φ the uniform distribution
over Z ∩ (−2ρ, 2ρ).

We will not rely on (ρ, η, γ)-AGCD in our constructions, but we recall it for
comparison convenience with prior works. First, we do not need to impose that
the secret p is prime. In fact, there is no known attack that exploits the factor-
ization of p. Also, if the distribution D is sufficiently well-behaved, restricting D
to prime integers (e.g., by rejection sampling) would result in a problem that is
no easier, as the density of prime numbers is non-negligible. Second, we do not
know how to reduce LWE to (ρ, η, γ)-AGCD. In particular, our reduction leads
to distributions D and φ that are somewhat more cumbersome. However, from
the perspective of cryptographic constructions, they may be used in the exact
same manner as their (ρ, η, γ)-AGCD counterparts.

LWE was introduced by Regev [41]. We use the variant from [8].

Definition 2 (LWE). Let n, q ≥ 1, s ∈ Z
n and φ a distribution over R. We

define ALWE
q,φ (s) as the distribution over T

n
q × T obtained by sampling a ← T

n
q

and e ← φ, and returning (a, 〈a, s〉 + e).
Let D be a distribution over Zn. LWEn,q,φ(D) consists in distinguishing, given

arbitrarily many independent samples, between U(Tn
q × T) and ALWE

q,φ (s) for a
fixed s ← D.

In [41], Regev described a quantum reduction from several standard (worst-
case) problems over n-dimensional Euclidean lattices to LWEn,p,D≤α

(U((Z ∩
[0, p))n)), where the modulus p may be chosen as a polynomial in n and the
parameter α may be set as poly(n)/γ with γ referring to the approximation factor
of the considered lattice problem. The reduction assumes that α ≥ Ω(

√
n/q).

Regev’s reduction was partly dequantized in [36] and [8]. Further, a modulus-
dimension trade-off was exhibited in [8]: in particular, if q = Ω(pn) and α ≤
poly(n)β, then LWE1,q,D≤α

(U(Z∩ [0, q))) is no easier than LWEn,p,D≤β
(U((Z∩

[0, p))n)).
In [4], Applebaum et al gave an LWE self-reduction from secret distribution

U((Z∩ [0, p))n) to secret distribution DZn,O(αp) which reduces the distinguishing
advantage from ε to Ω(ε), if α ≥ Ω(

√

ln(n/ε)/p).
The main result of this section is the following.

Theorem 1. Let α, β ∈ (0, 1), X,B,m, q ≥ 1, and D a distribution over Z.
Assume that there exists an (ε1, ε2)-distinguisher for AGCDm

X,�D≤α�(�X/D�). If
D is (B, δ, ε2/2)-contained, q ≥ Ω(

√

ln(m/ε1)B/β), X ≥ Ω(mB2/(βε1)) and
β ≤ O(αδB/X), then there exists an (Ω(ε1), Ω(ε2δβ/

√

ln(m/ε1))-distinguisher
for LWEm

1,q,D≤β
(D).

Setting Parameters in AGCD. We discuss a possible choice of secure para-
meters for AGCD.

Recall that there exists a (quantum) reduction from λ-dimensional lattice
problems with approximation factors λ

˜O(1), to LWE1,q,D≤β′ (DZ,σ), for q = 2 ˜O(λ),
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β′ = λ− ˜Ω(1) and σ = O(β′q). We can hence reasonably assume that for these
parameters, the time required to solve LWE1,q,D≤β′ (DZ,σ) is 2 ˜Ω(λ), even for ε1, ε2

as small as 2− ˜Ω(λ).
We set β =

√
λβ′. As we can publicly increase the Gaussian noise of the LWE

samples, LWE1,q,D≤β
(DZ,σ) is no easier than the latter variant. Now, Theorem 1

depends quite importantly on the potential smallness of samples from D. We
avoid such small values by rejection sampling. We define D as follows: Sample
a fresh s ← DZ,O(σ) until s ∈ (σ/2, 2σ). As a result, we can set B = O(σ) and
δ = Ω(1). The condition on q in Theorem 1 is fulfilled. If we set X = 2λσ2 and
α = Ω(βX/σ) ≈ β2λσ, then all conditions are fulfilled, guaranteeing exponential
hardness of AGCDm

X,�D≤α�(D

σ), with D


σ = �X/D�.
To ease comparison with prior works, we define

γ = log X, η = log X − log σ, and ρ = log α + (log λ)/2.

The bit-size of each AGCD sample pq + r is ≈ γ, the bit-size of the AGCD
secret p is ≈ η, and the bit-size of each noise term r is bounded by ρ, with
probability exponentially close to 1 (in the analysis of the primitives, we will
assume that each fresh noise r has magnitude ≤ 2ρ, hence forgetting about the
unlikely event that one of the noises is bigger). With our choices of X and α, we
have: γ ≈ λ + 2 log σ, η ≈ λ + log σ and ρ ≈ η + log(

√
λβ).

Proof Overview. The proof of Theorem 1 consists of three sub-reductions.
We first show that LWE is essentially equivalent to a variant of LWE that does
not involve any discretization parameter q. That variant, which we name scale-
invariant LWE (SILWE), is implicit in [5,8]. We then show that SILWE is essen-
tially equivalent to the problem studied in [39] (and inspired from [1]), which we
name zero-dimensional LWE (ZDLWE). Finally, the third sub-reduction is from
ZDLWE to AGCD.

In Appendix B, we give converse reductions for each one of the three sub-
reductions. This implies that from the hardness viewpoint, AGCD and LWE are
quite closely related.

2.1 Scale-Invariant LWE

We consider the following LWE variant, in which the modulus q does not play a
role anymore.

Definition 3 (Scale-Invariant LWE). Let n ≥ 1, s ∈ Z
n and φ a distribution

over R. We define ASILWE
φ (s) as the distribution over Tn×T obtained by sampling

a ← T
n and e ← φ, and returning (a, 〈a, s〉 + e).

Let D be a distribution over Z
n. SILWEn,φ(D) consists in distinguishing,

given arbitrarily many independent samples, between U(Tn ×T) and ASILWE
φ (s)

for a fixed s ← D.

Lemma 1. Let α, β ∈ (0, 1), m,n, q,B ≥ 1 and D a distribution over Z
n.

Assume that there exists an (ε1, ε2)-distinguisher for SILWEm
n,D≤α

(D). If D is
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(B, ε2/2)-bounded, q ≥ Ω(
√

ln(mn/ε1)B/β) and β ≤ O(α), then there exists an
(Ω(ε1), Ω(ε2))-distinguisher for LWEm

n,q,D≤β
(D).

Proof. We map each input sample (a, b) for LWEn,q,D≤β
to an input sample

(a′, b′) for SILWEn,D≤α
, as follows: Sample f ← Dn

r with r = Ω(
√

ln(mn/ε1)/q);
set a′ = a + f and b′ = b. We show below that, with probability ≥ 1 − ε2/2
over the randomness of s ← D, this transformation maps the distributions
U(Tn

q × T) and ALWE
q,D≤β

(s) to distributions within statistical distances O(ε1/m)
from U(Tn × T) and ASILWE

D≤α
(s), respectively.

By Lemma 10, the distribution of f mod 1 is within statistical dis-
tance O(ε1/m) from U(Tn), and the distribution of f conditioned on (f mod 1)
is DZn/q,r. The former imples that a′ is uniformly distributed over T

n. Now,
we consider two cases. If b was uniformly distributed in T independently of a,
then b′ is uniformly distributed in T independently of a′. Now, assume that
b = 〈a, s〉 + e for some fixed s and e ← D≤β . Then b′ − 〈a′, s〉 = e − 〈f , s〉. By
Lemma 12, the distribution of e − 〈f , s〉 (conditioned on a′) is within statistical
distance O(ε1/m) from D≤

√
β2+‖s‖2r2 , assuming that (1/r2 + ‖s‖2/β2)−1/2 ≥

Ω(
√

ln(mn/ε1)/q). We have ‖s‖ ≤ B with probability ≥ 1 − ε2/2 (over the
randomness of s). When this is the case, we obtain that e − 〈f , s〉 (conditioned
on a′) is within statistical distance O(ε1/m) from D≤

√
β2+‖s‖2r2 (by using the

condition on q and the definition of r). Finally, the assumptions on β, B and r
ensure that

√

β2 + ‖s‖2r2 ≤ α. ��

2.2 Zero-Dimensional LWE

We now show that SILWE is essentially equivalent to the problem studied by
Regev in [39]. The latter may be viewed as a zero-dimensional variant of LWE,
as the provided samples are from T rather than T

n
q × T.

Definition 4 (Zero-Dimensional LWE). Let s ∈ Z and φ a distribution
over R. We define AZDLWE

φ (s) as the distribution over T obtained by sampling
k ← Z ∩ [0, s) and e ← φ, and returning [(k + e)/s]1.

Let D be a distribution over Z. ZDLWEφ(D) consists in distinguishing, given
arbitrarily many independent samples, between U(T) and AZDLWE

φ (s) for a fixed
s ← D.

The following result and its proof are derived from [43].

Lemma 2. Let α, β ∈ (0, 1), B ≥ 1 and D a distribution over Z. Assume that
there exists an (ε1, ε2)-distinguisher for ZDLWEm

D≤α
(D). If D is (B, δ, ε2/2)-

contained and β ≤ O(α), then there exists an (Ω(ε1), Ω(ε2δα/
√

ln(m/ε1)))-
distinguisher for SILWEm

1,D≤β
(D).

Proof. We describe a reduction from SILWE to ZDLWE. Let r = Θ(
√

ln(m/ε1))
(chosen to be able to use Lemma 10) and δ′ ≤ Θ(δα/

√

ln(m/ε1)). The reduction
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produces a guess s′ of the SILWE secret s by sampling s′ ← Bδ′ ·(Z∩ [0, �1/δ′�));
then it maps any input sample (a, b) for SILWE1,D≤β

to an input sample y for
ZDLWED≤α

, by setting y = [a − b/s′]1.
This transformation maps U(T × T) to U(T). We now show that it maps

ASILWE
D≤β

(s) to a distribution that is within statistical distance O(ε1/m) from
AZDLWE

D≤α
(s), with probability Ω(ε2δ′) over the choice of s ← D. Thanks to the

assumption on D, we have that |s| ∈ [δB,B], with probability ≥ 1 − ε2/2 over
the randomness of s. The success probability of the ZDLWED≤α

distinguisher
conditioned on that event is ≥ ε2/2. Further, with probability ≥ Ω(δ′) over
the choice of s′, we have |s′ − s| ≤ Bδ′. We now assume that |s| ∈ [δB,B],
|s′ − s| ≤ Bδ′ and that the ZDLWED≤α

distinguisher suceeds. This event has
weight Ω(ε2δ′).

By Lemma 10, the distribution of a is within statistical distance O(ε1/m)
of the distribution obtained by sampling k ← Z ∩ [0, s) and f ← Dr, and
returning [(k + f)/s]1. With these notations, we have b = f + e mod 1 and
y = k/s+f(1/s−1/s′)−e/s′ mod 1. The distribution of sy−k is within statistical
distance O(ε1/m) of D≤α′ with α′ = ((βs/s′)2 + r2(1 − s/s′)2)1/2. Thanks to
the properties on s and s′, we have |s/s′| ≤ O(1) and |1 − s/s′| ≤ O(δ′/δ). This
leads to α′ ≤ O(β + rδ′/δ). The condition on β and the choice of δ′ ensure that
α′ ≤ α. ��

Note that the hardness result obtained here via LWE is stronger than the
one from [39]. Indeed, the present approach leads to a (quantum) reduction from
standard n-dimensional lattice problems with polynomial approximation factors
to ZDLWE with an s of bitsize ˜O(n), whereas [39] leads to an s of bitsize ˜O(n2).
However, the latter reduction is classical rather than quantum.

2.3 Reducing ZDLWE to AGCD

Lemma 3. Let α, β ∈ (0, 1), X,B ≥ 1 and D a distribution over Z. Assume
that there exists an (ε1, ε2)-distinguisher for AGCDm

X,�D≤α�(�X/D�). If D is
(B, δ, ε2/2)-contained, X ≥ Ω(mB2/(αε1)) and β ≤ O(αδB/X), then there
exists an (Ω(ε1), Ω(ε2))-distinguisher for ZDLWEm

D≤β
(D).

Proof. Given an input sample y for ZDLWED≤β
, the reduction produces an input

sample x for AGCDDZ,≤α
, as follows: Set x = [�Xy�]X .

If y is uniformly distributed over T, then so is x over Z∩ [0,X). Now, assume
that y = (k+e)/s for some fixed s (sampled from D), k ← Z∩[0, s) and e ← D≤β .
Then x = kp + r − Δ with p = �X/s�, r = �Xe/s� and Δ = �X(k + e)/s� −
k�X/s� − r. We have |Δ| ≤ 2 + k ≤ O(B), with probability ≥ 1 − ε2/2 over the
choice of s ← D. The distribution of r is �Dα′� for some α′ ∈ [Xβ/B,Xβ/(δB)]
(where we used the fact that |s| ≥ δB, which holds with high probability over
the choice of s, by assumption on D). We observe that the statistical distance
between �Dα′� and �Dα′� − Δ is O(Δ/α′) ≤ O(B2/(Xβ)) ≤ O(ε1/m).

It now suffices to show that the distribution of k ← Z ∩ [0, s) is statistically
close to the uniform distribution over Z ∩ [0,X/p). A simple calculation shows
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that the statistical distance between the uniform distributions over these two
intervals is O(|X/p − s|/s). By definition of p, we have that |ps − X| ≤ s and
hence |X/(ps) − 1| ≤ 1/p. The latter is O(B/X) ≤ O(ε1/m), thanks to the
assumption on X. ��

Theorem 1 is obtained by combining Lemmas 1, 2 and 3.

3 An AGCD-Based Additive Homomorphic Encryption
Scheme

In this section, we propose an additive homomorphic encryption (AHE) scheme
whose security relies on the hardness of the AGCD problem. This scheme is simi-
lar to the DGHV encryption scheme [20], but the plaintext message is embedded
into the ciphertext c as the most significant bit of c mod p for the secret key p. It
may be viewed as an AGCD adaptation of Regev’s encryption scheme from [38].

We let ρ denote a bound on the bit-length of the error, η the bit-length of
the secret greatest common divisor, and γ the bit-length of an AGCD sample.
The parameter τ refers to the number of encryptions of zero contained in the
public key.

Parameters. We set parameters such that they satisfy the following constraints.

• ρ ≥ λ, to protect against the brute force attacks on the noise such as [13,28].
• γ ≥ Ω( λ

log λ (η − ρ)2) and γ ≤ η2, to thwart the lattice reduction attacks on
AGCD such as the orthogonal lattice attacks [20,35], Lagarias’ simultaneous
Diophantine approximation [30] and the Cohn-Heninger attack [15].

• η will be determined later to support correct decryption. For the moment,
we only suppose that ρ < η.

• τ = γ + 2λ + 2, to be able to use the leftover hash lemma in the security
proof (see Subsection 3.3).

Note that there is some discrepancy with the conditions with prior works on
AGCD. Part of it stems from the fact that we place ourselves in the context of
sub-exponential attackers rather than polynomial-time attackers. Further, once
adapted to this attacker setup, the condition corresponding to thwarting lattice
attacks is γ ≥ Ω(λη2) in prior works. In fact, that condition is too stringent:
lattice attacks are tharted even if our (weaker) condition is satisfied. Moreover,
our condition is compatible with the LWE to AGCD reduction when applied to
exponentially intractable LWE parameters, as explained in Section 2. This has
a significant impact on the asymptotic performance of the scheme, as γ may be
set much smaller.

Concretely, we set ρ = λ, η = ρ + L log λ for an L > 0 to be chosen to
provide desirable functionalities, γ = Ω(L2λ log λ) and τ = γ + 2λ + 2. Note
that the ciphertext size γ is quasi-linear in λ. Assume one wants to rely on the
exponential hardness of lattice problems for approximation factors nO(L) for a
small L. First, one has to set n = Ω(Lλ). In that case, via the reduction from
Section 2, one can set σ = Ω(L2λ log λ), and η′ = cL2λ log λ for some constant c,
ρ′ = η′ − L log λ, γ′ = 2η′ + λ and τ ′ = γ′ + 2λ + 2.
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3.1 The Construction

The scheme AHE is defined as follows:

AHE.KeyGen(λ). Given a security parameter λ, determine parameters
(X,σ, α) and (γ, η, ρ) providing security λ and decryption correctness (see
analysis below). We refer to the discussion just after Theorem 1 for the rela-
tionship between the two parameter sets. Sample p ← D


σ (of bitsize ≈ η).
For 0 ≤ i ≤ τ , sample xi ← AAGCD

X,�Dα�(p). Relabel so that x0 is the largest
and x1 has an odd �x1

p �, and restart if we cannot find such an x1. Output
the secret key sk = p and the public key pk = (x0, x1, . . . , xτ ).

AHE.Encpk(m). Given a message m ∈ {0, 1}, uniformly sample a subset
S ⊆ {1, 2, . . . , τ}, and output

c =

[

∑

i∈S

xi +
⌊x1

2

⌉

m

]

x0

.

AHE.Addx0(c1, c2). Given two ciphertexts c1, c2, output cadd = [c1 + c2]x0 .

AHE.Decsk(c). Given a ciphertext c, output m =
[⌊

2c

p

⌉]

2

.

Note that [�x�]2 may not be equal to �[x]2� for some x ∈ R. In fact, the latter
has value in {0, 1,−1} while the former has value in {0, 1}. However, they are
congruent modulo 2.

3.2 Correctness

We analyze the noise growth at encryption and addition, and provide a sufficient
condition for decryption correctness.

Lemma 4 (Encryption noise). Let (sk = p, pk = (x0, . . . , xτ )) ←
AHE.KeyGen(λ) and c ← AHE.Encpk(m) for a message m ∈ {0, 1}. Then

c = r +
⌊p

2

⌉

m mod p

for some r with |r| ≤ (2τ + 1/2)(2ρ − 1) + 1/2.

Proof. Write xi = pqi + ri with qi ∈ Z and ri = [xi]p for 0 ≤ i ≤ τ . We have
�x1

2 � = pq1
2 + r1

2 + δ for |δ| ≤ 1/2. Since q1 is odd, we have, modulo p:

c =
∑

i∈S

xi +
⌊x1

2

⌉

m − kx0 =
∑

i∈S

ri − kr0 +
⌊p

2

⌉

m +
(r1

2
+ δ

)

m,

for some k ∈ [0, τ ]. Therefore, we have c = r +
⌊

p
2

⌉

m mod p for some r with
|r| ≤ (2τ + 1/2)(2ρ − 1) + 1/2. ��
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Lemma 5 (Addition noise). Let (sk = p, pk = (x0, . . . , xτ )) ←
AHE.KeyGen(λ) and ci ← AHE.Encpk(mi) with ci = ri +

⌊

p
2

⌉

mi mod p
for all i ∈ {1, 2}. If cadd ← AHE.Addx0(c1, c2), then

cadd = r +
⌊p

2

⌉

[m1 + m2]2 mod p,

for some r with |r| ≤ |r1 + r2| + 2ρ.

Proof. We have, modulo p:

cadd = c1 + c2 − δx0 = r1 + r2 − δr0 +
⌊p

2

⌉

[m1 + m2]2 − δ′

for some δ, δ′ ∈ [−1, 1]. Hence we can write cadd = r +
⌊

p
2

⌉

[m1 +m2]2 mod p for
some r with |r| ≤ |r1 + r2| + 2ρ. ��
Lemma 6 (Decryption noise). Let p a positive integer and m ∈ {0, 1}. Given
an integer c, we have

AHE.Decp(c) = m if c = r +
⌊p

2

⌉

m mod p with |r| <
p

4
− 1

2
.

Proof. Write c = pq + r +
⌊

p
2

⌉

m. Then, for some b ∈ {0, 1}:
⌊

c · 2
p

⌉

=
⌊

2q + m +
2r + b

p

⌉

= 2q + m +
⌊

2r + b

p

⌉

,

which is congruent to m modulo 2 when |r| < p
4 − 1

2 . ��
Theorem 2 (Correctness). Let � ≥ 1. Let (sk = p, pk = (x0, . . . , xτ )) ←
AHE.KeyGen(λ) and ci ← AHE.Encpk(mi) for i = 1, . . . , � and mi ∈ {0, 1}.
Let c = [

∑

i=1 ci]x0 . Then we have

AHE.Decp(c) =

[



∑

i=1

mi

]

2

when � ≤ 2η−ρ

6(4τ + 1)
.

In particular, a fresh ciphertext (i.e., with � = 1) decrypts correctly if η − ρ ≥
log(24τ + 6).

Proof. For 1 ≤ i ≤ �, write ci = pqi + ri + �p
2�mi for some integers qi, ri, and

mi with |ri| ≤ (2τ + 1/2)(2ρ − 1) + 1/2 and mi ∈ {0, 1} by Lemma 4. Since
|∑


i=1 ci| ≤ �x0/2, there exists a k ∈ Z ∩ [0, �/2] such that, modulo p:

c =



∑

i=1

ri − kr0 +
⌊p

2

⌉

[



∑

i=1

mi

]

2

+
⌊p

2

⌉

(



∑

i=1

mi −
[



∑

i=1

mi

]

2

)

.

So c is correctly decrypted when r :=
∑


i=1 ri−kr0+ 1
2

(

∑

i=1 mi − [

∑

i=1 mi]2

)

is small. By applying Lemmas 4 and 5, we have |r| ≤ (3�/2)((2τ +1/2)(2ρ −1)+
1/2) + �/2. It is less than p

4 − 1
2 if � ≤ 2η−ρ

6(4τ+1) . The proof may be completed by
using Lemma 6. ��

To guarantee correct decryption, it suffices to take η ≥ ρ + log(24τ + 6).
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3.3 Security

We first recall the classical Leftover Hash Lemma (LHL) over finite sums modulo
an integer as in [20].

Lemma 7. Sample x1, . . . , xτ ← Zx0 independently, sample s1, . . . , sτ ← {0, 1},
and set y =

∑τ
i=1 sixi mod x0. Then (x1, . . . , xτ , y) is within statistical distance

1
2

√

x0/2τ from U(Zτ+1
x0

).

This LHL is used to show that the AHE ciphertext is computationally indis-
tinguishable from a uniform integer modulo x0, independently of the encrypted
plaintext bit.

Theorem 3 (Security). Under the assumptions that AGCDX,�Dα�(D

σ) is hard

and that τ ≥ log X+2λ+2, the AHE scheme described above is IND-CPA secure.

Proof. The key generation procedure produces independent xi ← AAGCD
X,�Dα�(p).

With probability exponentially close to 1, there exists i such that xi is not the
largest, and �xi/p� is odd.

Now, in the IND-CPA security experiment, we replace the sampling of the
xi’s by xi ← U(Z ∩ [0,X)), independently, for i = 0, . . . , τ . We still sort them
so that x0 is the largest, and x1 is such that �x1/p� is odd (we resample if we
cannot find such an x1). The resulting public key distribution is computationally
indistinguishable from the genuine public key distribution, under the assumption
that AGCDX,�Dα�(D


σ) is hard.
With this modified key generation procedure, the distribution of (xi)2≤i≤τ

is within exponentially small statistical distance from U((Z∩ [0, x0))τ−1). Using
Lemma 7 and the assumption on τ , the tuple (x2, · · · , xτ ,

∑

i>1 sixi mod x0) is
within exponentially small statistical distance from U((Z∩[0, x0))τ ). As a result,
the distribution of the challenge ciphertext in the IND-CPA experiment is within
exponentially small statistical distance from U(Z∩ [0, x0)), independently of the
underlying plaintext. In that experiment, the distinguishing advantage of the
adversary is exponentially small. ��

4 A Scale-Invariant AGCD-Based FHE

In this section, we first extend the AHE scheme into a somewhat homomor-
phic scheme allowing a certain amount of homomorphic data manipulation, and
then use Gentry’s bootstrapping technique [22] to obtain a fully homomorphic
encryption scheme.

We adapt some notations from [7] to our context. Let n be a positive integer.
Given x ∈ Z ∩ [0, 2n) and y ∈ R, define

BDn(x) = (x0, x1, . . . , xn−1) ∈ {0, 1}n with x =
n−1
∑

i=0

xi2i

Pn(y) = (y, 2y, . . . , 2n−1y) ∈ R
n.
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Then we can see that

〈BDn(x),Pn(y)〉 =
n−1
∑

i=1

xi(2iy) = xy.

We also recall the definition of a tensor product on the vector space R
n

(u1, . . . , un) ⊗ (v1, . . . , vn) = (u1v1, u1v2, . . . , u1vn, . . . , unv1, . . . , unvn),

and its relation with the inner product

〈u ⊗ u′,v ⊗ v′〉 = 〈u,v〉 · 〈u′,v′〉.

4.1 The Construction

The scheme SHE is identical to AHE, except concerning the following two
procedures. Its security is inherited from that of AHE.

SHE.MultKeyGen(sk). Let p = sk. For all k ∈ Z ∩ [0, 2γ − 2], sam-
ple q∗

i,j , r
∗
i,j as in AAGCD

X,�Dα�(p) and publish a vector y = (pq∗
i,j + r∗

i,j)0≤i,j<γ +
p
2 ([Pγ(2/p)]2 ⊗ [Pγ(2/p)]2) as a multiplication key.

SHE.Multx0,y(c1, c2). Given two ciphertexts c1, c2, output

cmult := [〈BDγ(c1) ⊗ BDγ(c2),y〉]x0 .

The (i, j) component of the γ2-dimensional vector y is a fake encryption of
[2i+1/p]2 · [2j+1/p]2, because it is not decrypted into [2i+1/p]2 · [2j+1/p]2.

4.2 Correctness

We now prove the correctness of the homomorphic multiplication procedure.

Lemma 8. Let p be a positive integer. If c = pq + r + �p/2�m ∈ Z ∩ [0, 2γ − 2]
with q, r ∈ Z and m ∈ {0, 1}, then we have

〈BDγ(c), [Pγ(2/p)]2〉 = 2a + m + ε

for an integer a with |a| ≤ (γ − η + 4)/2 and a real ε with |ε| < (2|r| + 1)/p.

Proof. Let �p/2� = (p+ b)/2, b ∈ {0, 1}. Then, 2c/p = 2q +m+ ε, which is equal
to m + ε modulo 2 for ε = (2r + b)/p with |ε| ≤ (2|r| + 1)/p.

Since BDγ(c) is an integer, we have, modulo 2:

〈BDγ(c), [Pγ(2/p)]2〉 ≡ 〈BDγ(c),Pγ(2/p)〉 = 2c/p.

So, 〈BDγ(c), [Pγ(2/p)]2〉 = 2a + m + ε for some integer a. Using 2/p + 22/p +
· · · + 2η−2/p = 2(2η−2 − 1)/p < 1, we have

|〈BDγ(c), [Pγ(2/p)]2〉| ≤
γ−1
∑

i=0

∣

∣

∣

∣

[

2i+1

p

]

2

∣

∣

∣

∣

≤ γ − η + 3,

which implies |a| ≤ (γ − η + 4)/2.
��
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Lemma 9 (Multiplication noise). Let (sk = p, pk = (x0, . . . , xτ )) ←
AHE.KeyGen(λ) and y ← SHE.MultKeyGen(sk). Given c1, c2 ∈ Z ∩
(−x0/2, x0/2] satisfying ci = ri + �p

2�mi mod p for i ∈ {0, 1}, we have

[〈BDγ(c1) ⊗ BDγ(c2),y〉]x0 = pq + r +
⌊p

2

⌉

m1m2

for some q, r ∈ Z with |r| < (γ − η + 6)(|r1| + |r2|) + γ2 · 2ρ+1.

Proof. We have

y = (pq∗
i,j + r∗∗

i,j)0≤i,j<γ +
p

2
([Pγ(2/p)]2 ⊗ [Pγ(2/p)]2) ,

for some r∗∗
i,j ∈ r∗

i,j + [−1/2, 1/2] for all i, j. We now use Lemma 8:

〈BDγ(c1) ⊗ BDγ(c2),y〉
= 〈BDγ(c1) ⊗ BDγ(c2), (pq

∗
i,j + r

∗∗
i,j)i,j〉 +

p

2
〈BDγ(c1), [Pγ(2/p)]2〉 · 〈BDγ(c2), [Pγ(2/p)]2〉

=
∑

(i,j)∈J

(

pq
∗
i,j + r

∗∗
i,j

)

+
p

2
(m1 + ε1 + 2a1)(m2 + ε2 + 2a2),

for some index set J ⊆ [0, γ)2, and some a1, a2 ∈ Z, ε1, ε2 ∈ R that satisfy
|a1|, |a2| ≤ (γ − η + 4)/2, |ε1| < (2|r1| + 1)/p and |ε2| < (2|r2| + 1)/p. Since
p
2 ((m1 + 2a1)(m2 + 2a2) − m1m2) is a multiple of p, we have that, for some
integer q

[〈BDγ(c1) ⊗ BDγ(c2),y〉]x0 = pq + r +
⌊p

2

⌉

m1m2,

where

r =
∑

(i,j)∈J

r∗∗
i,j +

p

2
(ε2(m1 + 2a1) + ε1(m2 + 2a2) + ε1ε2) − 1

2
m1m2 − kr0

for some k ∈ [−1, γ2]. Therefore, we have |r| < γ2 · 2ρ+1 +(γ − η +6)(|r1|+ |r2|).
Note that r is an integer because all of BDγ(c1), BDγ(c2) and y has only integer
components. ��

Let ci ← SHE.Encpk(mi) with ci = ri +
⌊

p
2

⌉

mi mod p for i ∈ {1, 2}, cadd ←
SHE.Addpk(c1, c2) and cmult ← SHE.Multpk(c1, c2). From Lemmas 5 and 9,
we can see that

cadd = radd +
⌊p

2

⌉

[m1 + m2]2 mod p

cmult = rmult +
⌊p

2

⌉

[m1m2]2 mod p,

with |radd| ≤ |r1|+ |r2|+2ρ and |rmult| ≤ (γ −η+6)(|r1|+ |r2|)+γ2 ·2ρ+1. Both
the addition and multiplication in our scheme increase noise only additively.
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Definition 5. A scheme HE is L-homomorphic if for any depth L binary cir-
cuit C and any set of inputs m1, . . . , m
 ∈ {0, 1}, it holds that

HE.Decsk(HE.Evalevk(C, (c1, . . . , c
)) = C(m1, . . . , m
)

with probability ≥ 1 − λ−ω(1), where (pk, evk, sk) ← HE.KeyGen(λ) and ci ←
HE.Encpk(mi) for all i ≤ �.

Theorem 4. The scheme SHE is L-homomorphic if

η − ρ ≥ L(1 + log(γ − η + 6)) + 3 + log
(

2τ +
γ2

γ − η + 6

)

.

Proof. For each i ∈ [0, L], let ci be a ciphertext with ci = ri +
⌊

p
2

⌉

mi mod p
after the evaluation of the i-th level gates. Let Ri be a bound on the noise
magnitude |ri|. First, we have R0 = (2τ + 1/2)(2ρ − 1) + 1/2 by Lemma 4. By
Lemmas 5 and 9, we have that Ri+1 := 2(γ − η + 6)Ri + γ2 · 2ρ+1 is a valid
level (i + 1) bound (for all i ≥ 0). By solving the recurrence equation, we obtain

RL ≤
(

2τ +
γ2

γ − η + 6

)

2ρ+12L(γ − η + 6)L − γ2 · 2ρ+1

γ − η + 6
,

which is at most p
4− 1

2 if (η−ρ) satisfies the condition. In that case, any ciphertext
after evaluation of any circuit of depth L can be correctly decrypted. ��

Combining with ρ = λ, γ = Ω( λ
log λ (η − ρ)2), τ = γ + Ω(λ), we may take

γ = Θ(λL2 log λ). Note that the ciphertext size γ is quasi-linear in the security
parameter λ.

4.3 Bootstrapping

We provide a bound on the multiplicative depth of the decryption circuit corre-
sponding to AHE.Decp(c) = [�2c/p�]2.

We take an approximation z to 2/p such that |z − 2
p | < 2−(γ+η). Write

z =
∑γ+η

i=0 z−i2−i for z−i ∈ {0, 1} for each i. As c ∈ [0, 2γ − 2], we have |cz −
2c/p| < 2−η. Therefore, we have [�cz�]2 = m when c = pq + r + �p

2�m and
|r| < p

4 − 1
2 . Since the η most significant bits of z are zero, the most expensive

step in decryption consists in adding up to γ integers of bit-lengths ≤ 2γ. This
can be implemented with a binary circuit of O(log γ) depth.

By Theorem 4 and [22], SHE is bootstrappable and may be turned into a
fully homomorphic encryption scheme when η−ρ = Ω(log2 γ). For bootstrapping
we publish encryptions of zi’s as a bootstrapping key. This requires space O(γ2).

5 Truncation of Ciphertexts

Since the message bit is embedded into the most significant bit of the cipher-
text modulo p, some least significant bits of the ciphertext are irrelevant to
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decryption correctness. However as we truncate more least significant bits of a
ciphertext, decryption failure probability increases slightly at first and becomes
overwhelming after some point between ρ and η bits of truncation.

Let N = 2ν for a positive integer ν < γ. Given a ciphertext c, define ĉ =
�c/N� so that |Nĉ− c| ≤ N/2. In the following, the quantity ĉ can play a similar
role to that of the corresponding ciphertext c in each component of SHE, for
appropriate ν.

1. In the encryption stage, given ĉ := [
∑

i∈S x̂i + � x̂1
2 �m]x̂0 for some S ⊆ Z ∩

[1, τ ], we have, for some integer k:

Nĉ =
∑

i∈S

xi +
⌊x1

2

⌉

m − kx0 +N
∑

i∈S

(x̂i − xi/N) +Nm

(

⌊ x̂1

2

⌉− ⌊x1

2

⌉

/N

)

− kN(x̂0 − x0/N),

which is equivalent to r + �p
2�m modulo p for |r| ≤ (2ρ+1 + N)(τ + 1).

2. In the decryption stage, given ĉ = �c/N� we have
[⌊

2ĉ

p/N

⌉]

2

= m

if |r| < (p − N)/4 − 1/2 when c = r + �p
2�m mod p.

3. In the addition stage, given ĉ1 and ĉ2, we define ĉadd = [ĉ1 + ĉ2]x̂0 . Then we
can show (similarly to Lemma 5):

Nĉadd = r +
⌊p

2

⌉

[m1 + m2]2 mod p

for |r| ≤ |r1| + |r2| + (2ρ + 3
2N) when ci = pqi + ri + �p

2�m for i ∈ {1, 2}.
4. In the multiplication stage, we use ŷ to be the vector of bit-length (γ − ν)2

obtained by removing all entries (i, j) of y such that i < ν or j ≤ ν. Given
ĉ1 and ĉ2, we set

ĉmult = [BDγ̂(ĉ1) ⊗ BDγ̂(ĉ2), ŷ]x̂0 ,

where γ̂ = γ − ν. We can show that for all i ∈ {1, 2}, we have 〈BDγ̂

(ĉi), [Pγ̂(2N/p)]2〉 = 2ĉi

p/N = 2ai +mi +εi for ai ∈ Z with |ai| ≤ (γ̂ −η+4)/2,

mi ∈ {0, 1} and εi ∈ R with |εi| < 2(|r|+N)
p . Thus ĉmult = pq+r+

⌊

p
2

⌉

m1m2

for some q, r ∈ Z satisfying

|r| < (γ̂ − η + 6)(|r1| + |r2|) + γ̂2 · 2ρ+1,

when ci = ri + �p
2�mi mod p for i ∈ {1, 2}.

5. In the bootstrapping stage, we take z ∈ 2−(γ+η−ρ) to be an approximation
of 2/p with |z − 2

p | < 2−(γ+η−ρ). We have

∥

∥

∥

∥

Nĉz − 2
p
c

∥

∥

∥

∥

≤
(

c +
1
N

) (

2
p

+ 2−(γ+η−ρ)

)

≤ (2ρ+1 + N)
p

.



530 J.H. Cheon and D. Stehlé

Combining with 2c
p = 2q + m + 2r+m

p for c = pq + r + �p
2�m, we have

[�Nĉz�]2 = m if (2r + m + 2ρ+1 + N)/p < 1/2. It is satisfied when |r| <
p/4 − 2ρ − (N + 1)/2. If N ≤ p/4, we have a similar homomorphic capacity
of Theorem 4 and so SHE becomes bootstrappable similarly. In this case,
however, the decryption can be done with a binary circuit of O(log(γ − ρ))
depth.

In the above observations, we can see that encryption noise and addition noise
are almost the same when ν ≤ ρ and the decryption and the bootstapping work
similarly when ν < η−1. For multiplication, as ν grows, the multiplication error
decreases. Hence truncating ciphertexts by ρ bits results in similar performance,
but with reduced ciphertext bit-length. In that setup, the bit-size of ciphertext
becomes γ − ρ.

The known attacks on AGCD do not say much on the complexity of AGCD
when γ −ρ is small. A naive attack is as follows. Given c = pq + r, we first guess
the γ − η bits of q and then compute � c

q � = p + � r
q �. Since r

q < 2ρ−(γ−η), we
can obtain the γ − ρ most significant bits of p. This is significant. To avoid this
attack, we need to set γ − η ≥ λ. In that case, the ciphertext size is ≈ γ − ρ =
(γ − η) + (η − ρ) ≥ λ + Ω(L log λ).

Note that this truncation method is different from decreasing the bit-size ρ of
the noise. If ρ is set smaller, then the ciphertext bit-length γ should be increased
to resist lattice-based attacks, i.e., it must satisfy γ ≥ Ω( λ

log λ (η − ρ)2). If we
reduce ρ and η simultaneously, resistance against the lattice-based attacks can
be maintained, but the scheme becomes susceptible to exhaustive search on the
noise components ri.
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A Some Useful Lemmas on Lattice Gaussians

The first statement of the following lemma is a special case of [33, Le. 4.1].
The second statement can be obtained by a simple calculation exploiting [40,
Claim 3.8].

Lemma 10. Let r, ε > 0 such that r ≥ Ω(
√

ln(1/ε)). Then the distribution
Dr mod 1 is within statistical distance O(ε) from U(T). If x ← Dr, then the
distribution of x conditioned on x mod 1 is within statistical distance O(ε) of
DZ,r.

Lemma 11 (Special case of [26, Cor. 2.8]). Let q ≥ 1 and r, ε > 0 such
that r ≥ Ω(

√

ln(1/ε)). Then the distribution DZ/q,r mod 1 is within statistical
distance O(ε) from U(Tq).
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Lemma 12 (Special case of [40, Cor. 3.10]). Let n ≥ 1,z ∈ R
n and

r, ε, α > 0 with (1/r2 + ‖z‖2/α2)−1/2 ≥ Ω(
√

ln(n/ε)). Then the distribution
of 〈Dn

Z,r,z〉 + Dα is within statistical distance O(ε) from Dβ with β = (α2 +
‖z‖2r2)1/2.

Lemma 13 (Special case of [37, Th. 3.1]). Let r, q, s, ε > 0 such that
r ≥ Ω(

√

ln(1/ε)/q). Sample x ← Ds and k ← DZ/q,r,x. Then the distribu-
tion of k is within statistical distance O(ε) from DZ/q,(r2+s2)1/2 and, conditioned
on k, the distribution of x is within statistical distance O(ε) from k 1

(1+r2/s2)1/2 +
D(r−2+s−2)−1/2 .

We also use the following result, which can be derived from Lemmas 10, 11
and 13.

Lemma 14. Let r, q, ε > 0 such that r ≥ Ω(
√

ln(1/ε)/q). Sample x ← T and
k ← DZ/q,r,x. Then k mod 1 is uniformly distributed over Tq and the distribution
of x conditioned on k is within statistical distance O(ε) from k + Dr mod 1.

Proof. Let s ≥ Ω(
√

ln(1/ε)/q). By Lemma 10, the uniform distribution over T is
within statistical distance O(ε) from the distribution Ds mod 1. By Lemma 13,
the distribution of k is within statistical distance O(ε) from DZ/q,(r2+s2)1/2 mod 1
and conditioned on k the distribution of x is within statistical distance O(ε)
from k 1

(1+r2/s2)1/2 +D(r−2+s−2)−1/2 mod 1. The proof can be completed by using
Lemma 11 and letting s tend to infinity. ��

B Converse Results for Lemmas 1, 2 and 3

Lemma 15. Let α, β ∈ (0, 1), m,n, q,B ≥ 1 and D a distribution over Z
n.

Assume that there exists an (ε1, ε2)-distinguisher for LWEm
n,q,D≤β

(D). If D
is (B, ε2/2)-bounded, and α ≤ β − Ω(

√

ln(mn/ε1)B/q), then there exists an
(Ω(ε1), Ω(ε2))-distinguisher for SILWEm

n,D≤α
(D).

Proof. The reduction architecture is similar to the one of Lemma 1. We map each
input sample (a, b) for SILWEn,D≤α

to an input samples (a′, b′) for LWEn,q,D≤β

as follows: Sample a′ ← DZn/q,r,a with r = Ω(
√

ln(mn/ε1)/q (for this, we
independently sample each coordinate a′

j ← DZ/q,r,aj
); set b′ = b.

By Lemma 14, we have that the distribution of a′ is within statistical dis-
tance O(ε1/m) from U(Tn

q ), and that conditioned on a′, the distribution of
f := a−a′ is within statistical distance O(ε1/m) from Dr. As a result, the trans-
formation maps the uniform distribution over T

n × T to a distribution within
statistical distance O(ε1/m) from the uniform distribution over Tn

q ×T. Further,
if b = 〈a, s〉+ e for some fixed s and e ← D≤α, then b′ = b = 〈a′, s〉+ 〈f , s〉+ e.
Conditioned on a′, the distribution of 〈f , s〉 + e is within statistical distance
O(ε1/m) of D≤

√
α2+‖s‖2r2 . We have ‖s‖ ≤ B with probability ≥ 1 − ε2/2 over

the randomness of s ← D. This allows to complete the proof. ��
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Lemma 16 (Adapted from [42, App. A]). Let α, β ∈ (0, 1), B ≥ 1 and
D a distribution over Z. Assume that there exists an (ε1, ε2)-distinguisher for
SILWEm

1,D≤β
(D). If D is (B, δ, ε2/2)-contained and α ≤ O(β), then there exists

an (Ω(ε1), Ω(ε2δα/
√

ln(m/ε1)))-distinguisher for ZDLWEm
D≤α

(D).

Proof. We reduce ZDLWE to SILWE. Let r = Θ(
√

ln(m/ε1)) (chosen to be
able to use Lemma 10) and δ′ = Θ(δα/

√

ln(m/ε1)). The reduction produces
a guess s′ of the ZDLWE secret s by sampling s′ ← Bδ′ · (Z ∩ [0, �1/δ′�));
then it maps any input sample y for ZDLWED≤α

to an input sample (a, b) for
SILWE1,D≤β

, as follows: Sample f ← Dr; set a = [y + f/s′]1 and b = [f ]1.
We assume that |s| ∈ [δB,B], |s′ − s| ≤ Bδ′ and that the SILWE1,D≤β

distinguisher succeeds. As in the proof of Lemma 2, this event has weight Ω(ε2δ′).
Assume that y is uniformly distributed in T. By Lemma 10, the distribution

of b is within statistical distance O(ε1/m) from uniform, independently of y.
Therefore, the distribution of the pair (a, b) is within statistical distance O(ε1/m)
from uniform.

Now, assume that y = (k + e)/s with k ← Z ∩ [0, s) and e ← D≤α. We
have a = (k + e)/s + f/s′ and b − as = [−e + f(1 − s/s′)]1. Let f ′ = fs/s′.
By Lemma 10, the distribution of a′ := (k + f ′)/s is within statistical distance
O(ε1/m) from uniform and the distribution of f ′ conditioned on a′ is within
statististical distance O(ε1/m) of DZ,r|s/s′|. The assumption of Lemma 10 holds
because r|s/s′| ≥ Ω(r) ≥ Ω(

√

ln(m/ε1)), thanks to the choices of δ′ and r.
By Lemma 12, the distribution of b − as = −e + f ′(s′/s − 1) is within sta-
tistical distance O(ε1/m) of D≤β′ with β′ =

√

α2 + r2(1 − s/s′)2, assuming
that ((s′/(rs))2 + (s′/s − 1)2/α2)−1/2 ≥ Ω(

√

ln(m/ε1)). As |s/s′| ≥ Ω(1) and
|s′/s − 1| ≤ O(δ′/δ), the definitions of r and δ′ imply that the latter condition
holds. Further, as |1 − s/s′| ≤ O(δ′/δ), we have that β′ ≤ O(α + rδ′/δ). This
completes the proof. ��
Lemma 17. Let α, β ∈ (0, 1), X,B ≥ 1 and D a distribution over Z. Assume
that there exists an (ε1, ε2)-distinguisher for ZDLWEm

D≤β
(�X/D�). If D is

(B, δ, ε2/2)-contained, X ≥ Ω(mB/ε1), α ≥ Ω(Bm/(δε1)) and β ≥ αB/X,
then there exists an (Ω(ε1), Ω(ε2))-distinguisher for AGCDm

X,�D≤α�(D).

Proof. Given an input sample x for AGCDX,�Dα�, the reduction produces an
input sample y for ZDLWED≤α

as follows: Sample f ← T; set y = (x + f)/X. If
x is uniformly distributed over Z ∩ [0,X), then so is y over T.

Now, assume that x = qp + r for some fixed p = �X/s� (with s sampled
from D), q ← Z ∩ [0,X/p) and r ← �D≤α�. We have y = (q + e + Δ)/s with
s = �X/p�, e = (r + f)s/X and Δ = εqs/X for some ε ∈ [−1/2, 1/2].

As α ≥ Ω(
√

ln(m/ε1)), the distribution of e is within statistical distance
O(ε1/m) from D≤α|s|/X . Further, we have |Δ| ≤ |s|/p ≤ O(B2/X) (assuming
that |s| ≤ B). Thanks to the assumtions on D and α, we have |Δ| ≤ O( ε1

m
α|s|
X ),

and the term e + Δ is within statistical distance O(ε1/m) from D≤α|s|/X . Note
that αB/X ≤ β.
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It now suffices to show that the distributions U(Z∩ [0, s)) and U(Z∩ [0,X/p))
are within statistical distance O(ε1/m). The proof is identical to that of Lemma 3.

��

C Orthogonal Lattice Attack on AGCD

Let us recall the orthogonal lattice attack on AGCD in [20].
Suppose we are given samples (xi = pqi + ri)1≤i≤m from AAGCD

X,�Dα�(p). Let 2ρ

be an upper bound on the magnitudes of the of ri’s. Consider the integral lattice
L generated by the rows of the following m × (m + 1) matrix:

⎡

⎢

⎢

⎢

⎣

x1 2ρ

x2 2ρ

...
. . .

xm 2ρ

⎤

⎥

⎥

⎥

⎦

Define the vector u := (1,− r1
2ρ , . . . ,− rd

2ρ ). For any element v ∈ L, we have
〈u,v〉 ≡ 0 mod p. Further, if ‖v‖1 < p, then we have |〈u,v〉| ≤ ‖v‖1 < p, since
each component of u is at most 1. That is, we have 〈u,v〉 = 0 over Z. Hence if
we find m linearly independent vectors v in L with ‖v‖1 < p, we can recover u
and hence find p from gcd(x1 − r1, . . . , xm − rm) with overwhelming probability.

The lattice L has determinant ≈ 2γ+(m−1)ρ. Assuming that all minima are
almost equal, their norms are ≈ 2γ/m+ρ(m−1)/m. In time 2λ, lattice reduc-
tion [2,44] allows to find m linearly independent lattice vectors of norms ≈
λO(m/λ) · 2ρ(m−1)/m+γ/m. The optimal choice for m is ≈ Θ(

√

γλ/ log λ), which

leads to vector norms that are ≈ 2O(
√

γ log λ/λ)+ρ. The attack is thwarted if
γ ≥ Ω( λ

log λ (η − ρ)2).
The Simultaneous Diophantine Approximation algorithm for AGCD (see [20])

has similar performance.
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