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Abstract. Feistel constructions have been shown to be indifferentiable
from random permutations at STOC 2011. Whereas how to properly
mix the keys into an un-keyed Feistel construction without appealing to
domain separation technique to obtain a block cipher which is provably
secure against known-key and chosen-key attacks (or to obtain an ideal
cipher) remains an open problem. We study this, particularly the basic
structure of NSA’s SIMON family of block ciphers. SIMON family takes a
construction which has the subkey xored into a halve of the state at each
round. More clearly, at the i-th round, the state is updated according to

(xi, xi−1) �→ (xi−1 ⊕ Fi(xi)⊕ ki, xi)

For such key-alternating Feistel ciphers, we show that 21 rounds are suf-
ficient to achieve indifferentiability from ideal ciphers with 2n-bit blocks
and n-bit keys, assuming the n-to-n-bit round functions F1, . . . , F21 to
be random and public and an identical user-provided n-bit key to be
applied at each round. This gives an answer to the question mentioned
before, which is the first to our knowledge.

Keywords: Block cipher, ideal cipher, indifferentiability, key-alternating
cipher, Feistel cipher.

1 Introduction

Block Ciphers, and the Security Notions. Block ciphers are among the
most important primitives in cryptography. For a block cipher, the standard
security notion is the indistinguishability from a random permutation when the
key is fixed to some unknown random values. Such pseudorandomness captures
the security in traditional single secret key setting. However, block ciphers find
numerous and essential uses beyond encryption. For instance, block ciphers have
been used to build hash functions and message authentication codes. These ap-
plications require the security in the open key model, where the adversary knows
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or even chooses the keys. To assess such stronger-than-pseudorandomness secu-
rity, the indifferentiability framework has to be employed. As a generalization
of the indistinguishability notion, the indifferentiability framework provides a
formal way to assess the security of idealized constructions of block ciphers and
hash functions. It can be used to evaluate the “closeness” of a block cipher
construction to an ideal cipher1. Despite the uninstantiability of idealized mod-
els [12,23,9], such indifferentiability proofs are widely believed to be able to show
the nonexistence of generic attacks which do not exploit the inner details of the
implementations of the underlying building blocks.

Feistel Constructions. Existing block cipher designs can be roughly split into
two families, namely Feistel-based ciphers and substitution-permutation net-
works (SPNs). Starting from the seminal Luby-Rackoff paper [20], Feistel con-
structions have been extensively studied. Most of the provable security works fall
in the Luby-Rackoff framework [20], in which the round functions are idealized
as being uniformly random (and secret). Such works covered indistinguishabil-
ity/provable security in the single secret key model (e.g. [24,22,25]), provable
security in the open key model (Mandal et al. [21] and Andreeva et al. [3]), and
provable security under related-key attacks (Manuel et al. [5]). A recent series of
works studied the indifferentiability from random permutations of Luby-Rackoff
construction, including the works of Coron et al. [14], Seurin [27], and Holen-
stein et al. [17], and the number of rounds required was finally fixed to 14 by
Holenstein et al. [17].

Our Problem: How to Mix the Key into Feistel. In this paper, we con-
sider the problem that how to mix the key material into a Feistel construction
by a popular approach to obtain a block cipher indifferentiable from an ideal
cipher. Since an un-keyed Feistel construction is indifferentiable from a random
permutation, a Feistel-based cipher indifferentiable from an ideal cipher can be
trivially obtained through domain separation. However, such a result tells us
nothing about how to concretely mix the keys into the state – in fact, none of
the works mentioned before addressed this problem. To our knowledge, domain
separation technique is seldom used in existing block cipher designs. Existing
designs usually inserts keys via efficient group operations, e.g. xor and modular
addition; therefore, this problem has practical meanings.

A natural candidate solution to this problem is the construction called key-
alternating Feistel cipher (KAF for short) analyzed by Lampe et al. [19]. The
KAF cipher they considered has the round keys xored before each round function,
as depicted in Fig. 1 (left). Lampe et al. studied the indistinguishability of KAF
in a setting where the underlying round functions are random and public (in
contrast to the classical Luby-Rackoff setting) and the keys are fixed and secret;
this is also the only provable security work on KAF.

However, due to the well known complementation property, there exist ob-
stacles when trying to achieve an indifferentiability proof for KAF (detailed

1 See Sect. 2 for the formal definitions of indifferentiability and the ideal cipher model.
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discussions are deferred to the full version [16]). This motivates us to turn to
another candidate construction, which has the round key xored into the halve of
the state after the round functions. Due to the similarity between the two con-
structions, we denote the latter construction by KAF ∗ to follow the convention
of Lampe et al. while making a distinction. For KAF ∗, the 2n-bit intermediate
state si is split to two halves, i.e. si = (xi+1, xi) where i ∈ {0, 1, . . . , r}, and at
the i-th round, the state value is updated according to

(xi, xi−1) �→ (xi−1 ⊕ Fi(xi)⊕ ki, xi),

as depicted in Fig. 1 (right). KAF ∗ can be seen as the basic structure of NSA’s
SIMON family of block ciphers.

Clearly, the proof for KAF ∗ with no cryptographically strong assumption
about the key derivation functions is more attractive, since such key deriva-
tions are more relevant to practice than random oracle modeled ones. Whereas
KAF ∗ with independent round keys cannot resist related-key attacks (the case
is similar to Even-Mansour ciphers). Hence we consider KAF ∗ with an identical
user-provided n-bit key applied at each round, and call such ciphers single-key
KAF ∗ (SKAF ∗ for short). The 21-round SKAF ∗ is depicted in Fig. 2. With
the discussions above, we focus on the question that whether it is possible for
SKAF ∗ with sufficiently many rounds to be indifferentiable from ideal ciphers.

Our Results. We show 21-round SKAF ∗ to be indifferentiable from ideal ci-
phers, thus for the first time giving a solution to the problem how to mix keys
into Feistel in the open-key model.

Theorem. The 21-round key-alternating Feistel cipher SKAF ∗
21 with all round

functions F = (F1, . . . , F21) being 21 independent n-to-n-bit random functions
and an identical (user-provided) n-bit key k applied at each round is indifferen-
tiable from an ideal cipher with 2n-bit blocks and n-bit keys.
To our knowledge, this paper is also the first to study the indifferentiabil-
ity/provable security of key-alternating Feistel ciphers – in particular, with no
key derivation – in the open key model.

xi

F

xi−1

ki

xi+1 xi

xi

F

xi−1ki

xi+1 xi

Fig. 1. Mixing the key into: (left) the input of the round function – KAF; (right) the
halve of the state after the round function – KAF ∗

From a practical point of view, our results suggest a possible choice to re-
sist complementing attack and its extensions (see [7]) when designing Feistel
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ciphers2. KAF with random oracle modeled key derivation functions may also
have such resistance. However, practical key derivation algorithms are usually
designed to be “lightweight” and moderately complex, and KAF with such mod-
erately complex key derivations may still be broken in hash mode (the example
is Camellia, in [7]). Hence we think our results have its own interest. Meanwhile,
since publicly released in June 2013, the SIMON family of block ciphers [6]
designed by NSA has attracted considerable attention due to its simple struc-
ture, high flexibility, and remarkable performance [4,8,1,28,11]. SIMON family is
based on KAF ∗. Our results may be seen as a first step towards understanding
the underlying reasons.

Remark. We heavily borrow the techniques used by Holenstein et al. [17] and
Lampe et al. [18] (see the next paragraph). We stress that our main constructions
consist of the indifferentiability result for SKAF ∗ and the analyzes of SKAF ∗.

Overview of Techniques. We reuse and adapt the simulation via chain-
completion technique introduced by Coron et al. [14], while the overall frame-
work is very close to that used by Holenstein et al. [17] and Lampe et al. [18].
This framework consists of constructing a simulator which works by detecting
and completing partial chains created by the queries of the distinguisher. To
ensure consistency in the answers while avoiding exponentially many chain com-
pletions, each of the rounds in the construction is assigned a unique and specific
role needed in the proof, including chain detection, uniformness ensuring, and
chain adaptation (see Fig. 2). By this, the simulator first detects new partial
chains when the associated values have “filled” the chain detection zone; then
fills in the corresponding computation chain by both querying the ideal primi-
tive and simulating the other necessary function values, until only the values of
the round functions in the chain adaptation zone remain (possibly) undefined;
and finally defines these values to complete the whole chain so that the answers
of the ideal primitive are consistent with the function values simulated by the
simulator.

Adaptations in this Work. To fit into the SKAF ∗ context, the framework
has to be adapted. Note that in the SKAF ∗ context, each complete chain cor-
responds to a unique pair of input and output where the input consists of an
n-bit key and a 2n-bit block; hence the entropy of each chain is 3n bits, and it
is necessary and sufficient to uniquely specify a chain by the queries to 3 round
functions (recall that for un-keyed Feistel, the entropy of each chain is only 2n
bits). Another consequence of this property is that in the SKAF ∗ context, two
different chains may collide at two successive rounds, i.e. for two different chains
(x0, x1, . . .) and (x′

0, x
′
1, . . .), it may hold that xj = x′

j ∧ xj+1 = x′
j+1 for some

j. As a comparison, consider the un-keyed Feistel context: in this context, for

2 This idea is not new, as it has been used by XTEA (see [10]). However, this paper
provides the first security proof.
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two different chains, it is impossible to find j such that xj = x′
j ∧ xj+1 = x′

j+1,
otherwise we will have xi = x′

i for any i and the two chains are not different.
With these in mind, we introduce the following adaptations: first, we increase

the number of rounds used for chain detection to 3, so that given the queries xi,
xi+1, and xi+2 to these round functions, a chain can be uniquely specified with
the associated key k = xi ⊕Fi+1(xi+1)⊕ xi+2, after which it is possible to move
forward and backward along the computation path (and do some “completion”).

Second, we increase the number of rounds used to ensure randomness. Sur-
rounding each adaptation zone with 2 always-randomly-defined buffer rounds is
a key point of this framework. The buffer rounds are expected to protect the
adaptation zone in the sense that the simulator does not define the values in the
2 buffer rounds while completing other chains. This idea works well in previous
contexts. However, in the SKAF ∗ context, if we continue working with 2 buffer
rounds, then since two different chains are possible to collide at two successive
rounds, such an expectation may be broken. More clearly, when a chain is to
be adapted, the corresponding function values in the buffer rounds may have
been defined (this can be shown by a simple operation sequence with only 5
queries; see Appendix A). In such a case, we find it not easy to achieve a proof.
To get rid of this, we increase the number of buffer rounds to 4 – more clearly, 2
buffer rounds at each side of each adaptation zone (and in total 8 for the whole
construction). We then prove that unless an improbable event happens, the sim-
ulator does not define the function values in the buffer rounds exactly next to
the adaptation zones when completing other chains, and then all chains can be
correctly adapted.

Another evidence for the necessity of increasing the number of buffer rounds
is that the additional buffer rounds actually play an important role in the proof
(see Lemma 2).

At last, to show the indistinguishability of the systems, we combine the ran-
domness mapping argument [17] (RMA for short) and its relaxed version [2]
(RRMA for short). This allows us to bypass the intermediate system composed
of the idealized construction and the simulator.

Organization. Sect. 2 presents preliminaries. Sect. 3 contains the main theo-
rem. Sect. 4 gives the simulator. Finally, Sect. 5 sketches the proof. Some addi-
tional notations will be introduced later, when necessary.

2 Preliminaries

The Ideal Cipher Model (ICM). The ICM is a widespread model in which
all parties have access to a random primitive called ideal cipher E : {0, 1}n ×
{0, 1}κ → {0, 1}n. E is taken randomly from the set of (2n!)2

κ

block ciphers with
key space {0, 1}κ and plaintext and ciphertext space {0, 1}n. ICM finds enor-
mous applications, for instance, the analysis of blockcipher based hash functions
(e.g. [13]).
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Indifferentiability. The indifferentiability framework was introduced by Mau-
rer, Renner, and Holenstein, at TCC 2004 [23]. It is applicable in settings where
the underlying primitives and parameters are exposed to the adversary. Briefly
speaking, for a construction CG from an idealized primitive G (hopefully sim-
pler), if CG is indifferentiable from another ideal primitive T , then CG can safely
replace T in most “natural” settings3. A formal definition is recalled as follows.

Definition 1. A primitive CG with oracle access to an ideal primitive G is said
to be statistically and strongly (q, σ, ε)-indifferentiable from an ideal primitive T
if there exists a simulator ST s.t. S makes at most σ queries to T , and for any
distinguisher D which issues at most q queries, it holds that

∣
∣
∣Pr[DCG ,G = 1]− Pr[DT ,ST

= 1]
∣
∣
∣ < ε

Since then, indifferentiability framework has been applied to various construc-
tions, including variants of Merkle-Damg̊ard [13], sponge construction, Feis-
tel [14,17], and iteratated Even-Mansour ciphers [2,18].

3 Indifferentiability for 21-Round Single-Key KAF ∗

The main theorem is presented as follows.

Theorem 1. For any q, the 21-round single-key key-alternating Feistel cipher
SKAF ∗

21 with all round functions F = (F1, . . . , F21) being 21 independent n-
to-n-bit random functions and an identical (user-provided) n-bit key k applied
at each round is strongly and statistically (q, σ, ε)-indifferentiable from an ideal

cipher E with 2n-bit blocks and n-bit keys, where σ = 211 · q9 and ε ≤ 219·q15
22n +

2222·q30
2n + 234·q6

22n = O( q
30

2n ).

To show it, in the following sections we first give the simulator, then sketch the
proof. The full formal proof is deferred to the full version [16].

4 The Simulator

To simplify the proof, we take a strategy introduced by Holenstein et. al [17], that
is, making the randomness taken by the simulator S, the cipher E (in the simu-
lated world), and the random functions F (in the real world) explicit as random
tapes. The simulator’s random tape is an array of tables ϕ = (ϕ1, . . . , ϕ21), where
each ϕi maps entries x ∈ {0, 1}n to uniform and independent values in {0, 1}n.
The cipher’s random tape is a table η which encodes an ideal cipher with 2n-bit
blocks and n-bit keys. More clearly, η is selected uniformly at random from all
tables with the property of mapping entries (δ, k, z) ∈ {+,−}×{0, 1}n×{0, 1}2n

3 Restrictions on the indifferentiability composition theorem have been exhibited
in [26,15]. However, indifferentiability has been sufficient in most “natural” settings
(see [15]).
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to uniform values z
′ ∈ {0, 1}2n such that η(+, k, z) = z

′
iff. η(−, k, z

′
) = z. The

random functions F have access to the array of tables f = (f1, . . . , f21) where
each fi maps entries x ∈ {0, 1}n to uniform and independent values in {0, 1}n.
We denote the constructions/primitives which take randomness from the tapes
ϕ, η, and f by S(ϕ), E(η), and F(f) respectively. Among the three, E(η) and
F(f) simply relay the values in η and f . As argued by Andreeva et al. [2], such
a strategy does not reduce the validity of the simulation, since access to such
tapes can be efficiently simulated by uniformly sampling.

We now describe the simulator. S(ϕ) provides an interface S(ϕ).F (i, x) to the
distinguisher for querying the simulated random function Fi on value x, where
i ∈ {1, . . . , 21} and x ∈ {0, 1}n. For each i, the simulator maintains a hash table
Gi that has entries in the form of pairs (x, y), which denote pairs of inputs and
outputs of S(ϕ).F (i, x). Denote the fact that x is a preimage in the table Gi by
x ∈ Gi, and Gi(x) the corresponding image when x ∈ Gi.

Receiving a query S(ϕ).F (i, x), S(ϕ) looks in Gi, returns Gi(x) if x ∈ Gi.
Otherwise S(ϕ) accesses the tap ϕi to draw the answer ϕi(x) and adds the entry
(x, ϕi(x)) to Gi, and then, if i belongs to the set {3, 10, 11, 12, 19}, the chain
detection mechanism and subsequent chain completion mechanism of S(ϕ) will
be triggered. These two mechanisms help in ensuring that the answers of the
random functions simulated by S(ϕ) are consistent with the answers of the ideal
cipher E(η). Depending on i, there are three case:

1. when i = 3, for each newly generated tuple (x1, x2, x3, x20, x21) ∈ G1 ×
G2 × G3 × G20 × G21, the simulator computes k := x1 ⊕ G2(x2) ⊕ x3,
x0 := x2 ⊕ G1(x1) ⊕ k, and x22 := x20 ⊕ G21(x21) ⊕ k. It then calls an
inner procedure S(ϕ).Check((x1, x0), (x22, x21), k), which checks whether
E(η).Enc(k, (x1, x0)) = (x22, x21) (i.e. η(+, k, (x1, x0)) = (x22, x21)) holds,
and returns true if so. Whenever this call returns true, the simulator en-
queues a 5-tuple (x1, x2, x3, 1, 6) into a queue ChainQueue. In the 5-tuple,
the 4-th value 1 informs S(ϕ) that the first value of the tuple is x1, and the
last value 6 informs S(ϕ) that when completing the chain (x1, x2, x3, 1), it
should set entries in G6 and G7 to “adapt” the chain and ensure consistency.

2. when i = 19, the case is similar to the previous one by symmetry: for each
newly generated tuple (x1, x2, x19, x20, x21) ∈ G1 × G2 × G19 × G20 × G21,
the simulator computes k := x19 ⊕ G20(x20) ⊕ x21, x0 := x2 ⊕ G1(x1) ⊕ k,
x22 := x20 ⊕ G21(x21) ⊕ k, and x3 := x1 ⊕ G2(x2) ⊕ k, makes a call to
S(ϕ).Check((x1, x0), (x22, x21), k), and enqueues the 5-tuple (x1, x2, x3, 1, 15)
into ChainQueue whenever this call returns true.

3. when i ∈ {10, 11, 12}, for each newly generated tuple (x10, x11, x12) ∈ G10 ×
G11 × G12, the simulator enqueues the 5-tuple (x10, x11, x12, 10, l) into the
queue ChainQueue, where l = 6 if i = 10 or 11, and l = 15 if i = 12. The
sketch of the whole strategy is illustrated in Fig. 2.

After having enqueued the newly generated tuples, S(ϕ) immediately takes the
tuples out of ChainQueue and completes the associated partial chains. More
clearly, S(ϕ) maintains a set CompletedSet for the chains it has completed.
For each chain C dequeued from the queue, if C /∈ CompletedSet (i.e. C has
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not been completed), S(ϕ) completes it, by evaluating in the corresponding
SKAF ∗ computation chain both forward and backward (defining the necessary
but undefined Gi(xi) values), and querying E.Enc or E.Dec once to “wrap”
around, until it reaches the value xl (when moving forward) and xl+1 (when
moving backward). Then S(ϕ) “adapts” the entries by defining Gl(xl) := xl−1⊕
xl+1 ⊕ k and Gl+1(xl+1) := xl ⊕ xl+2 ⊕ k to make the entire computation chain
consistent with the answers of E(η). This defining action may overwrite values in
Gl or Gl+1 if xl ∈ Gl or xl+1 ∈ Gl+1 before it happens, however we will show the
probability to be negligible. S(ϕ) then adds (x1, x2, x3, 1) and (x10, x11, x12, 10)
to CompletedSet, where the two chains correspond to C.

During the completion, the values in Gj newly defined by S(ϕ) also trig-
ger the chain detection mechanism and chain completion mechanism when j ∈
{3, 10, 11, 12, 19}.S(ϕ) hence keeps dequeuing and completing until ChainQueue
is empty again. S(ϕ) finally returns Gi(x) as the answer to the initial query.

Pseudocode of the Simulator. We present the pseudocode of the simulator S(ϕ)

and a modified simulator S̃(ϕ) (will be introduced in Sect. 5). When a line has

a boxed statement next to it, S(ϕ) uses the original statement, while S̃(ϕ) uses
the boxed one.

1: Simulator S(ϕ): Simulator S̃(ϕ):

2: Variables
3: hash tables {Gi} = (G1, . . . , G21), initially empty
4: queue ChainQueue, initially empty
5: set CompletedSet, initially empty

The procedure F (i, x) provides an interface to the distinguisher.
6: public procedure F (i, x)
7: y := F inner(i, x)
8: while ChainQueue �= ∅ do
9: (xj , xj+1, xj+2, j, l) := ChainQueue.Dequeue()

10: if (xj , xj+1, xj+2, j, l) /∈ CompletedSet then // Complete the chain
11: k := xj ⊕Gj+1(xj+1)⊕ xj+2

12: (xl−4, xl−3, xl−2, l − 4) := EvalForward(xj , xj+1, xj+2, j, l − 4)
13: (xl+3, xl+4, xl+5, l + 3) := EvalBackward(xj , xj+1, xj+2, j, l + 3)
14: Adapt(xl−4, xl−3, xl−2, xl+3, xl+4, xl+5, l)
15: (x1, x2, x3, 1) := EvalForward(xj , xj+1, xj+2, j, 1)
16: (x10, x11, x12, 10) := EvalForward(x1 , x2, x3, 1, 10)
17: CompletedSet := CompletedSet ∪ {(x1, x2, x3, 1), (x10, x11, x12, 10)}
18: return y

The procedure Adapt randomly sets the “missed” values if necessary
and adds entries to Gl and Gl+1 to make the chain match the computation.

19: private procedure Adapt(xl−4, xl−3, xl−2, xl+3, xl+4, xl+5, l)
20: k := xl−4 ⊕Gl−3(xl−3)⊕ xl−2

21: yl−2 := F inner(l − 2, xl−2)
22: xl−1 := xl−3 ⊕ yl−2 ⊕ k
23: yl−1 := F inner(l − 1, xl−1)
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24: xl := xl−2 ⊕ yl−1 ⊕ k
25: yl+3 := F inner(l + 3, xl+3)
26: xl+2 := xl+4 ⊕ yl+3 ⊕ k
27: yl+2 := F inner(l + 2, xl+2)
28: xl+1 := xl+3 ⊕ yl+2 ⊕ k
29: ForceV al(xl, xl−1 ⊕ xl+1 ⊕ k, l)
30: ForceV al(xl+1, xl ⊕ xl+2 ⊕ k, l+ 1)
31: private procedure ForceV al(x, y, l)
32: Gl(x) := y // May overwrite the entry Gl(x)

The procedure F inner draws answers from the table Gi, or the tape ϕi if
the answers have not been defined in Gi, and enqueue chains when necessary.

33: private procedure F inner(i, x)
34: if x /∈ Gi then
35: Gi(x) := ϕi(x)
36: if i ∈ {3, 10, 11, 12, 19} then
37: EnqueueNewChains(i, x)
38: return Gi(x)
39: private procedure EnqueueNewChains(i, x)
40: if i = 3 then
41: for all (x1, x2, x3, x20, x21) ∈ G1 ×G2 × {x} ×G20 ×G21 then
42: k := x1 ⊕G2(x2)⊕ x3

43: chk pa := ((x1, G1(x1)⊕ x2 ⊕ k), (x20 ⊕G21(x21)⊕ k, x21), k)

44: flag := Check(chk pa) flag := Ẽ.Check(chk pa)

45: if flag = true then
46: ChainQueue.Enqueue(x1, x2, x3, 1, 6)
47: else if i = 19 then
48: for all (x1, x2, x19, x20, x21) ∈ G1 ×G2 × {x} ×G20 ×G21 do
49: k := x19 ⊕G20(x20)⊕ x21

50: chk pa := ((x1, G1(x1)⊕ x2 ⊕ k), (x20 ⊕G21(x21)⊕ k, x21), k)

51: flag := Check(chk pa) flag := Ẽ.Check(chk pa)

52: if flag = true then
53: x3 := x1 ⊕G2(x2)⊕ k
54: ChainQueue.Enqueue(x1, x2, x3, 1, 15)
55: else if i = 10 then
56: for all (x10, x11, x12) ∈ {x} ×G11 ×G12 do
57: ChainQueue.Enqueue(x10, x11, x12, 10, 6)
58: else if i = 11 then
59: for all (x10, x11, x12) ∈ G10 × {x} ×G12 do
60: ChainQueue.Enqueue(x10, x11, x12, 10, 6)
61: else if i = 12 then
62: for all (x10, x11, x12) ∈ G10 ×G11 × {x} do
63: ChainQueue.Enqueue(x10, x11, x12, 10, 15)
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The Check procedure queries E to verify whether the inputs are valid
pairs of plaintext and ciphertext of E. Note that S̃ does not own Check
procedure; instead S̃ calls the Check procedure of a modified cipher Ẽ.

64: private procedure Check(x, y, k) // S̃ does not own such a procedure
65: return E.Enc(k, x) = y

The procedures EvalForward (and EvalBackward, resp.) takes a par-
tial chain (xj , xj+1, xj+2, j) as input, and evaluate forward (and backward,
resp.) in SKAF ∗ until obtaining the tuple (xl, xl+1, xl+2) of input values for
Gl, Gl+1, and Gl+2 for specified l.

66: private procedure EvalForward(xj , xj+1, xj+2, j, l)
67: k := xj ⊕Gj+1(xj+1)⊕ xj+2 // By construction xj+1 ∈ Gj+1 holds
68: while j �= l do
69: if j = 20 then

70: (x1, x0) := E.Dec(k, (x22, x21)) (x1, x0) := Ẽ.Dec(k, (x22, x21))

71: x2 := x0 ⊕ F inner(1, x1)⊕ k
72: j := 0
73: else
74: xj+3 := xj+1 ⊕ F inner(j + 2, xj+2)⊕ k
75: j := j + 1
76: return (xl, xl+1, xl+2, l)
77: private procedure EvalBackward(xj , xj+1, xj+2, j, l)
78: k := xj ⊕Gj+1(xj+1)⊕ xj+2

79: while j �= l do
80: if j = 0 then

81: (x22, x21) := E.Enc(k, (x1, x0)) (x22, x21) := Ẽ.Enc(k, (x1, x0))

82: x20 := x22 ⊕ F inner(21, x21)⊕ k
83: j := 20
84: else
85: xj−1 := xj+1 ⊕ F inner(j, xj)⊕ k
86: j := j − 1
87: return (xl, xl+1, xl+2, l)

5 Proof of the Indifferentiability: Sketch

Denote by Σ1(E(η),S(ϕ)) the simulated system composed of the ideal cipher E
with tape η and the simulator S with tape ϕ, and denote by Σ2(SKAF ∗

21,F(f))
the real system composed of SKAF ∗

21 and the random functions F(f). Then,
for any fixed, deterministic, and computationally unbounded distinguisher D,
we show the following two to establish the indifferentiability:

(i) Σ1(E(η),S(ϕ)) and Σ2(SKAF ∗
21,F(f)) are indistinguishable.

(ii) With overwhelmingly large probability, S(ϕ) runs in polynomial time.

Note that the underlying ideas used in Sect. 5.2 and Sect. 5.3 are originally used
by Coron et al. [14] (also used in [17,18]). As stressed in Introduction, the main
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novelties of this part are in Sect. 5.4. To keep Sect. 5.4 clear and simple, we only
present the sketch in the main body, while extracting the lemmas corresponding
to the core step (the simulator overwrites with negligible probability) and listing
them in Appendix B.

5.1 An Intermediate System Σ′
1

We use an intermediate systemΣ′
1(Ẽ(η), S̃(ϕ)), which consists of a modified ideal

cipher Ẽ(η) and a slightly modified simulator S̃(ϕ). Ẽ(η) maintains a table E,
which contains entries of the form ((+, k, x), y) and ((−, k, y), x), and is initially

empty. Ẽ(η) provides an additional interface Check(x, y, k). Once being queried

on Enc(k, x) or Dec(k, y), Ẽ(η) adds the corresponding entries in η to E and

returns them as answers. Once being called on Check(x, y, k), Ẽ(η) looks in the
table E to check whether E(+, k, x) = y and returns the answer. On the other

hand, the differences between S̃(ϕ) and S(ϕ) consist of two aspects:

– the cipher queried by them: S̃(ϕ) queries Ẽ(η) while S(ϕ) queries E(η);

– the owner of the Check procedure called by them: S̃(ϕ) calls Ẽ(η).Check
while S(ϕ) calls S(ϕ).Check;

Denote by Ẽ(η).E+ the set of entries in Ẽ(η).E of the form ((+, ·, ·), ·). The
pseudocode of Ẽ(η) is deferred to the full version [16], while the pseudocode of

S̃(ϕ) is presented along with S(ϕ), in Sect. 4, captured by the boxed statements.
The three systems are depicted in Fig. 3. Σ′

1 mostly helps in bounding the
complexity of S(ϕ).

5.2 Bounding the Complexity of S̃(ϕ) in Σ′
1

The simulator S̃(ϕ) in Σ′
1 runs in polynomial time: each time S̃(ϕ) dequeues a

tuple of the form (x1, x2, x3, 1, l) for which (x1, x2, x3, 1) /∈ CompletedSet must

correspond to an entry in Ẽ(η).E+ previously added during a query issued by
D, since (x1, x2, x3, 1, l) can be enqueued only when the corresponding call to

Ẽ(η).Check returns true. Hence such dequeuing happens at most q times. Based

on this, the size of Gi and Ẽ(η).E+ is upper bounded to 10q3, and the number

of queries to Ẽ(η).Check issued by S̃(ϕ) is upper bounded to 2 · (10q3)5.

5.3 Σ1 to Σ
′
1

To show this, we define a bad event to capture the difference between Σ1 and
Σ′

1. The core difference between the two lies in that the procedure S(ϕ).Check
actually answers queries according to the content of the table/tape η, while the

procedure Ẽ(η).Check answers according to a much smaller table Ẽ(η).E: this
forms the idea of the bad event. During an execution DΣ1(E(η),S(ϕ)), the bad
event BadCheck happens if ∃(x, y, k) s.t. all the following hold:
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(i) S(ϕ) makes a call S(ϕ).Check(x, y, k).
(ii) η(+, k, x) = y.
(iii) Before the call in (i), neither E(η).Enc(k, x) nor E(η).Dec(k, y) has been

issued (i.e. if the call is made in Σ′
1, then (+, k, x) /∈ Ẽ(η).E before the call).

For some fixed (η, ϕ), assume that S̃(ϕ) makes q′1 calls to S̃(ϕ).Check during

DΣ′
1(

˜E(η),˜S(ϕ)). Then if duringDΣ1(E(η),S(ϕ)),BadCheck does not happen in the
first q′1 calls to E(η).Check – the probability is at least 1−2q′1/2

2n,DΣ1(E(η),S(ϕ))

and DΣ′
1(

˜E(η),˜S(ϕ)) behave the same way, and DΣ1(E(η),S(ϕ)) = DΣ′
1(

˜E(η),˜S(ϕ)).
Since q′1 ≤ 2 · (10q3)5, we have:

Lemma 1. For any distinguisher D which issues at most q queries, we have:

∣
∣
∣Pr[DΣ1(E(η),S(ϕ)) = 1]− Pr[DΣ′

1(
˜E(η),˜S(ϕ)) = 1]

∣
∣
∣ ≤

219 · q15
22n

.

Proof. See the full version [16]. �


This bound on advantage along with the bound on complexity of S̃(ϕ) show

that with probability at least 1− 219·q15
22n , the complexity of S(ϕ) is the same as

that of S̃(ϕ), and can be upper bounded to 211 · q9 queries to E(η).

5.4 Σ
′
1 to Σ2: The Relaxed Randomness Mapping Argument

We use an RRMA to fill in this part. First, we specify the domain of the ran-
domness map; second, we complete the argument.

Specifying the Domain of the Map. The domain of the map should include
overwhelmingly many Σ′

1 executions, and these executions should have the same
behaviors as the Σ2 executions in the view of D. Hence we figure out the dif-
ference between the two systems first. Consider Σ′

1 and Σ2. In the former, the

answers to F -queries are simulated by S̃(ϕ), and when S̃(ϕ) is forced to over-
write some entries (in {Gi}), the consistency in the answers will be broken. On
the other hand, such inconsistency never appears in Σ2: this forms the difference.
We will take the Σ′

1 executions during which S̃ does not overwrite any entry to
specify the domain (later we will show that such Σ

′

1 executions are the same
as the Σ2 executions in the view of D). For this, we first define an additional
bad event BadHit, then show that BadHit happens with negligible probabil-
ity, and finally show that during a Σ′

1-execution, if BadHit does not happen,

then S̃ does not overwrite, so that the domain we specify covers overwhelmingly

many Σ′
1 executions as expected. During an execution DΣ′

1(
˜E(η),˜S(ϕ)), the event

BadHit happens if the n-bit value read from the tape ϕ – or either of the two
n-bit halves of the value read from the tape η – equals the xor of 9 or less values
in the history H, where H is the set of all the n-bit values – or halves – extracted
from the tables {Gi} and Ẽ(η).E right before the tape accessing action happens.

With the bound on the size of the tables, we calculate Pr[BadHit] ≤ 288·q30
2n .
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We then show that during the good executions DΣ′
1(

˜E(η),˜S(ϕ)) (during which

BadHit does not happen), S̃(ϕ) never overwrites any entry in {Gi}. As men-
tioned in Sect. 1, the reason is that right before any call to Adapt, the function
values in the two buffer rounds exactly next to the adaptation zone must have
not been defined. Then the two values will be set to uniformly random values,
which implies that the probability for S̃(ϕ) to overwrite is negligible. To illus-
trate more clearly, we define the 4-tuple (xi, xi+1, xi+2, i) as partial chain for
i ∈ {0, . . . , 20}, and borrow the helper functions next, prev, val+l , val

−
l , and the

notions equivalent partial chains, table-defined partial chains from [17,18]. The
two helper functions next and prev take a partial chain C as input and return
the partial chain obtained by moving respectively one step forward or backward
in SKAF ∗

21 according to the given tables Ẽ(η).E and {Gi} (wrapping around

through Ẽ(η).E if necessary), or empty value ⊥ when some values are necessary
for the computation but have not been defined in the tables. The two functions
val+l and val−l take a partial chain as input and evaluate forward and backward

respectively (also according to the given Ẽ.E and {Gi}) until obtaining and re-
turning the corresponding xl, or returning ⊥ when some necessary values have
not been defined in the tables. The notions equivalent and table-defined partial
chains are as follows: (i) two partial chains C and D are equivalent, if they be-
long to the same computation chain; (ii) a partial chain C = (xi, xi+1, xi+2, i) is
table-defined if all the three values xi, xi+1, and xi+2 have been added to their
corresponding tables.

Then, we have the following non-overwriting lemma.

Lemma 2. In a good execution DΣ
′
1(

˜E(η),˜S(ϕ)), before any two successive calls
to ForceV al(xl, yl, l) and ForceV al(xl+1, yl+1, l + 1), xl /∈ Gl ∧ xl+1 /∈ Gl+1

must hold.

Proof. A formal proof – along with the lemmas that support the proof – are
presented in Appendix B; here we only sketch it. Consider any such two calls
ForceV al(xl, yl, l) and ForceV al(xl+1, yl+1, l + 1), and suppose that they are
triggered by a chain C. Note that C /∈ CompletedSet when C is dequeued,
otherwise the two calls will not happen. Then the sketch consists of four stages:

First, denote by PathC the whole computation path that C belongs to. Then
before C is enqueued, val+l−2(C) = ⊥∧ val−l+3(C) = ⊥ must hold. Otherwise the
values of PathC must have “filled” another chain detection zone, after which
PathC would be completed, and C would have been added to CompletedSet, a
contradiction.

Second, since being enqueued, C must have been equivalent to a table-defined
chain. Then, during the completion of some other chainD (D is not equivalent to
C and is completed after C being enqueued), the subsequent calls to ForceV al
cannot affect valδi (C) for any valid i and δ ∈ {+,−}. The underlying reason is
strongly relevant to the number of buffer rounds we arrange. Briefly speaking, for
previous calls to ForceV al (triggered by D) to change valδi (C), C and D must
agree on either of the two rounds l′ and l′+1 where D is supposed to be adapted.
However since we arrange two buffer rounds at each side of the adaptation zone,
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we find that two inequivalent partial chains (C andD) either: (i) cannot collide at
three consecutive rounds, and as a result, val+l′−1(C) �= val+l′−1(D) (val−l′+2(C) �=
val−l′+2(D), resp.); or: (ii) cannot collide at round l′ − 1 (l′ + 2, resp.) to avoid
the bad event BadHit. By this, C and D cannot agree on any of the two rounds
l′ and l′+1, and valδi (C) can only be changed by tape accessing and table entry
setting actions, and to avoid BadHit, val+l−2(C) /∈ Gl−2 ∧ val−l+3(C) /∈ Gl+3

immediately holds after such actions make them two non-empty.
Third, by carefully analyzing all possibilities, we show that any chain com-

pleted between the point when C is enqueued and the point when C is dequeued
cannot add val+l−1(C) to Gl−1 (even if val+l−1(C) has previously been made non-

empty during the completion of some other chains). Similarly, val−l+2(C) cannot

be added to Gl+2 during this period. Hence val
+
l−1(C) /∈ Gl−1∧val−l+2(C) /∈ Gl+2

keeps holding till C being dequeued.
Finally, after C is dequeued, Gl−1(val

+
l−1(C)) and Gl+2(val

−
l+2(C)) will be

defined to values from ϕ tape, and to avoidBadHit, xl = val+l (C) /∈ Gl∧xl+1 =
val−l+1(C) /∈ Gl+1 must hold after these assignments. �


Completing the RRMA. Fix a distinguisher D. Consider a distinguisher D
which runs D and then completes all the chains for each query to Ẽ(η) made by

D. During D
Σ′

1(
˜E(η),˜S(ϕ))

, many entries in the tapes (η, ϕ) may not be accessed,
and those that are really accessed compose footprints. Clearly with respect to
D, there is a bijection between the footprint set and the Σ′

1 execution set.

Then, consider the Σ′
1 executions D

Σ′
1(

˜E(η),˜S(ϕ))
during which S̃(ϕ) does not

overwrite any entry. By Lemma 2, the probability for such Σ′
1 executions to

occur is at least 1− 2222·q30
2n . Taking the set of all possible footprints of such Σ′

1

executions as the domain, we define τ(α) = f = (f1, . . . , f21) as the exact copies
of the tables (G1, . . . , G21) standing at the end of the execution: τ(α) ≡ {Gi}.
The Σ′

1 and Σ2 executions linked by τ have the same behaviors in the view of
D because the answers in them two are consistent with τ(α) and {Gi}; and the
probabilities for the tapes (η, ϕ) and f to respectively agree with the preimage
and the image are close – for 22q-query D, the ratio of the two probabilities lies

in the interval [1 − (10(22q)3)2

22n , 1]. By these, with a nearly standard process, we

upper bound the advantage of distinguishing Σ′
1 and Σ2 to 2222·q30

2n + 234·q6
22n .

Lemma 3. For any distinguisher D which issues at most q queries, we have:

∣
∣
∣Pr[DΣ

′
1 = 1]− Pr[DΣ2 = 1]

∣
∣
∣ ≤

2222 · q30
2n

+
234 · q6
22n

Proof. See the full version [16]. �
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A Surrounding Each Adaptation Zone with Two Buffer
Rounds – the Broken Expectations

If we increase the number of rounds used for chain detection to 3, while continue
surrounding each adaptation zone with two buffer Rounds – exactly same as done
in the previous works [17,18] – then we are working on 3 + 1 + 2 + 1 + 3 + 1 +
2+ 1+ 3 = 17 rounds (SKAF ∗

17). For the modified simulator, the buffer rounds
are round 4, 7, 11, and 14, while the first adaptation zone consists of round 5
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and 6, the second consists of round 12 and 13. Then the following operation
sequence shows that when a chain is to be adapted, the function values in the
buffer rounds next to the adaption zone may have been defined:

(i) arbitrarily chooses x3, x2, and x
′

2;
(ii) issues queries G2(x2) and G2(x

′

2) to the simulator;
(iii) arbitrarily chooses k and calculate k

′
:= k ⊕ x2 ⊕ x

′

2;
(iv) calculates x1 := x3 ⊕G2(x2)⊕ k and x

′

1 := x3 ⊕G2(x
′

2)⊕ k
′
;

(v) issues queries G1(x1) and G1(x
′

1);
(vi) issues queries G3(x3);

The last query G3(x3) enqueues two chains (x1, x2, x3, 1) and (x
′

1, x
′

2, x3, 1), and
whatever value is assigned toG3(x3), for the two chainswe havex4 = x2⊕G3(x3)⊕
k = x

′

2 ⊕G3(x3)⊕ k
′
= x

′

4. When the later one is dequeued, we have x4 ∈ G4; this
breaks the expectation that the simulator does not define the values in the buffer
rounds while completing other chains. The underlying reason for this lies in the fact
that in theSKAF ∗ context, it is possible tomake two different chains collide at two
successive rounds (as already discussed in Introduction). The operation sequence
mentioned before indeed takes advantage of this property.

However, at current time, we are not clearwhether 17-round single-keySKAF ∗
17

can achieve indifferentiability or not.

B The Formal Proof for S̃ Not Overwrites

To give the formal proof, we introduce two notions key-defined and key-undefined
chains and a helper function k, as follows: a partial chain C = (xi, xi+1, xi+2, i)
is called key-defined if xi+1 ∈ Gi+1, otherwise is called key-undefined ; and k(C)
returns the associated key when C is key-defined, while returning ⊥ other-
wise. Moreover, we borrow two additional notions safe call to Adapt, and non-
overwriting call to ForceVal from [17,18]: (i) a call toAdapt(xl−4, xl−3, xl−2, xl+3,
xl+4, xl+5, l) is safe if the following holds before the call:

(((xl−2 /∈ Gl−2) ∨ (xl−2 ∈ Gl−2 ∧ xl−3 ⊕Gl−2(xl−2)⊕ k(B) /∈ Gl−1))

∧((xl+3 /∈ Gl+3) ∨ (xl+3 ∈ Gl+3 ∧ xl+4 ⊕Gl+3(xl+3)⊕ k(D) /∈ Gl+2))),

where B = (xl−4, xl−3, xl−2, l− 4) and D = (xl+3, xl+4, xl+5, l+3); (ii) a call to
ForceV al(x, y, l) is non-overwriting if x /∈ Gl before the call.

Then, we have Lemma 11, which claims that S̃(ϕ) does not overwrite in good
Σ′

1 executions. Before presenting this main lemma, we list some properties of
the good Σ′

1 executions, as follows. They consist of the foundation of Lemma
11. To save space while highlighting the features of SKAF ∗, we summarize the
properties that are almost the same as those owned by un-keyed Feistel [17] and
single-key iterated Even-Mansour [18] as Lemma 5.

First, in the good executions, each random tape accessing and the subsequent
entry setting action can only extend the key-defined chains one round. Compared
to the previous results in [17,18], Lemma 4 only focuses on key-defined chains.
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Lemma 4. The following hold in a good execution DΣ′
1(

˜E(η),˜S(ϕ)):

(i) For any key-defined partial chain C, if next(C) = ⊥ (prev(C) = ⊥, resp.)
before a random tape accessing and subsequent entry setting action on either
Ẽ(η).E or {Gi}, then if C is table-defined after the action, it holds that
next2(C) = ⊥ (prev2(C) = ⊥, resp.).

(ii) For any key-defined partial chain C and each δ ∈ {+,−}, a random tape
accessing and entry setting action Gj(xj) := ϕj(xj) can only change at most
one of the values valδi (C); and if such change happens, then:
– the value is changed from ⊥ to some non-empty values.
– if δ = +, i = j + 1; if δ = −, i = j − 1.
– valδj (C) = xj before the assignment.

– after the action, if C is table-defined, then valδi (C) /∈ Gi.

Proof. See the full version [16]. �


Lemma 5. Informally speaking, during a good executionDΣ
′
1(

˜E(η),˜S(ϕ)), we have:

(i) the relation ≡ between partial chains is an equivalence relation;
(ii) the relation ≡ between table-defined chains is invariant before and after the

random tape accessing and subsequent entry setting action;
(iii) if a chain C is dequeued such that C /∈ CompletedSet, then when C was

enqueued, no chain equivalent to C had been enqueued.

Proof. See Lemma 9, Lemma 10, and Lemma 13 in the full version [16]. �


The following lemma claims that two inequivalent chains cannot collide at
two consecutive rounds when they are extended by the random tape accessing
and entry setting actions.

Lemma 6. Fix a point in a good execution DΣ
′
1(

˜E(η),˜S(ϕ)) and suppose all calls
to ForceV al to be non-overwriting up to this point. Assume that a random tape
accessing and entry setting action Gi(xi) := ϕi(xi) happens right after this point,
then for any two key-defined partial chains C and D, any l ∈ {3, . . . , 19}, and
any δ ∈ {+,−}, the following four cannot be simultaneously fulfilled:

(i) before the action, C is not equivalent to D;
(ii) before the action, valδl (C) = ⊥ or valδl (D) = ⊥;
(iii) after the action, C and D are table-defined;
(iv) after the action, (valδl (C)=valδl (D) �= ⊥)∧(valδl−1(C)⊕k(C) = valδl−1(D)⊕

k(D)) when δ = +, or (valδl (C) = valδl (D) �= ⊥) ∧ (valδl+1(C) ⊕ k(C) =

valδl+1(D)⊕ k(D)) when δ = −;

Proof. Briefly speaking, once statement (ii), (iii), and (iv) are fulfilled, then
either C ≡ D, or BadHit happens. See [16] for the formal proof. �


If all the previous calls to ForveV al were non-overwriting, then the calls to
ForceV al triggered by safe calls to Adapt do not affect the values in previously
defined chains, nor the equivalence relation. As mentioned in Introduction, this
property is one of the key points of the proof, and is similar to those exhibited
in [17] and [18]; the difference is brought in by the increased buffer rounds.
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Lemma 7. Consider a safe call Adapt(xl−4, xl−3, xl−2, xl+3, xl+4, xl+5, l) in a

good execution DΣ
′
1(

˜E(η),˜S(ϕ)), and suppose all the previous calls to Adapt to be
safe, then:

(i) Right before the subsequent call to F inner(l − 1, xl−1), xl−1 /∈ Gl−1; right
before the subsequent call to F inner(l + 2, xl+2), xl+2 /∈ Gl+2;

(ii) The subsequent calls to ForceV al are non-overwriting.
(iii) If a chain C is table-defined before this call to Adapt and is not equivalent

to the chain which is being completed, then for any i ∈ {1, . . . , 21}, val+i (C)
and val−i (C) are invariant before and after both calls to ForceV al.

(iv) The relation ≡ between table-defined chains is invariant before and after the
subsequent calls to ForceV al.

Proof. See the full version [16]. �


Lemma 8. Consider a good execution DΣ
′
1(

˜E(η),˜S(ϕ)). Let C be a chain which
is dequeued and to be adapted at position l s.t. C /∈ CompletedSet. Then the
subsequent call to Adapt is safe, if the following holds when C is dequeued:

(((val+l−2(C) /∈ Gl−2) ∨ (val+l−2(C) ∈ Gl−2 ∧ val+l−1(C) /∈ Gl−1))

∧((val−l+3(C) /∈ Gl+3) ∨ (val−l+3(C) ∈ Gl+3 ∧ val−l+2(C) /∈ Gl+2))).

Proof. See the full version [16]. �


For the following discussions, we introduce a tuple set KUDCS4, as the set
of 5-tuples (x10, x11, x12, 10, 6) which is enqueued by a call to F inner(11, x11).
The tuples in this set are special in the sense that before the call to F inner

which leads to they being enqueued, the partial chains correspond to them were
key-undefined.

Then, the following two lemmas show that the assumptions of Lemma 8 hold in
a good execution. Lemma 9 shows them to hold before the chains are enqueued,
while Lemma 11 shows them to hold till the chains are dequeued (so that all calls
to ForceV al are non-overwriting). Lemma 10 is a helper lemma for Lemma 11.

Lemma 9. Consider a good execution DΣ
′
1(

˜E(η),˜S(ϕ)). Let C be a partial chain
which is enqueued at some time and to be adapted at position l. Suppose that no
chain equivalent to C was enqueued before C is enqueued. Then:

(i) val+l−2(C) = ⊥ and val−l+3(C) = ⊥ before the call to F inner(i, x) which led
to C being enqueued.

(ii) right after C is enqueued, val+l−2(C) /∈ Gl−2 ∧ val−l+3(C) /∈ Gl+3.

Proof. See the full version [16]. �


Lemma 10. Consider a good executionDΣ
′
1(

˜E(η),˜S(ϕ)). Let C=(x10, x11, x12, 10,
6) ∈ KUDCS be a partial chain which is enqueued at some time such that no
chain equivalent to C was enqueued before C is enqueued. Then for any chain
D which is dequeued before C is dequeued, the following two hold;

4 The term is short for key-undefined chain set.
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(i) it cannot be val+4 (C) �= ⊥ ∧ val+4 (C) = val+4 (D) ∧ val+3 (C) ⊕ k(C) =
val+3 (D)⊕ k(D);

(ii) it cannot be val−9 (C) �= ⊥ ∧ val−9 (C) = val−9 (D) ∧ val−10(C) ⊕ k(C) =
val−10(D)⊕ k(D);

Proof. By the assumption, D must have been enqueued before C is enqueued.
Consider proposition (i). After the call to F inner(11, x11) which led to C being
enqueued, we have:

(i) val+4 (C) = ⊥ (follows from Lemma 9);
(ii) C is table-defined, and D is equivalent to some table-defined chain Dtd, since

they have been enqueued (hence C and Dtd are also key-defined).

After this point in the execution, since C has been table-define, val+4 (C) can only
be changed to non-empty by the tape accessing and entry setting actions (by
Lemma 7 (iii)) on {Gi} (by Lemma 4 (ii)). Then proposition (i) is established
by Lemma 6 (note that valδi (D) = valδi (Dtd)).

Consider proposition (ii). After the call to F inner(11, x11), we have:

(i) val−9 (C) �= ⊥ ∧ val−9 (C) /∈ G9 (also follows from Lemma 9);
(ii) C and Dtd (D ≡ Dtd) are table-defined (and key-defined);

Depending on val−9 (D), we distinguish the following cases. First, if val−9 (D) �= ⊥
before the call to F inner(11, x11), then D must have been enqueued before this
call. By this, for some sufficiently large j, we have (x′

10, x
′
11, x

′
12, 10) = prevj(D)

where all the three values have been in corresponding tables and x′
11 �= x11. Then

after the call, val−9 (C) = val−9 (D) is not possible (and will never be possible in
future) since it implies BadHit.

Second, if val−9 (D) = ⊥ before and after the call to F inner(11, x11), then sim-
ilarly to the argument for proposition (i), val−9 (C) �= ⊥∧ val−9 (C) = val−9 (D) ∧
val−10(C)⊕ k(C) = val−10(D)⊕ k(D) cannot be simultaneously fulfilled.

Finally, if val−9 (D) = ⊥ before the call to F inner(11, x11) while val−9 (D) �= ⊥
after it, then the only possible case is D = (x′

10, x11, x
′
12, 10) and D is also

enqueued by the call to F inner(11, x11). In this case, assume that val−9 (C) �=
⊥ ∧ val−9 (C) = val−9 (D) ∧ val−10(C) ⊕ k(C) = val−10(D) ⊕ k(D) simultaneously
hold; then it necessarily be x12 = x′

12 and G10(x10) ⊕ x10 = G10(x
′
10) ⊕ x′

10.
By construction, G10(x10) and G10(x

′
10) are defined to be ϕ10(x10) and ϕ10(x

′
10)

respectively (since the 10-th round is not in the adaptation zone), hence the one
defined later implies BadHit.

Having excluded all possibilities, we establish proposition (ii). �


Lemma 11. In a good execution DΣ′
1(

˜E(η),˜S(ϕ)), all calls to Adapt are safe, and
all calls to ForceV al are non-overwriting.

Proof. Suppose that the lemma does not hold, and let C be the first chain during
the completion of which the call to Adapt is not safe. Clearly C /∈ CompletedSet
when C is dequeued, and since all calls to Adapt before C is dequeued were
safe, by Lemma 5 (iii) we know when C was enqueued, no chain equivalent
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to C had been enqueued. Hence, Lemma 9 implies that val+l−2(C) /∈ Gl−2 ∧
val+l+3(C) /∈ Gl+3 immediately holds after C was enqueued. We show that when

C is dequeued, val+l−1(C) /∈ Gl−1 ∧ val+l+2(C) /∈ Gl+2; this implies that the
subsequent call to Adapt is safe (by Lemma 8), so that the calls to ForceV al
are non-overwriting (by Lemma 7 (ii)). Wlog consider val+l−2(C) and val+l−1(C).

If val+l−2(C) = ⊥ after C was enqueued, we show that val+l−2(C) = xl−2 /∈ Gl−2

immediately holds after val+l−2(C) �= ⊥ holds. Consider the last table entry

setting action before val+l−2(C) �= ⊥ holds. Recall that C has been equivalent to a

table-defined chain Ctd since being enqueued; then by Lemma 7 (iii), val+l−2(C) =

val+l−2(Ctd) cannot be changed by previous calls to ForceV al. Hence it was

changed by a tape accessing and entry setting action, and we have val+l−2(C) =
xl−2 /∈ Gl−2 after this action (Lemma 4 (ii)).

Now assume val+l−1(C) ∈ Gl−1 when C is dequeued. Then during the period
between the point C was enqueued and the point C is dequeued, the following
two actions must have been induced by the completion of some other chains D:

(i) Gl−2(val
+
l−2(C))(= Gl−2(xl−2)) was defined;

(ii) after action (i), Gl−1(val
+
l−1(C)) was defined;

We show it to be impossible to show that val+l−1(C) /∈ Gl−1 holds when C is
dequeued. If the two happen, then for (either of) them two to be defined during
the completion of D, we must have val+l−2(D) = val+l−2(C) or val+l−1(D) =

val+l−1(C). We then show that for a chain D which is completed in this period,

– during the completion of D, if val+l−2(C) = val+l−2(D), then val+l−1(C) �=
val+l−1(D) (hence Gl−1(val

+
l−1(C)) cannot be defined).

– during the completion ofD,Gl−1(val
+
l−1(C)) canbe defined only if val+l−2(C) =

val+l−2(D) (val+l−1(C) = val+l−1(D) ⇒ val+l−2(C) = val+l−2(D)).

Gathering the two claims yields that Gl−1(val
+
l−1(C)) cannot be defined during

this period and the call to Adapt will be safe.
For the first claim, assume otherwise, i.e. val+l−2(D) = val+l−2(C), and right

after Gl−2(val
+
l−2(D)) was defined, val+l−1(D) = val+l−1(C) holds. This means

that before Gl−2(val
+
l−2(D)) was defined, the following two hold:

(i) val+l−2(D) = val+l−2(C) �= ⊥
(ii) val+l−3(D)⊕ k(D) = val+l−3(C)⊕ k(C)

Consider the last table entry setting action before the above two hold. After
this action, we have val+l−2(D) �= ⊥ and val+l−2(C) �= ⊥; then after this action,
C must have been enqueued (because by Lemma 9 (i), before C was enqueued,
val+l−2(C) should be ⊥), and D has been enqueued even earlier, hence C and D
are equivalent to some table-defined chains Ctd and Dtd respectively. Then, if
C ∈ KUDCS, a contradiction is directly reached by Lemma 10; if C /∈ KUDCS,
for the action, we exclude possibility for each case:
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(i) This cannot have been a tape accessing and table entry setting action on
{Gi}. To illustrate this, assume otherwise. Then this action must be the one
or posterior to the one which leads to C being enqueued, and the following
five hold simultaneously, which contradicts Lemma 6:
– before the action, both Ctd and Dtd are key-defined.
– before the action, Ctd is not equivalent to Dtd;
– before the action, val+l−2(Ctd) = ⊥ or val+l−2(Dtd) = ⊥;
– after the action, Ctd and Dtd are table-defined;
– after the action, val+l−2(Dtd) = val+l−2(Ctd) �= ⊥ and val+l−3(Dtd) +

k(Dtd) = val+l−3(Ctd) + k(Ctd);
(ii) This cannot have been an entry setting action on E, since such actions

cannot change val+l−2(Ctd) nor val
+
l−2(Dtd) (by Lemma 4 (ii));

(iii) This cannot have been because of a previous call to ForceV al. For this,
assume otherwise; as already discussed before, after this call to ForceV al,
C and D are enqueued and equivalent to some table-defined chains Ctd and
Dtd respectively. Then it must be either of the following two cases:
(a) C has been enqueued before this call to ForceV al. Then by Lemma 7

(iii), none of the previous calls to ForceV al affects val+i (D) = val+i (Dtd)
and val+i (C) = val+i (Ctd), a contradiction.

(b) C is enqueued by this call to ForceV al. This is impossible.

Hence the first claim holds.
For the second claim, assume otherwise, then we know that before the entry

setting action on Gl−1(val
+
l−1(C)), the following two hold:

(i) val+l−2(C) ∈ Gl−2, val
+
l−2(D) ∈ Gl−2, and val+l−2(C) �= val+l−2(D)

(ii) val+l−1(C) = val+l−1(D) /∈ Gl−1

Consider the last table entry setting action before the above two hold. By Lemma
9 (ii), val+l−2(C) /∈ Gl−2 immediately holds after C is enqueued; hence this ac-
tion must happen after C is enqueued, and C, D (enqueued earlier that C)
must have been equivalent to some table-defined chains Ctd and Dtd respec-
tively, as discussed before. Then, since none of the previous calls to ForceV al
affects val+i (D) = val+i (Dtd) and val+i (C) = val+i (Ctd) (by Lemma 7 (iii)),
the last action before the above two hold must be a tape accessing and en-
try setting action. Moreover, since val+l−2(Ctd) /∈ Gl−2 and Ctd is table-defined

(and val+l−2(Dtd) /∈ Gl−2 and Dtd is table-defined) immediately hold after C

(D, resp.) is enqueued, and then this action changed val+l−1(Ctd)(= val+l−1(C))

and val+l−1(Dtd)(= val+l−1(D)) from ⊥ to non-empty values, this action must

have been a defining action on either Gl−2(val
+
l−2(Ctd)) or Gl−2(val

+
l−2(Dtd))

(by Lemma 4 (ii)). However neither is possible: wlog assume the action to be
Gl−2(val

+
l−2(Ctd)) := ϕl−2(val

+
l−2(Ctd)), then after this action, the following

holds (by val+l−1(Ctd) = val+l−1(Dtd) /∈ Gl−1):

val+l−3(Ctd)⊕ ϕl−2(val
+
l−2(Ctd))⊕ k(Ctd)

=val+l−3(Dtd)⊕Gl−2(val
+
l−2(Dtd))⊕ k(Dtd)
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Suppose Ctd = (ci, ci+1, ci+2, i) and Dtd = (dj , dj+1, dj+2, j), then we have

ϕl−2(val
+
l−2(Ctd)) = val+l−3(Ctd)⊕ ci ⊕Gi+1(ci+1)⊕ ci+2

⊕ val+l−3(Dtd)⊕Gl−2(val
+
l−2(Dtd))⊕ dj ⊕Gj+1(dj+1)⊕ dj+2

which implies an occurrence ofBadHit. Therefore the claim thatGl−1(val
+
l−1(C))

(= Gl−1(val
+
l−1(Ctd))) can be defined only if val+l−2(C) = val+l−2(D) holds.

Having excluded all possibilities we show val+l−1(C) /∈ Gl−1 to hold when C

is dequeued. The reasoning for val+l+1(C) /∈ Gl+1 is similar by symmetry. Hence
the subsequent call to Adapt will be safe; and by Lemma 7 (ii), the subsequent
calls to ForceV al will be non-overwriting. �
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