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Abstract. Context-Free Language Reachability (CFL-R) is a search
problem to identify paths in an input labelled graph that form sentences
in a given context-free language. CFL-R provides a fundamental for-
mulation for many applications, including shape analysis, data and con-
trol flow analysis, program slicing, specification-inferencing and points-to
analysis. Unfortunately, generic algorithms for CFL-R scale poorly with
large instances, leading research to focus on ad-hoc optimisations for spe-
cific applications. Hence, there is the need for scalable algorithms which
solve arbitrary CFL-R instances.

In this work, we present a generic algorithm for CFL-R with im-
proved scalability, performance and/or generality over the state-of-the-
art solvers. The algorithm adapts Datalog’s semi-näıve evaluation
strategy for eliminating redundant computations. Our solver uses the
quadtree data-structure, which reduces memory overheads, speeds up
runtime, and eliminates the restriction to normalised input grammars.
The resulting solver has up to 3.5x speed-up and 60% memory reduction
over a state-of-the-art CFL-R solver based on dynamic programming.

Keywords: program analysis, context-free language reachability, semi-
näıve evaluation, quad-trees, matrix multiplication.

1 Introduction

The Context-Free Language Reachability (CFL-R) problem has been re-
searched extensively since it was initially identified by Yannakakis [29]. In a
pleasing symmetry to our own work, he viewed the problem as a means of solv-
ing a sub-class of Datalog queries via CFL-R. Not limited to logic programming
though, CFL-R soon proved to be useful for diverse computational tasks, from
formal security analysis [8] to a wide range of program analysis problems [22].

The importance of CFL-R as a program analysis framework cannot be under-
stated.CFL-Rencompasses shapeanalysis [22], data- [23] andcontrol-flow [27], set-
constraints [15] [18], specification-inferencing [3], object-flow [31], and a plethora
of context, flow and field sensitive and insensitive alias [33] [17] [35] [25] [28] anal-
yses, to name a few. We attribute this extensive utility to the fact that such anal-
yses rely on dynamic reachability queries for program graphs, which is a common
enough problem to deserve its own complexity class [11], and is expressed naturally
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by CFL-R. The continuous stream of CFL-R research since the 90s indicates that
it will remain an important problem into the future.

Unfortunately, the promise of CFL-R cannot be reached by the current state-of-
the-art solvers. The original dynamic-programming algorithm, due to Melski and
Reps [18], has cubic time-complexity. More recently, Chaudhuri [5] improved pre-

vious work slightly with an O( n3

logn ) algorithm utilising the Four Russians’ Trick,
which offers a relatively minor speedup at the cost of a significant memory in-
crease. The complexity issue, coined the “cubic bottleneck” [11], spurs research in
restricted sub-classes of CFL-R [31] [33] which have better time complexities, but
limited applicability. To provide a general CFL-R framework for a large range of
applications, our work restricts neither the graph nor the grammar classes.

It is unlikely [21] that algorithmic improvement will be made to the current

O( n3

logn ) lower-bound. This work, therefore, focuses on improving performance in
practice, by removing redundant computations and memory inefficiencies which
occur for the current state-of-the-art solvers. The new approach has worse theo-
retical properties, but achieves better practical runtime performance by adapting
efficient machinery from a similar problem-space. Thus, in a reversal of Yan-
nakakis’ formulation, we turn to Datalog as a scaffolding for the development of
a new CFL-R algorithm. Redundant computations, which occur in the Melski-
Reps algorithm, can be eliminated by an intelligent evaluation strategy. We spe-
cialise the machinery used in Datalog engines, called semi-näıve evaluation,
to the CFL-R context. The adapted algorithm is implemented on top of an ef-
ficient quadtree binary-relation representation. Together, the quadtree-based
semi-näıve algorithm achieves more efficient memory usage, improves the prac-
tical runtime performance, especially for sparse problems, and obviates the need
for an expensive grammar-normalisation operation.

We outline our contributions as follows:

– We specialise the semi-näıve evaluation strategy from the Datalog context
to CFL-R. This leads to a new algorithm with fewer redundant calculations,
and performant behaviour for non-normalised input graphs.

– We present quadtrees as a vehicle for representing the input graph and eval-
uating the solution. Quadtrees provide further advantages to our approach,
since they give new-information-tracking for free and have efficient memory
utilisation for sparse problems.

– We experimentally verify the advantages of the new technique, showing up
to 3.5x speedup and 60% memory reduction, on a Java points-to analysis
problem.

Our paper is organised as follows: Section 2 provides background material
about the CFL-R problem, and introduces the current state-of-the-art solvers.
An explanation of our contributions is presented in Section 3, which includes our
adaptation of the semi-näıve evaluation strategy, the explanation of quadtrees,
and the reasons that normalisation is unnecessary. Section 4 presents our exper-
imental findings, specifically on the superior memory and runtime performance
of our approach. We survey the related literature in Section 5, and conclude our
findings and plans for future work in Section 6.
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Fig. 1. Running CFL-R Example, its grammar is P = {[S → aSb], [S → ε]}. Dashed
edges represent solutions to the CFL-R problem, lowercase letters are terminal symbols,
and the non-terminal start-symbol is S.

2 Context-Free Language Reachability

We use the standard terminology to define the CFL-R problem as a 6-tuple L =
(Σ,N ,P , S, V, E), of terminals Σ, non-terminals N , production rules P , a start
symbol S, vertices V , and edges E. For notational convenience we say E ⊆ V ×
V × (Σ ∪N ), such that an edge is a triple (u, v,X) ∈ E, denoting that vertex u is
connected to v via an edge labelled with the terminal or non-terminalX . We will
refer to the elements of an edge triple as its source, destination and label respec-
tively. Henceforth, let n count the number of vertices in the input problem, and k
the sum of the left and right-hand sides of all the production rules.

CFL-R is a generalisation of graph reachability and context-free recognition.
Informally, we search a graph for those paths between vertices, whose labels con-
catenate to form a sentence in the context-free language. We use the standard
notions [13] of production expansion and sentences here, so a sentence in the lan-
guage must be reachable by finitely many production-rule expansions beginning
with the start symbol. In this way the CFL-R problem can express both transi-
tive reachability (according to a grammar [S → a∗]) and context-free language
recognition (reachability in a line graph). Figure 1 illustrates a CFL-R problem.
Solutions to the problem are displayed with dashed lines, and summarise paths
in the graph which traverse some (possibly zero) “a” labelled edges, followed by
the same number of “b” edges.

We make use of two extensions to aid expressivity of the grammars. A non-
terminal symbol may be parametric (written Af ), which is simply a stand-in for
the distinct non-terminal A f to make the grammar’s presentation concise. Also,
for notational convenience, symbols in the right-hand-side of the production may
indicate the transposed relation, using overline. In a CFL-R instance, this refers
to reverse edges, which could be tracked by their own productions [22], but this
would lengthen the grammar. The rule [A → BCD ] matches paths which travel
backwards along the C edge.
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Algorithm 1. Generalised worklist-based CFL-R algorithm

1: procedure Worklist(L = (Σ,N ,P , S, V,E))
2: for all v ∈ V, [X → ε] ∈ P do
3: add (v, v,X) to E
4: end for
5: W ← E
6: while W �= ∅ do
7: remove (u, v, Y ) from W
8: for all [Z → X0 . . .XaYXb . . .XL] ∈ P do
9: B ← {u}
10: for i = a to 0 do
11: B ← {n : (n, u′, Xi) ∈ E, u′ ∈ B}
12: end for
13: F ← {v}
14: for j = b to L do
15: F ← {n : (v′, n, Xj) ∈ E, v′ ∈ F}
16: end for
17: W ← W ∪ ({(u′, v′, Z) : u′ ∈ B, v′ ∈ F} \E)
18: E ← E ∪W
19: end for
20: end while
21: end procedure

The state-of-the-art scalable algorithm for CFL-R is due to Melski and Reps
[18]. The reader should note that Chaudhuri has introduced an improvement [5]
using a fast-set representation. However, the fast-set representation requires at
least Θ(kn2) memory, such that even the smallest benchmark used in our exper-
imental evaluation (cf. Section 4) would require over 138GB. The difficulty of
using Chaudhuri’s approach for Java benchmarks was similarly observed in [33].
A modified version of the Melski-Reps algorithm is shown in Algorithm 1. The
O(kn2)-sized worklist must, for each edge, check O(k) production rules in an at-
tempt to find L-length paths containing the dequeued edge. Extending the path
in general requires findingO(kn2) edges that join temporaryB or F nodes to new
nodes, resulting in a worst-case runtime complexity of O(Lk3n4). Typically, the
worklist algorithm requires the production rules to be normalised to a binary
normal-form [16], which creates new non-terminals that break up productions
with more than two symbols on their right-hand-side. Our modification to the
algorithm allows it to work (albeit inefficiently) with non-normalised grammars.
Importantly, though, the complexity becomes the expected O(k3n3) [18] when
the grammar is normalised, because the path is only expanded once, from a sin-
gle node, requiring O(kn) work instead of O(Lkn2). The cubic-time required by
this algorithm is well understood in the literature to be the bottleneck for many
program analyses [11].
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3 Novel CFL-R Algorithm

3.1 Semi-näıve Evaluation

The CFL-R algorithm due to Melski and Reps [18], as shown in Algorithm 1,
introduces inefficiencies. Consider Figure 1: the Melski-Reps algorithm would
discover the (2, 5, S) edge up to nine times, since there are three potential paths
(〈2, 1, 5〉, 〈2, 1, 2, 4, 5〉 and 〈2, 1, 2, 1, 3, 4, 5〉), and each one can be expanded from
either the “a”, “b” or “S” edge. The actual number of times it is discovered
depends on which order edges are dequeued from the worklist, so the evaluation
is also chaotic. This issue has been solved in the Datalog context before by a
bottom-up strategy known as semi-näıve evaluation [2].

Datalog is a declarative programming model which derives information from
base facts according to expansion rules. Facts are written A(1, 5), meaning that
the relation A contains a pairing between 1 and 5. A rule composes relations, so
that S(u, x) :- A(u, v), S(v, w), B(w, x) implies new S relations can be derived by
stringing A, S, and B relations together. The example 1 could be translated to a
Datalog program in this fashion.

When Datalog begins bottom-up evaluation, the relations are empty. Facts
are inserted into the relations, and the bodies of the rules are evaluated to
obtain new knowledge. Since Datalog relations are bounded, a fixed-point will
be reached after a finite number of iterations, which constitutes the solution. A
näıve implementation of the bottom-up strategy, would iterate over the bodies
of clauses several times with the same knowledge over and over, rediscovering
already-known relations many times. Yet worse, if a relation is already stable
in an iteration (i.e. more iterations do not obtain more knowledge), the relation
is re-computed in all subsequent iterations. To overcome the problem of re-
computation, the semi-näıve evaluation was introduced.

The semi-näıve evaluation strategy is two-fold. Firstly, it uses the new in-
formation discovered in the previous iteration (or, initially, the base facts) to
derive new information for the current iteration, called the Δ relation. Secondly,
it only derives new information for relations whose dependant relations (those
appearing in the rule body) have stabilised, or reflexive-transitively depend on
it (such as recursive rules), until that relation stabilises. For a more in-depth
presentation of semi-näıve evaluation, refer to [2].

Yannakakis, in his seminal work [29], introduced the fundamental relation-
ship between Datalog and CFL-R, i.e., clauses in chain-rule format become
productions:

[X → Y1Y2 ...Yk ] ⇔ X(a, c) :- Y1(a, b1), Y2(b1, b2), ..., Yk(bk−1, c)

and facts X(u, v) become labelled edges (u, v,X) ∈ E in the CFL-R input graph.
In this way, labels in the CFL-R problem and binary relations in the Data-
log formulation are conceptually identical. Yannakakis’ original intention was
to convert sub-classes of Datalog to CFL-R, obtaining an efficient solving vehi-
cle. For our new algorithm, we use the semi-näıve evaluation as a scaffolding,
and translate CFL-R instances to Datalog programs in the reverse direction of
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Yannakakis’ reduction. We specialise Datalog’s semi-näıve evaluation to obtain
a new algorithm for CFL-R, which is efficient by virtue of avoiding redundant
computations.

Firstly, the evaluation strategy must only use recently discovered information
to determine new information. We record a label’s new information in a Δ rela-
tion, which is updated during the evaluation of production rules, and zeroed after
it has been used, avoiding redundancy. The semi-näıve strategy also specifies that
we should not compose label relations if the labels on which they depend have not
stabilised. The correct order for these micro-fixed-point calculations is deduced
from the dependency graph G = ((Σ ∪ N ), {(X,Y ) : [X → ...Y ...] ∈ P}),
whose nodes are labels and whose edges express dependencies between two la-
bels. The left-hand-side label in a production depends on all the labels on the
right. In the case the dependency is cyclic, we simply iteratively evaluate the
production rules until all inter-dependant relations reach a fixed-point.

The semi-näıve-based algorithm is presented in Algorithm 2. This algorithm
assumes a binary-relation representation, where the label Y has a relational
representation Y = {(a, b) : (a, b, Y ) ∈ E}. Instead of using relational alge-
bra operations [2] for evaluating the body of a CFL-R clause, we observe that
the CFL-R clauses resemble cascaded equi-joins, which are further reduced to
relational compositions, i.e.,

{(a, c) : (a, b1) ∈ Y1 ∧ (b1, b2) ∈ Y2 ∧ . . . ∧ (bk−1, c) ∈ Yk} =

{(a, c) : Y1(a, b1) �� Y2(b1, b2) �� . . . �� Yk(bk−1, c)} =

Y1 ◦Y2 ◦ ... ◦Yk

where P ◦Q = {(r, t) : (r, s) ∈ P, (s, t) ∈ Q}.

3.2 Quadtrees

The Datalog formulation from Section 3.1 performs relational composition, set-
difference and union operations (Algorithm 2, Line 14). We therefore require
a data-structure with low space and runtime overheads for these operations.
In this work the quadtree representation of Boolean matrices is chosen as a
suitable data structure. Quadtrees have better time-complexity operations than,
for example, adjacency lists [18], and smaller memory utilisation than a dense-
matrix representation [5].

Initially, we examine Boolean matrices as a vehicle for relational composition.
A binary relation A can be represented as a Boolean matrix Â whose elements
are defined by:

Âij =

{
1, if (i, j) ∈ A

0, otherwise

Assuming a one-to-one mapping between the domains of the relation and the
indices of the matrix, the well-known identity Â ◦B = Â · B̂ can be estab-
lished, permitting the computation of CFL-R using matrix calculus. Used in
this way, Boolean-matrix relational-composition would increase the complexity
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Algorithm 2. Semi-näıve CFL-R algorithm using quadtrees(c.f. Section 3.2)

1: procedure Quadtree(L)
2: 〈C1, . . . , Cq〉 ← reverse topological strongly connected comps(P)
3: for all [X → ε] ∈ P do
4: X ← X ∪ {(v, v) : v ∈ V }
5: end for
6: for all X ∈ Σ ∪N do
7: ΔX ← X � All Δs initialised to the problem state.
8: end for
9: for Ci = C1 to Cq do
10: while ∃Z ∈ Ci s.t. |ΔZ| > 0 do
11: Temp ← ΔZ
12: ΔZ ← 0
13: for all [Y → X0 , . . . ,Z , . . . ,XL] ∈ P do
14: ΔY ← ΔY ∪ (X0 ◦ . . . ◦Temp ◦ . . . ◦XL) \Y
15: Y ← Y ∪ΔY
16: end for
17: end while
18: end for
19: end procedure

of the solver from O(k3n3) to O(k3n2BMM (n)), where the time complexity
of Boolean-Matrix-Multiplication, BMM (n), is roughly O(n2.3) [7]. This time
bound is derived from Algorithm 2, which loops Line 10 at most kn2 times, and
propagates the chosen delta to at most k non-terminals each loop, requiring k
matrix multiplications for each propagation.

To minimise the overhead imposed by the matrix-formulation we turn to a
quadtree representation. Quadtrees are a well-known matrix representation in
the field of computer graphics, and they have some useful theoretical properties.
Figure 2 shows a quadtree and the Boolean matrix it represents. For the CFL-R
application, we are interested in the time requirements for set-difference and
multiplication operations, as well as the memory requirements of quadtrees. Our

+ + + + + + +

⎛
⎜⎜⎝
0 1 0 0
0 0 0 0
1 0 1 1
1 0 1 1

⎞
⎟⎟⎠

Fig. 2. Quadtree representation of a 4x4 Boolean matrix
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intuition here relies on the fact that quadtrees perform very well for sparse
matrices, let m be the number of set bits in the matrix, i.e. m < n2.

Lemma 1. The quadtree requires O(min(n2,m logn)) space to store.

The absolute size of the quadtree is bounded above by O(n2). Consider the 1-
matrix with side-length n, it is clearly maximal, as all nodes have the maximum
number of children. Its quadtree has n2 leaves, each representing a single 1
element, with each layer having 1

4 as many nodes as the layer below it. The total
number of nodes is at most:

∞∑
f=0

n2 1

4f
=

n2

1− 1
4

=
4n2

3

For a more practical bound, we say that m bits are set. In this case, each set
bit requires at most logn nodes joining it to the root of the tree, thus no more
than m logn nodes are needed for m set bits. This count is bounded above by
the known n2 limit, requiring min(n2,m logn) nodes.

Corollary 1. The time complexity of the elementary operations: union, inter-
section, set-difference and deep-copy, is also O(min(n2,m logn)).

Multiplication of two Boolean matrices is defined intuitively for quadtrees:(
A0 A1

A2 A3

)
·
(
B0 B1

B2 B3

)
=

(
A0B0 ∪ A1B2 A0B1 ∪ A1B3

A2B0 ∪ A3B2 A2B1 ∪ A3B3

)
(1)

Unfortunately, it is difficult to quantify the expected runtime of the recursive
algorithm derived from that definition. In this paper we prove an upper-bound
on the runtime, and provide an intuition as to the expected runtime for fixed m.

Lemma 2. Multiplication of two quadtrees requires O(n3) time.

Via application of the master theorem for recurrence relations. The recursive
algorithm for Equation 1 requires eight sub-multiplications and four sub-unions,
and recurses to a depth of log2 n. We know the unions have O(n2) complexity,
from Corollary 1, hence the recurrence equation of this system is:

Ix = 8Ix−1 + 4x2 + 1 ⇒ O(8log2 n) = O(n3)

Note that though this worst-case complexity does occur in practice (for two
complete matrices), the time required can vary substantially. Furthermore, the
computational load for matrices with m set-bits is difficult to reason about.
Adverse arrangements of inputs with m = O(n) can incur output matrices with
all or none of their bits set.

An intuition on the average-case complexity for fixed m arises by examining
the case of balanced quadtrees. We call this a J-tree (jellyfish), because its nodes
have maximal children towards the root (the bell) and at most one child below
the bell (the tentacles).
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· · ·
· · ·

· · · · · · · · ·

log4 m

log2 n− log4 m

m

Fig. 3. A J-tree, showing the distinction between bell (upper semi-circle) and tentacles.
Nodes in the bell have maximal branching factor, whilst tentacle nodes have at most
one child. The height of a quadtree is always log2 n, so the height of the tentacle section
is that height less the log4 m-high bell.

Lemma 3. Multiplication of two J-trees requires O(m
3
2 +m logn) time.

The structure of the J-tree allows us to break up the multiplication into the
bell and tentacle components according to the depth of the recursion. We see
that if the recursion depth is above log4 m then the nodes of both trees typically
have 4 children, which imposes the most computational work. Conversely, if we
are below a recursion depth of log4 m then the nodes have 1 child, and very little
computational work is required. To reason about the necessary computations we
will analyse work done above the log4 m cutoff, the bell, separately from the
tentacles below.

The bell’s computation is slightly different to that from Lemma 2. Instead

the recurrence is to a depth of log4 m, which yields O(8log2 m
1
2 ) = O(m

3
2 ). This

is a true upper bound for J-trees, as nodes with fewer than 4 children impose
strictly less work.

The tentacle nodes all have 1 child, so atmost oneof the eight sub-multiplications
are necessary and none of the unions. There arem tentacles on each J-tree, since
there arem set bits, thus the recursion’s breadth is alsom. Unlike for the bell, the
two single-child nodes of the input will incur atmost one sub-multiplication and no
sub-unions, because each node only has one child. Each tentacle is log2n− log4m
nodes long,with one subroutine-call per node, hence in total them tentacles require
m logn subroutine calls or fewer. Each call simply checkswhich of the sub-matrices
it needs to recurse to and makes the call in constant time. Hence the total work
required is the O(m3/2) work for the bell, andO(m) lots ofO(log n) work for each
tentacle, totallingO(m3/2 +m logn).

This section has shown the favourable properties of quadtrees, which makes
them useful to our adapted semi-näıve Algorithm 2. Quadtree multiplication is a
means of performing the relational composition operation ◦, and had a favourable
O(min(m logn, n2)) memory footprint. The typical quadtree operations have
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favourable time-complexities in the worst and average case, and we intuit that
multiplication itself takes O(m3/2 + m logn) time, making it very efficient for
sparse problems.

3.3 Notes on Normalisation

Conventional algorithms for CFL-R require the input grammar to be normalised,
either to Chomsky normal-form, or the less restrictive binary normal-form. Nor-
malisation increases the size of the grammar, typified by the Chomsky require-
ment that right-hand sides contain exactly two non-terminals, causing the num-
ber of non-terminals to double and the number of rules to expand quadratically.

From a complexity-theoretic standpoint, normalisation is acceptable, since it
is computationally cheap, and the size of the grammar is often not a compo-
nent of the algorithm’s time complexity. In practice, liberal expansion of the
grammar incurs large overhead in the memory requirements of the algorithm.
Chaudhuri’s sparse-set method [5] typifies this, as it requires Θ(kn2) memory,
requiring terabytes of RAM for typically sized problems.

In this work, we choose to remove the requirement that grammars be pre-
normalised. As Section 2 showed, the time complexity of Algorithm 1 increases
without normalisation. The Melski-Reps formulation’s inner loop can no longer
rely on the fixed-form of grammar rules. Searching the graph for paths whose
labels exactly match the right-hand-side of a production can näıvely require
k(kn2) steps, making the complexity O(k4n4), clearly worse than O(k3n3) when
the grammar is normalised. The adapted semi-näıve method, Algorithm 2, com-
poses binary relations via matrix multiplication. Its presentation already allows
for arbitrarily long production rules, and therefore retains the O(k3n2BMM(n))
running time.

From a theoretical standpoint, normalising the grammar makes no differ-
ence to our quadtree-based-semi-näıve formulation. Shortening the length of the
matrix multiplication chains directly increases the number of such chains that
must be evaluated. Indeed, normalisation may even be considered an unnecessary
overhead, since despite having the same computational complexity, a normalised
grammar imposes excess memory requirements by retaining the edge and Δ in-
formation for intermediate nonterminals.

4 Experimental Results

For the experimental evaluation of our new CFL-R algorithm we use a case study
of Java based points-to analysis. We evaluate our algorithm in comparison to the
Melski-Reps worklist algorithm [18]. Specifically we are interested in the execu-
tion time, memory utilisation, and sensitivity towards grammar normalisation
for both approaches.

The competing implementations will be referred to as the worklist and quadtree
methods, and refer to Algorithms 1 and 2 (using quadtrees) respectively. Both al-
gorithms were implemented in C++ making partial use of the STL library. The
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source code of both algorithms is available online [12]. Our experimental evalua-
tion is performed on a 32 core Intel Xeon E5-2450 at 2.1GHz, with 128GB ram.

Case Study. Our CFL-R case study is a points-to analysis expressed in CFL-
R for Java. As a benchmark suite we choose the Dacapo benchmarks Version
2006-10. For extracting the labelled input graphs from the Java source code in
the Dacapo benchmarks, we have used the DOOP extractor [4]. The extractor
produces a set of relations representing input programs in relational format. The
DOOP relations are sufficient to generate a labelled input graph for a context-
insensitive, flow-insensitive, and field-sensitive points-to analysis, with minimal
textual preprocessing. A vertex in the input problem is either a program variable
or an object creation site (i.e. representing an object to the program analysis).
The input edges are labelled with the following terminals:

– New: relating program variables to their object creation sites
– Assign: relating a source variable with a destination variable of an assign-

ment statement
– PutFieldf , GetFieldf : for each field f , relating base variables of field

loads/stores to the program variables that load/store information from/into
the object of the base variable

– GetInstanceField, PutInstanceField: self-edges identifying base vari-
ables of field loads/stores

– Castt: relating program variables to the variables they are t-cast from
– IsHeapt: self-edge identifying all polymorphic types t of an object

The Java points-to analysis uses the grammar shown in Figure 4. The result of
the CFL-R algorithm produces output edges labelled with the following non-
terminals:

– VPT: relating program variables to heap objects that they may point to
– Alias: relating two program variables if they may reference the same heap

object
– DAssign: relating program variables which are assigned indirectly by field

store and load
– GetInstanceVPT, PutInstanceVPT: relating the heap objects to the

subset of variables which point to them that are derived by field load/stores

The CFL-R grammar is an extension of the grammar presented by Sridharan
et al. in [25]. Field sensitivity is ensured by the DAssign production, which is
equivalent to

[flowsTo → flowsTo putFieldf alias getFieldf ]

from the Sridharan et al. formulation. We have extended the grammar to capture
a type-safe casting with rule [VPT → Castt VPT IsHeapt ]. Types are encoded
in the input graph by a self edge (h, h, IsHeapt) for all types t which the h
object can take. For performance reason, we compute Alias relation only for
base variables of field loads/stores.



204 N. Hollingum and B. Scholz

[Alias → GetInstanceVPT PutInstanceVPT ]

[DAssign → PutFieldf Alias GetFieldf ] for all fields f

[GetInstanceVPT → GetInstanceField VPT ]

[PutInstanceVPT → PutInstanceField VPT ]

[VPT → New ]

[VPT → Assign VPT ]

[VPT → DAssign VPT ]

[VPT → Castt VPT IsHeapt ] for all types t

Fig. 4. The parameterised grammar for field-sensitive context-insensitive Java points-
to analysis used in our experiments. We adapt the grammar by Sridharan et al.
from [25]. The parameters f and t take arbitrary values depending on the fields and
types in the input problem.

Problem Sizes. Table 1 shows the relationship between the problem size and
the intermediate and output relation sizes. The n, m(avg) and m(max) columns
respectively show: the number of vertices in the input graph, the number of
edges (averaged across all relations) after running the CFL-R algorithm, and
the maximum number of edges of all labels. Unparameterised nonterminals are
counted as-is, but parameterised nonterminals are counted together, so that the
Load relation is the sum of the sizes of all Loadfield sub-relations. We also chart
the associated sizes of the quadtrees (total number of nodes in the tree) in a
similar fashion. As we have shown in Section 3.2, the quadtree’s size is bounded
by O(m logn) nodes, yet the actual sizes are significantly better, the Norm.
column shows the normalised fraction QTmax/(mmax logn), and improves our
intuition on the quadtrees practical size.

The Labels and Labels-nf columns of Table 1 show the number (input and
normalised, respectively) of labels in the problem. They show that normalisation
imposes a 35%-43% increase in the number of labels. Here we acknowledge that
this is an artefact of the grammar we are using. Nevertheless, the fact that our
method obviates the need for normalisation still proves useful, as it will be no
worse, and definitely can improve memory efficiency.

The sparse nature of the problem is difficult to see from the tables, and is
better shown in Figure 5. Here we show the logarithmic index of m in terms of
n, knowing that the theoretical maximum is two (i.e. an edge between every pair
of nodes). In practice (at least for points-to) m is on average less than n1, and
even in the worst cases is only n1.14 in the jython benchmark. This validates our
intuition from Section 3.2, that CFL-R problems are highly sparse. We observe
a pattern of increasing log-indices according to the size of the problem, which we
attribute to over-approximation in the analysis as the potential for more edges
increases.
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Table 1. Statistical information for the Dacapo benchmarks (ordered by problem
size n). Includes: the number of Labels (|Σ ∪ N|) for the input and normalised (-nf)
grammar, the problem size (n) and the size of the average and maximum output set-
bits (m) and quadtree node-count (QT). Norm shows the ratio between the expected
quadtree size O(m log n) and the maximum’s actual size.

Benchmark Labels Labels-nf n m (avg) m (max) QT (avg) QT (max) Norm.

luindex 1653 2301 22699 3413.62 12993 16391 60986 0.32
pmd 1755 2399 32295 12833.23 54660 41645.92 143505 0.18
antlr 1095 1520 32927 5916.85 21891 25573.31 93252 0.28
eclipse 2257 3172 33912 4748.08 21313 23861.54 99813 0.31
bloat 1900 2650 40989 9068.77 57829 35733.54 177415 0.2
xalan 2449 3436 46780 8606.54 42461 38492.15 155194 0.24
chart 2914 4166 49893 8717.85 39753 40075.77 160375 0.26
fop 3495 4742 53851 8591.54 38802 41334.15 160827 0.26

hsqldb 2817 3974 63281 24412.38 200762 86334.77 592910 0.19
jython 3351 4588 78639 40349.77 383917 135013.23 1102813 0.18

Table 2. Absolute runtime (s) of points-to analysis for the Dacapo benchmarks by
Worklist and Quadtree implementations of the solver with (-nf) and without grammar
normalisation

Benchmark Worklist Worklist-nf Quadtree Quadtree-nf

luindex 2.518 2.05 0.726 0.862
pmd 25.348 18.462 8.806 8.436
antlr 3.218 2.614 0.968 1.038
eclipse 7.326 5 1.794 2.042
bloat 12.61 9.548 2.724 2.99
xalan 14.81 11.554 3.9 4.296
chart 17.392 13.782 4.266 4.602
fop 13.828 10.756 3.318 3.812

hsqldb 47.282 36.132 12.218 12.636
jython 96.688 73.264 24.72 24.208

Runtime. We first compare the execution time for the standard worklist algo-
rithm. Table 2 records the absolute runtime (in seconds) of the Dacapo bench-
marks for the Worklist and Quadtree implementations, with (-nf) and without
grammar-normalisation.

Since we are interested in the performance and scaling behaviour of the quadtree
implementation, Figure 6 plots the relative speedup of those implementations nor-
malised to Worklist-nf. Observe that quadtrees universally outperform the work-
list, with an average 2.93x speedup. The largest speedup occurs for the bloat

benchmark, at 3.51x, and the smallest is pmd, with 2.10x. It is interesting that the
extreme speedups/slowdowns do not occur with the largest and smallest bench-
marks, jython and luindex respectively, which show 2.96x and 2.82x speedups.
This is strong evidence that, although the worst-case complexity of CFL-R via
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Fig. 5. Graphical plot for sparsity (logn m) from Table 1, showing that the average
and maximum set-bits (m) range from n0.8 to n1.2 for all benchmarks

quadtrees is much worse, in practice it scales in the same manner as the worklist
algorithm.

In support of our choice not to normalise the grammar, Figure 6 shows the
effects of normalisation. We see the expected speed-increase for the worklist al-
gorithm (which has historically been presented exclusively for normalised gram-
mars). We also see virtually no change in execution times for the quadtree im-
plementation, which intrinsically performs the work of the normalised grammar
via intermediate matrices.

Memory Consumption. The peak memory consumption of the Worklist and
Quadtree implementations in binary normal-form (-nf) and as-is, is recorded in
Table 3. To assist understanding, relative memory usage against the normalised
Worklist-nf implementation is plotted in Figure 7. We observe clear trends in
the memory usage both between the implementations, and according to the
normalisation of the grammar.

Firstly, the quadtree implementation clearly has a smaller memory footprint.
Comparing the more favourable normalised worklist results against the non-
normalised quadtree, we see universally less usage of memory, averaging to 0.39x.
The greatest reduction occurs for hsqldb, one of the larger benchmarks, and the
least for antlr, a smaller one. Furthermore, the smallest and largest benchmarks
(luindex and jython) have 0.48x and 0.43x memory consumption respectively.
Our results indicate that memory reduction does not seem to scale with problem
size, but is more likely dependant on problem-specific information (such as the
order of information).

We are also interested in how normalisation impacts memory usage. The work-
list algorithm clearly benefits from normalisation in the expected manner, where
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Fig. 6. Relative speedup of the Worklist, Quadtree and normalised Quadtree-nf against
the normalised Worklist-nf implementation. Larger values show faster runtimes

Table 3. Absolute memory usage (MB) of points-to analysis for the Dacapo bench-
marks by Worklist and Quadtree implementations of the solver with (-nf) and without
grammar normalisation

Benchmark Worklist Worklist-nf Quadtree Quadtree-nf

luindex 149.86 72.5 34.87 35.13
pmd 347.88 163.29 53.73 89.31
antlr 149.43 80.07 51.46 51.71
eclipse 401.09 151.27 53.04 53.3
bloat 375.48 164.59 61.46 76.93
xalan 513.27 214.72 73.7 77.05
chart 568.72 239.61 79.84 81.65
fop 614.94 255.34 82.3 84.39

hsqldb 853.08 433.1 109.55 164.72
jython 868.43 415.32 177.75 277.91

memory consumption drops on average 0.46x. This result is not particularly
interesting, since the worklist algorithm is not the focus of our research, however
the reader should note that this memory drop must be attributed to the large
intermediate-result set that is computed for longer rule chains. In comparison,
we see a slight increase in memory consumption when normalising the grammar
for the quadtree algorithm. Unlike other metrics, the experiments do show that
the larger benchmarks jython and hsqldb show the largest increases, more than
1.5x. This result is to be expected, and motivates the ideas of Section 3.3, which
is that maintaining intermediate results permanently becomes problematic for
particularly large problems.
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Fig. 7. Relative memory usage of the Worklist, Quadtree and normalised Quadtree-
nf against the normalised Worklist-nf implementation. Smaller values show a reduced
memory footprint

5 Related Work

Recognition of context free languages is one of the oldest formalisms in theoreti-
cal computer science. The first efficient algorithms for recognition were proposed
independently by Cocke [6], Younger [30] and Kasami [14], and subsequently im-
proved by Valiant [26] and generalised by Okhotin [20].

The reachability variant of CFL was formalised by Yannakakis [29] as a data-
flow evaluation strategy. Our work relies on reversing this encoding, so that
we can apply data-flow techniques to a new context. It was later, through
Reps [22] [23] [18] [24] [21], that the problem was popularised as as a vehicle
for solving a range of computational problems.

In particular, CFL-R has been identified as a viable solver for many analyses.
Notable ones are: shape analysis [22], constant propagation [24], control-flow
analysis [27], set-constraint solving [18] [15], but particularly points-to anal-
ysis. There is much demand in the literature for fast and scalable points-to
analysis [10] [19]. CFL reachability is valuable in this context because it pro-
vides a queryable “as-needed” framework, useful in incremental [17] or demand-
driven [35] [25] [28] contexts. For this reason, our work uses the points-to bench-
marks as a case-study for viable CFL-R algorithms.

Another line of research focuses on improving CFL-R algorithms. Very fast
algorithms have been developed for restricted cases, particularly Dyck-grammars
and bi-directed graphs:

P = {[S → ε], [S → SS ], [S → Af SÂf ]}
∀u, v ∈ V ∧ Af , Âf ∈ Σ : (u, v, Af ) ∈ E ⇔ (v, u, Âf ) ∈ E

Here f is a parameter which can take any value according to the input being
solved. Yuan and Eugster first formulated an efficient Dyck-reachability algorithm
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for bi-directed trees in [31]. Their work was later improved and extended by Zhang
et al. in [33], which is able to solve bi-directed graphs in O(n+m logm) and trees
inO(n). In that work, the authors noticed that when a graph is bi-directed, Dyck-
reachability forms an equivalence relation, whose equal members can be collapsed
to representative nodes. Successively stratifying the intra-reachable sets in this
way grants the significantly reduced time complexities which they reported. Un-
surprisingly, there are few problem contexts in which the graph is naturally bi-
directed. Introducing reverse edges for every parenthesis label leads the analysis
to report an over-approximation of the actual reachable sets, which can still be
useful depending on the problem context. The work in [33] is therefore of greatest
use as a fast pre-processing step for a more precise and expensive analysis.

Unfortunately, results by Heintze and McAllester [11] and Reps [21] imply
that the Dyck results are unlikely to generalise. Indeed, only Chaudhuri [5], using
the Four Russians’ Trick, has been able to improve on the long-standing cubic-
time algorithm. As was stated in Section 2, we are unable to use Chaudhuri’s
advancement, since the memory required is excessive, though work by Zhang et
al. has found a means of adapting it for C points-to analysis whilst retaining
subcubic runtime [34].

Matrix multiplication has been used in the CFL context since Valiant [26].
Much of the theory surrounding matrices is concerned with efficient computa-
tions and representations of matrices in the natural domain, most famously the
Coppersmith and Winograd algorithm for fast matrix-matrix multiplication [7].
For our CFL-R context, we are concerned with Boolean matrices, which are
typically sparse. Long-standing algorithms for sparse matrix multiplication [9]
have been improved recently by Yuster and Zwick [32]. This paper favours the
quadtree representation, which was shown to be efficient both for memory and
computations by Abdali and Wise in [1].

6 Conclusions

In this paper we present a radically different approach to the evaluation of CFL-R
problems. Our work draws from well-researched ideas in the Datalog community,
and applies them to a new context. We have successfully adapted the semi-näıve
evaluation strategy of Datalog by using the memory-efficient quadtree represen-
tation both as a means of trackingΔ-information and as a relational-composition
vehicle. The algorithm we develop has theoretical advantages over the traditional
Melski-Reps approach [18], by eliminating many redundant calculations, and
Chaudhuri’s subcubic approach [5], by making efficient use of memory. Our ad-
vances have been implemented as a CFL-R solver, and compared experimentally
with the current scalable state-of-the-art solver. The experimentation shows that
our CFL-R algorithm brings up to 3.5x speedup and 60% memory reduction. Go-
ing forward, we intend to fully understand the average and worst-case runtime
of quadtree-based semi-naive evaluation, to characterise the nature of real-world
CFL-R problems, and to assess the viability of alternate data structures within
the semi-näıve framework.
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