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Abstract. The fastest implementations of elliptic curve cryptography
in recent years have been achieved on curves endowed with nontriv-
ial efficient endomorphisms, using techniques due to Gallant—-Lambert—
Vanstone (GLV) and Galbraith-Lin—Scott (GLS). In such implementa-
tions, a scalar multiplication [k]P is computed as a double multiplication
[k1]P + [k2]y(P), for ¢ an efficient endomorphism and k1, k2 appropri-
ate half-size scalars. To compute a random scalar multiplication, one
can either select the scalars k1, k2 at random, hoping that the resulting
k = k1 + k2 is close to uniform, or pick a uniform £ instead and decom-
pose it as k1 + koA afterwards. The main goal of this paper is to discuss
security issues that may arise using either approach.

When k; and ko are chosen uniformly at random in [0,/n), n =
ord(P), we provide a security proofs under mild assumptions. However,
if they are chosen as random integers of |} log, n] bits, the resulting & is
slightly skewed, and hence not suitable for use in schemes like ECDSA.
Indeed, for GLS curves, we show that this results in a bias of up to 1
bit on a suitable multiple of £ mod n, and that this bias is practically
exploitable: while lattice-based attacks cannot exploit a single bit of bias,
we demonstrate that an earlier attack strategy by Bleichenbacher makes
it possible. In doing so, we set a record by carrying out the first ECDSA
full key recovery using a single bit of bias.

On the other hand, computing k1 and k2 by decomposing a uniformly
random k € [0,n) avoids any statistical bias, but the decomposition al-
gorithm may leak side-channel information. Early proposed algorithms
relied on lattice reduction and exhibited a significant amount of timing
channel leakage. More recently, constant-time approaches have also been
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proposed, but we show that they are amenable to power analysis: we de-
scribe a template attack that can be combined with classical lattice-based
attacks on ECDSA to achieve full key recovery on physiscal devices.

Keywords: Elliptic Curve Cryptography, GLV/GLS Method, Bleichen-
bacher’s ECDSA Attacks, Side-Channel Analysis.

1 Introduction

The GLV/GLS Techniques. Many record implementations of elliptic curve
cryptography in software, including, most recently, works such as [27,5,10], rely
on elliptic curves endowed with fast endomorphisms, as constructed by the
methods due to Gallant-Lambert—Vanstone (GLV) [15], Galbraith-Lin—Scott
(GLS) [13], and generalizations thereof. In such implementations, the fast endo-
morphism 9 on the elliptic curve E/F, is used to speed up full size scalar mul-
tiplications [k]P by computing them as multi-exponentiation [k1]P + [ko]¢(P),
where k1 and ke are roughly half of the size of k. Indeed, on a prime order sub-
group of E(IF,), ¢ acts by multiplication by some constant A, and thus, for a
generator P of that subgroup, we have [k1]P + [k2]w(P) = [k1 + koA P.

In order to compute random scalar multiplications with those techniques,
two types of approaches have been considered, as far back as in the earliest
presentations of the GLV method (such as Gallant’s talk at ECC’99 [14]).

On the one hand, k; and ks can simply be chosen uniformly at random in
a suitable half-length interval. This approach, which we call the recomposition
technique (since k is “recomposed” as k = ki + ko), results in a very simple
implementation, and has been used in several implementation records includ-
ing [27], but Gallant expressed concerns about possible biases in the resulting
scalar k. Such concerns have been partially vindicated by some numerical ev-
idence provided by Brumley and Nyberg [7], who also described a relatively
general way to choose intervals for k1 and ko so that the resulting choice of k
is in fact secure (in the sense that it has high entropy). However, the Brumley—
Nyberg method is a bit cumbersome, and no attack so far has been demonstrated
against arbitrary half-length uniform choices of k1 and ks, so that the security
picture is somewhat unclear.

On the other hand, one can also pick k at random and subsequently deduce
half-length values k1 and ko, which eliminates concerns regarding possible biases
in the distribution of k. This decomposition technique usually relies on lattice
reduction in dimension 2 (or equivalently, continued fractions, a generalized Eu-
clidean algorithm, etc.), as originally described in the GLV paper [15], and is
significantly more computationally demanding than recomposition. Simplifica-
tions of this method have later been proposed (particularly in [28]), as well as
higher-dimensional generalizations [25] to tackle decompositions involving sev-
eral endomorphisms (as recently used in [31,16] for instance).

ECDSA Attacks. The success of GLV/GLS method in implementations lately
makes it desirable to reconsider these decomposition and recomposition
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techniques from a security viewpoint. We do so in this paper in the context of
ECDSA signatures, one of the most widely deployed elliptic curve cryptographic
schemes, and an interesting target for the cryptanalyst (like other Schnorr-like
signature schemes) due to its sensitivity to biases in the distribution of nonce
values, as demonstrated by the powerful attack due to Howgrave-Graham and
Smart [17] based on lattice reduction techniques, which breaks (EC)DSA when
some of the most significant bits of the nonces are known. This attack was an-
alyzed in further details by Nguyen and Shparlinski [23,24] and carried out in
practice in many contexts, including against physical devices (see e.g. [22,6] for
some examples). The basic idea is to express the key recovery problem as an in-
stance of the Hidden Number problem (HNP), which reduces to the closest vector
problem (CVP) in a suitable lattice. Since CVP is tractable in low-dimensional
lattices, many practical instances of ECDSA can be broken depending on key size
and the number of leaked nonce bits. The largest problem instance broken so far
is the case of 2-bit nonce leaks on 160-bit curves, tackled by Liu and Nguyen [19]
using the most advanced known techniques for lattice reduction (BKZ 2.0 [9]).
Breaking 2-bit leaks on 256-bit curves, or 4-bit leaks on 384-bit curves seems
currently out of reach (see the discussions in [9,21]).

In any case, there is a hard limit to what can be achieved using lattice reduc-
tion: due to the underlying structure of the HNP lattice, it is impossible to attack
(EC)DSA using a single-bit nonce leak with lattice reduction. In that case, the
“hidden lattice point” corresponding to the HNP solution will not be the closest
vector even under the Gaussian heuristic (see [26]), so that lattice techniques
cannot work. To break this “lattice barrier”, the only known alternate attack is
an algorithm due to Bleichenbacher [3] which predates the attack of Howgrave-
Graham and Smart, but was generally considered of mostly theoretical interest
until it was recently revisited by De Mulder et al. [21] to attack 384-bit curves.
Bleichenbacher devised his attack to demonstrate a vulnerability in DSS at the
time, in which DSA nonces were generated by picking a random value of £,, bits,
where £, is the bit length of the group order n, and then to reduce it modulo
n. Bleichenbacher showed that the resulting bias could be exploited in a very
interesting way, obtaining a key recovery using about 2*' signatures and about
247 time and 2%! memory complexities. At that time, it was not possible to
mount this attack and only simulations on reduced numbers were possible and
the paper was never published.

In the first stage, Bleichenbacher’s algorithm reduces the signatures from 160
bits to say 40 bits using linear combinations of the original signatures and then,
during a second phase, a Discrete Fourier Transform is used to recover the most
significant bits of the secret key. The bias of the reduced signatures is higher
than the bias of the original signatures, that’s the reason why Fourier technique
is needed to extract this information. This algorithm is very similar to Blum,
Kalai and Wasserman algorithms [4,18] for solving LPN and LWE problems.
For 384-bit order, the first stage of Bleichenbacher original attack is not suffi-
ciently efficient to reduce the signatures and more advanced techniques based
on LLL and BKZ are needed if the number of leaked bits is high enough [21].
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The modification of the first stage is not possible if less than one bit of nonces
is available and we turn back to Bleichenbacher’s original attack which requires
a high number of signatures.

Our Contributions. Our first contribution is the first implementation of Ble-
ichenbacher’s attack against ECDSA with a single-bit on nonce bias. We carry
out this attack on the standardized SECG P160 R1 elliptic curve. On this 160-
bit curve, we use 233 ECDSA signatures, and achieve a full key recovery in a few
hours of wall-clock time on a 64-core workstation. The most time-consuming
part of the attack is the first phase, in which a sorting algorithm is executed
several times. This is the first key recovery from a single bit of bias, which
paves the way to new applications. We stress again that this record cannot be
achieved using lattice reduction techniques based on HNP problem, since even if
the HNP lattice satisfies the Gaussian heuristic, a condition for finding the hid-
den lattice point is that the number of known bits of the nonce must be greater
than log,(+/me/2) a2 1.0471 (hence at least 2) [26], irrespective of the underlying
lattice reduction algorithm.

As a second contribution, we show a security proof for the recomposition
method on curves obtained by the quadratic GLS method once the values k
and ko are uniformly distributed in the interval [0, /n), where n is the prime
group order. We prove that the statistical distance between this distribution
and the uniform distribution in [0, n) is negligible. Furthermore, if k1 and ks are
taken at random in a small interval of the form [0,2™), where m = [} log, n],
the bias on the distribution on k used in Bleichenbacher’s attack is negligible.
However, we show that the bias of the distribution on tk where t is the trace is
sufficiently large and a Bleichenbacher’s attack allows to recover the secret key.
We also implement this attack and the complexities are similar to the previous
part.

Finally, we study the decomposition technique proposed in GLV with the
implementation described by Park et al. in [28]. To this end, we propose a very
efficient side-channel attack that uses the leakage on the multiplication in order
to recover some of the least significant bits of the nonces. Consequently, we can
thus use lattice techniques to recover the secret key.

2 Preliminaries

2.1 Bias Definition and Properties

The measurement of the bias of random variables represents a significant part
of our analyses. We thus recall the definition of the bias which was proposed by
Bleichenbacher in [3].

Definition 1. Let X be a random variable over Z/nZ. The bias B, (X) is de-
fined as _
B,(X) = E(e*™X/™) = B, (X mod n),

where E(X) represents the mean.
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Similarly, the sampled bias of a set of points V. = (v1,---,vr) in Z/nZ is

defined by
L—1

1 )
Bn(V) — I Z 627rwj/n.
§=0

The bias as defined above presents some useful properties we recall in Lemma, 1.

Lemma 1. Let 0 < T < n be a bound and X,Y random wvariables uniformly
distributed on the interval [0,T — 1].

(a) If X is uniformly distributed on the interval [0,n — 1], then B,(X) = 0.
(b) If X and Y are independent, then B,(X +Y) = B, (X)B,(Y).
(¢) Bn(—X) = Bn(X) where a denotes the conjugate of a.

(d) B,(X)= 711 Sin(”T/")‘ and By, (X) is real-valued with 0 < B, (X) < 1.

sin(7/n)
(e) Let a be an integer with |a|T <n and Y = aX, then B,(Y) = %s;?rf?;f/ég)

2.2 ECDSA Signature Generation

ECDSA is a NIST standard and we describe the signature generation in
Algorithm 1.

Algorithm 1. ECDSA signature. P is a base point of order n and H : {0,1}* —
[0, n—1] is a cryptographic hash function. The private key is an element « € Z/nZ
and the public key is denoted by (p,n, H, P,Q) with @ = [z]P.
1: function SIGNECDSA(’ITL)
k& [0,n—1]
(u,v) « [k]P
r < u mod n; if r = 0 then goto step 2;
s < k7Y (H(m) + rx) mod n; if s = 0 then goto step 2;
return (7, s)
end function

»

3 Bleichenbacher’s Attack on Single Bit Bias

In this part, we present our results on an ECDSA signature generation scheme
where the nonce k is 1-bit biased. We demonstrate that an attack proposed some
years ago by Bleichenbacher can succeed in retrieving the secret key in about
237 time and 232 memory complexities given 232 signatures, for 160-bit order.
This attack was initially focusing on the DSA signature generation scheme but
can be applied without any modification to ECDSA we consider in this paper.
The main idea consists in using the fact that the nonces k; are chosen from a
biased random variable K, i.e. k are not randomly and uniformly generated on
[0,n — 1]. Because the values k; are biased and linked with the secret key x by
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the equations which are used for the signature computations, these signatures,
correctly manipulated, also present a bias which will only be significant for the
correct value of x. In other words the bias plays the role of the distinguisher in
this attack.

Obviously, for cryptographic sizes, evaluating the bias for all values in [0, n— 1]
is impractical. However, Bleichenbacher observed that it is possible to ”broaden
the peak” of the bias in such a way that, with a value close the correct value of x,
the bias will remain significant. Thus the bias computations can be performed on
a more sparse set of candidates thanks to the Fast Fourier Transform. In return,
it requires a non-negligible work on the signatures which reduces the bias, and
the attack returns an approximation of the secret key, i.e. its most significant
bits. The attack can be iterated to retrieve more bits of the secrets and as soon
as sufficiently many bits of = are known, Pollard’s lambda method [29] can be
used to derive the remaining bits. Algorithm 2 presents the main steps of the
attack.

Algorithm 2. Bleichenbacher’s attack given S ECDSA signatures. The param-
eters S, ¢ and ¢ have to be chosen accordingly to the bias.

Require: S biased ECDSA signatures (r;, s;) computed using a single secret key x.
Ensure: The ¢ most significant bits of x.

Preprocessing

for j=0to S—1do
h; < H(m;) - s~ mod n
Cj—Tj- sj_l mod n

end for

Reduction of the ¢; values (Sort-and-Difference Algorithm)

A< [(¢j, hj)lo<i<s—

for i=1to . do
Sort A by the ¢; values >cj < cjt1
for j=0to S—tdo

Alj] + Alj + 1] = A[j] > Alj] = (¢j+1 — ¢j, hjr1 — hy)

end for

: end for

: Only keep the pairs (c;, h;) such that ¢; < 2°

: Denote by L the number of such pairs

[ e S G S
TEwhoo®

—_
(=]

: Bias computation using the inverse FFT

: Z +(0,---,0) a vector of size 2°

:for j=0to L —1do

ch P ch +e27‘rihj/n

: end for

: W« iFFT(2) > Inverse FFT computation. The output is also a vector of
complex numbers.

: Find the value m such that |Z,,| is maximal

. return msby(mn/2°)

N DN = =
= O ©

N DN
W N
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3.1 Attack Analysis

We first explain why the bias can serve as a distinguisher and while doing so
explain the goal of the preprocessing phase, as it was done in [21], for the sake
of completeness. For that purpose, consider S ECDSA signatures (r;, s;) with
biased nonces k;. We have the following relation due to step 5 of Algorithm 1:

k; = H(mj)sj_1 +rjsj_1x modn for 0<;j<S5—1.

Now let h; = H(mj)s;1 mod n and ¢; = Tjs;1 mod n. Then the set {h; +

cjT 5—9:_01 = {k; }f;ol will show a significant nonzero sampled bias. Moreover, for
any w # x, the sampled bias from V,, = {h; + cjw}fz_ol will be relatively small.
Since h; and c¢; are publicly computable, we thus have a way to determine the
correct value of = by testing all the value w € [0,n — 1].

To have a practical test, we have to broaden the peak of the bias such that
values of w close to the correct value = will also show a significant bias. The
peak will be broad if the ¢; are relatively small. More precisely, by denoting 2°
a bound such that 0 < ¢; < 2¢. then we can find an approximation of z by
evaluating the sampled bias of 2¢ evenly-spaced values of w between 0 and n — 1.

The reduction of the ¢;, second phase in Algorithm 2, can be done using a
sort-and-difference algorithm. From S pairs (c;, h;), we first sort them according
to their first element. Then we subtract each c; from the next largest one and we
take the differences of the corresponding h; as well. We thus obtain a list of S—1
pairs (cj, h}) whose values ¢ are on average log(S) bits smaller. More details
about the analysis of this reduction are given later. This reduction algorithm can
be repeated in order to achieve the bound 2¢: once the MSB of z are known, one
can rewrite the system and attack the next top bits, by integrating the learnt
MSB into the ¢; as was done in [21].

Now let w,,, = mn/2°, with m € [0, 2°—1], be 2¢ evenly-spaced values between
0 and n — 1. For sake of clarity, we keep the notation (c;, h;) for the reduced
pairs with ¢; < 2¢ and we consider having L such pairs. Then

L—1 2¢—1

1 S mmn/2°¢ 1 wih i /m mitm /2°
B?L(Vwm) :L Z 627rz(hg+cgm 1/2%)/m Z (L Z 62 ihj/ L)eQ itm /2
j=0 =0 {ile;=t}
2f-1
— Z Zt€27ritm/22
t=0
with Z; = iz{ﬂcj:t} e?hi/m B, (V,,. ) can be viewed as the inverse Fast
Fourier Transform of the vector Z = (Zy, -+ ,Zy_;). Thus the multiple

bias computations can be performed very efficiently using the FFT. From
Step 17 to 20 in Algorithm 2, we compute this vector Z. Step 21 out-
puts a vector of the sampled bias for the 2¢ candidates, i.e. iFFT(Z) =
(Bn(Vawg)s Bn(Vip, )y -+ + s Bn(Vaw,, ). Finally, the value of wy, = mn/2¢ with
the largest sampled bias should share its £ most significant bits with the secret
key x.
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Choosing the Parameters. We first give some properties which will help to
define the parameters for the attack. We can estimate the sampled bias for a
wrong candidate w,, i.e. a value wy, which do not share some most significant
bits with the secret key x. More precisely, it can be shown that for w,, either
significantly larger or significantly smaller than z, we have B, (V,, ) =~ \/IL,
which corresponds to the average distance from the origin for a random walk on
the complex plane.

The second property concerns the c; reduction phase and gives a relation
between the number of signatures S and the number of reduced pairs L.

Proposition 1. Consider S ECDSA signatures of the form (c;j, h;) and v € Z.
The percentage of signatures (c, h’;) after the first application of the sort-and-
difference algorithm such that c; < 2984=108 547 can be approzimated by 1—e=2" .
Lemma 2. Let X1,...,Xx be N independent uniformly distributed random
variables over [0,1], and for all i, denote by X ;) the i-th order statistic of the
X;’s (namely, X is the i-th smallest among the X;’s). Then, the random vari-
ables Y; = X(jp1) — X fori = 1,...,N — 1 are identically distributed, and
all follow the beta distribution B(1,N), of probability density function (here-
after pdf) f(t) = N - (1 —t)N=1. As a result, for any constant o > 0, we have
Pr[Y; < a/N]=1—-e*+ O(1/N).

Proof. Indeed, a standard formula [11, 2.2.1] expresses the joint pdf of X(; and
X(i+1) as:

N! )!ui_l(lf’v)N_i_l fOI‘OSuSUSl,

fi z‘+1(u,v) = {(il)!(Nil
’ 0

otherwise.

Hence, the pdf f; of Y; is given by:

1-t

fi(t) = fiiv1(u,u+t)dt for t €[0,1].
0

The change of variable u = (1 — t)w gives:
1
Sty = (1 —t)/ Foinn (1= tyw, (1 — tyw + t)duw
0
1
=c(l-1t) / 1—t) w1 —w—t +wt)VN " dw
0
1
—cll=t) [0 )N )
0

1
=c(1-t)N ! / w1 —w)V " dw,
0
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N!
i—1)I(N—i—1)!"
constant ¢’ and all ¢ € [0, 1], and since fol fi = 1, we must have f;(t) = N(1 —
t)N=1 = f(t) as required. As a result, we obtain:

Pr [Yi < ]OH =/a/NN(1—t)N—1dt: 1— (1— JO\‘[)N
0

=1—exp(N:(—a/N+O(1/N?)) =1—e"*+O(1/N).

where ¢ = In particular, we have f;(t) = ¢/(1 — ¢)V~1 for some

This concludes the proof. a

As an example consider a modulus n of size 160. Starting from 240 ECDSA
signatures, after one iteration of the sort-and-difference algorithm, about 86.5%
of them will have a value c;- < 2121 The percentage drops to 22.1% if we consider
only those ones with a value c;- < 2118, Note that this proposition is only true
for the first iteration of the algorithm where we really can consider variables as
uniformly random and independently distributed. Clearly they are not after this:
if after the first round variables were uniformly distributed, the ratio between
v = —2and v = 1 would be 0.125 = 1/22 where it is ~ 0.255. Sadly, it appears
that the ratio progress in our disfavor when we want to iterate, 7.e. the ratio after
v iterations is less than (1 —e~2")*. We thus do not have a lower bound. However
the ratio can be experimentally determined and Table 1 gives an overview for
different values of v up to 6 iterations.

Table 1. Experimental ratio between the ECDSA signatures of the form (cj, h}) such
that ¢ < log n—u-(1og S+7) and the S initial signatures, after ¢ iterations of the sort-
and-difference algorithm

¥ -2 -1 0 1 2
1% iteration  0.22 0.39 0.63 0.86 0.98
2" jteration 0.031  0.12 0.36  0.750.94
3'4 jteration 3.2 107% 0.025  0.17 0.64 0.89
40 jteration 3.0 1074 4.6 1072 0.069 0.53 0.84
5% iteration 2.0 107° 6.7 107* 0.022 0.40 0.79
6" iteration 2.8 107 9.5 1075 6.5 1072 0.28 0.73

Given S signatures, we have to choose a pair (v, ¢) such that logn —¢- (log.S+
v) = ¢ is sufficiently small to perform a FFT in 2¢log/ time and 2¢ memory
complexities. The algorithm complexity is O(S log(S) + ¢ log(ﬁ)). Now a verifi-
cation is necessary to be sure that this set of parameters will give a successful
attack. Indeed denote by B, (K) the initial bias which is fully determined by the
number of most (or least) significant bits of the k; which are known or set to
zero (see Table 2 for some values). From properties (b) and (c) of the Lemma 1,
each iteration of the sort-and-difference algorithm reduces the bias by raising
it to the square of its norm (assuming that the variables are independant): in-
deed, let X,Y be uniformly distributed and independent random variables on



GLV/GLS Decomposition, Power Analysis, and Attacks 271

[0,n — 1], then B, (X) = B,(Y) and B, (X —Y) = B,(X)B,(Y) = |B.(X)|*.
The final bias is then approximated by | B, (K)|? . Thus the following inequality
holds since B,,(Vy,,,) =~ 1/vL:

1B, (K)[* > 1/VL,

where L represents as before the number of reduced pairs (c;, hj) with ¢; < 2%
Using Table 1 which gives the ratio L/S for different choices of pairs (7,t), we
obtain a relation between S, ¢, £ and n.

Note that contrary to previous reports in the literature [21,3], we do not need
to center the k; around 0. Indeed sort-and-difference algorithm performs only
subtractions and does not mix subtractions and additions as is common with
lattice reduction or generalized birthday algorithms.

Table 2. Some values of bias for large n, when b most (or least) significant bits of k
are known, using Property (d) of Lemma 1

b 1 2 3 4 5
B, (K) 0.6366198 0.9003163 0.9744954 0.9935869 0.9983944

3.2 Implementation

We successfully implemented the attack. As our target, we chose the SECG P160
R1 curve, published in 2000 by the SECG consortium [8] and still considered
secure. We fixed the most significant bit in the nonces and checked (with the
help of the secret) that we indeed got the expected bias: &~ 0.63662. Our C++
implementation was based on the RELIC toolkit (using its provided plain C
integer arithmetic) [1] and FFTW [12]. We parallelized it in a straightforward
manner (including (quick)sorting phases) and tested it on a multicore machine.

We generated 233 signatures and performed 4 sort-and-difference reduction
phases. 450 millions (which is 52.5%) of our initial 232 signatures had their
c; reduced down to 32 bits, as was expected from table 1. The bias after 4
reduction steps was 0.000743558 which is slightly greater than the expected
0.636622" ~ 0.00072792. We then computed a FFT on 32 bits (we selected the
reduced ¢; smaller than 232). The best candidate had a score approximately 35%
greater than the second. Both corresponding MSB of the secret differed only by
the 31%* and 32" most significant bits. The 3¢ and 4" candidates were also very
close to the two first ones, with score approximately 1/3 of the best candidate.
Then, there was a number of random values with maximal score approximately
1/6 of the best one. We repeated the experiment several (5) times and got similar
results, always finding at least the 30 MSB of the secret with the best candidate.
We couldn’t repeat it more because of the high computational resources involved.

The total memory used by the signatures and FFT tables was slightly more
than 1 terabyte. To recover 32 bits of the private key, the attack took approxi-
mately 1150 CPU-hours, most of it being data exchange, which we can decom-
pose as follows:
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— 70%: parallelised quicksort (the most memory-intensive phase)

— 18%: signature generation (approximately 250 to 430 kilocycles per signature
depending on the CPU, excluding hash computations)

— 10%: candidate selection and FFT table preparation

— ~ 1%: the FFT itself.

We did not use more parallelizable sorts like Batcher odd-even mergesort [2] but
this would clearly be the next thing to do from a performance perspective.
Next steps of the attack to recover the following bits of the secret were done as
in [21]. Basically, it amounts to a replay of algorithm 2 on the initial signatures,
putting the previously found MSB of the secret into hj;. Write the private key
r as 192™ + x1 where xg is the recovered m MSB at the first round. Then
(hj) + (cj)z = (hj + ¢jz02™) + (cjz1) and we want to recover the MSB of
x1. We proceed as in the first round, except that we now keep the c; that are
smaller than 2/*™ instead of 2¢ (thus when £ = m we just have to stop the
reduction one iteration earlier). Then we build the FFT table as Z[c;/2™] =

Zc; /2™ + ¢2™;/" The FFT recovers the next most significant chunk of bits
of the secret key. The computation restart makes it necessary to go back from
the initial signatures, but there’s no need to keep them in memory during the
reduction. In practice we had barely enough memory to keep them, but in order
to reduce memory usage they should either be stored on disk and retrieved to
iterate the secret recovery, or tracked down through the reduction and rebuilt
afterwards.

In practice, it is advisable to take a small security margin and reinject only
30 bits of the computed MSB of the secret to account for small variations of
sampling around the peak. In any case, if we recurse with a wrong secret, the FFT
will not detect any peak. Experiments indeed showed no peak in this case, with
the highest score not being statistically different from the other ones. This paves
the way for a time/memory tradeoff: suppose the hardware is limited in memory
and can only work on (say) 23! signatures and 23° FFT size instead of the 233
needed for attacking 160 bits with 4 iterations with the previous algorithm. We
first reduce the c¢; from 160 to 40 bits with 4 reductions as usual. We then simply
guess the 10 MSB of the secret and build 23°-sized FFT tables accordingly. The
guess will be correct on the only one FFT among the 2'° which shows a significant
peak. Since FFTs are particularly efficient, much more than sorting, this is of
practical importance. Alternatively, if it’s possible to compute 24! signatures, we
can select only the expected 1/2!0 fraction of signatures whose corresponding c;
have their 10 MSB already zeroes, that is to say that have 150 bits instead of 160
and can be reduced to 30 with 4 iterations. Finally, since the FFT table takes
less memory than the signatures (a complex number occupies 16 bytes whereas
a signature requires at least 40), we could improve the attack further by either
carrying out several FFTs in parallel when guessing some bits of the secret, or
by increasing the size of the FFT table slightly (with a corresponding increase of
the selection bound on ¢;). This would have two advantadges. Firstly, it would
improve the sampling around the peak and reduce the uncertainty. Secondly, the
bound increase implies that some signatures would be selected after the third
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round of reduction instead of the fourth, thus having a much better bias and
hopefully revealing more precise information about the secret.

Our experiments targeted a 160-bit curve, but it should be pointed out that
larger curves are susceptible to this attack as well. Roughly speaking, one can
carry out the key recovery attack with 1-bit nonce bias on an N-bit curve in
time ~ 2N/5108:(N/5) and memory ~ 2N/, For example, a 256-bit curve can be
attacked in time =~ 2°% and memory ~ 2°2: generate 2°? signatures, perform 4
reduction steps (removing 4 - 51 = 204 bits on approximately 53% of the data),
keep signatures with c; less than 252 and carry out the FFT on a table of size
252, One signature is 64 = 25 bytes, so that the total memory needed for the
attack is 2'® terabytes of storage, which corresponds to 65536 of today’s 4 TB
disks. This does not appear to be out of reach of well-funded adversaries.

4 Security Analysis of the Recomposition Technique

The results presented so far had no direct connection with GLV/GLS curves.
We now turn to such curves, and first discuss in this section the security of
what we called the “recomposition technique” for GLV/GLS coefficients (namely,
choose k; and ko uniformly at random in some interval [0, K) to obtain k =
k1 + koA mod n), whereas the next section will focus on the “decomposition
technique”.

To fix ideas, we consider an elliptic curve E obtained by the quadratic GLS
method over a prime field [13, §2.1]. In other words, there is an elliptic curve Ey
over the prime field IF,, such that E is the quadratic twist of £y over F,. If we
denote by p+ 1 — ¢ the order of Ey(IF,) (where ¢ is bounded as [t| < 2,/p by the
Hasse~Weil theorem), the order n of E(IF,2) satisfies:

n=(p—1)%+1t% (1)

We assume that this order n is prime, which is the main case of interest. Then,
E is endowed with an efficient endomorphism 1 (obtained by conjugating the
Frobenius map with the twisting isomorphism) which acts on the cyclic group
E(F,2) by multiplication by

A=t"'(p—1) (mod n). (2)

In particular, A2 = (p — 1)2/t?> = —t2/t> = —1 (mod n).

In this setting, we first prove in §4.1 that if k1 and ko are chosen uniformly at
random in [0, y/n), then k = k1 + k2 is statistically close to uniform in Z/nZ, so
that such a choice of (ki, k2) can be used securely in any cryptographic protocol
(and in particular ECDSA). On the other hand, we show in §4.2 that if k; and ks
are chosen in [0,2™) where m = | ; log, n] instead, then k = k1 + koA may not
be close to uniform anymore, and we show that a variant of Bleichenbacher’s
attack can apply. In §4.3, we describe an implementation of that attack on a
160-bit GLS curve, similar to the attack of §3.
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4.1 A Secure Choice of (ki, k2)

Let E be a curve of prime order n over F,. obtained by the quadratic GLS
method as above. In view of (1), we have:

(P—12<n<(p—-1°+2yp)°=@p+1)>

and the inequalities are in fact strict, since n is prime. Thus, we have p — 1 <
vn < p+1, and it follows that the distribution of k& = k1 + ko) for (kq,k2)
uniform in [0,+/n)? is statistically close to the distribution of the same k for
(1, k2) uniform in [0, p — 1)%. We will thus concentrate on the latter, and show
that it is close to uniform in Z/nZ using the following lemma.

Lemma 3. The following map is injective.

F:[0,p—1)? — Z/nZ
(kl, kg) — k1 + ka .

Proof. Consider two distinct pairs (k1,k2) # (ki,k5) such that F(k1, ko) =
F (K}, k)). We have:

(x—2)+ (y—y)A=0 (mod n)
(x—2)? =Ny —v¢)?* (modn)
(x—a')?+(y—y)’ =0 (modn),

since A2 = —1 (mod n). Thus, the positive integer (x—2')?+ (y—1v’)? is divisible
by n, and it is also smaller than 2(p — 1)? < 2n, so we must have (z — z’)? +
(y —y")? = n. In other words, (z — 2')? + (y — 9')? is a decomposition of n as
a sum of two squares. Now it is well-known that, as a prime number, n has at
most one decomposition as a sum of two squares up to order and sign (see e.g.
[20, §3.6]), and (p — 1) + #2 is one such representation. As a result, we must
have either x — 2’ = +(p — 1) or y —y’ = £(p — 1), and neither is possible since
those difference are bounded by p — 2 in absolute value. Hence, F' is injective as
required. a

Theorem 1. The distribution of the values k = ki + koA for (k1,k2) uniform
in [0,p — 1)2 is statistically close to the uniform distribution on Z/nZ. More
precisely, the statistical distance:

$ 9 1’
1 ‘Pr [k? k?1 + k2>\ N (kl, kg) [0,p 1) ] n
kEZ/nZ

is given by Ay = 2t /n, which is negligible.

Proof. Indeed, since the function F' above is injective by Lemma 3, the proba-
bility Pr [k = k1 + koA 5 (K1, k) & [0,p — 1)?] is equal to 1/(p — 1)? for each
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of the (p — 1)? points in the image of F', and 0 for each of the n — (p — 1)? = 2
points outside of that image. Therefore:

1
(p—1)

as required. This is bounded above by 8p/(p—1)?, which is indeed negligible. O

(p—1)2 N 2 212

1
A= (p—1)2. —n]+t2-]0—

Remark 1. Theorem 1 means that it is secure, in any ECC protocol instantiated
over the GLS curve F, to sample random scalars k by picking k1 and ko uniformly
in [0,p — 1), or equivalently [0, /n).

As we can see, the proof relies on the particular arithmetic properties of the
quadratic GLS method (mainly the fact that A = /=1 in Z/nZ), so that the
result does not readily extend to different settings, like the GLV method on a
curve of CM discriminant —3. And indeed, in that case, Brumley and Nyberg
have provided evidence that choosing (k1, k2) uniformly in [0, /n) may not yield
a close to uniform distribution for k& [7, Example 3]. They suggest an alternate
approach to select intervals to choose ki1 and ks from and still achieve high
entropy in a more general setting, but since the quadratic GLS method is one
of the most used variants of GLV/GLS, we believe Theorem 1 is of significant
practical interest.

4.2 Breaking Insecure Choices of (ki1, k2) with Bleichenbacher’s
Attack

In the quadratic GLS setting, we have just seen that choosing (k1, k2) uniformly
in [0,/n)? yields a close-to-uniform distribution of k = ki + ka\. However,
we can reasonably suspect that if we choose k; and k2 uniformly in [0,2™),
m = | }log, n| (i.e. uniform bitstrings of length just under half of the size of n),
the distribution of k will no longer be uniform. This is not immediately visible
on the bias, however.

Indeed, if we let T = 2™ and define K;, K5 as independent uniform random
variables over [0,7) and K as the random variable in Z/nZ given by K =
K7 + K3\, we have, by Lemma 1:

Bo(K) = Bo(K1) - By(AK) sin(wT'/n) sin WAT/n)’

T‘ sin(7/n) ’ T’ sin(mA/n)

The first factor is very close to 1, but the second factor is usually negligi-
ble. For example, on the 160-bit GLS curve (3) below, we have T' = 27 and
B, (AKs) = 1.52/T. As a result, Bleichenbacher’s attack does not apply directly
to this setting in general.
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However, since A = t~1(p — 1) (mod n), we claim that there is a significant
bias on the values t - k. Indeed, we have:

B, (tK) = B,(tK1) - Bu((p —1)K2)

_ 1ysin (mtT/n) ‘ ’sm - 1)T/n)‘
T sin(nt/n) sin(w(p — 1)/n)
1 wtT/n+ O((tT/n)?) 1 |sin(7(p — 1)T/n)]

ST wt/n+0((t/m)?)  Ta(p—1)/n+O0(((p—1)/n)?)

) sin(r(p — 1)T/n)

= (1+0(T/n)? + (w/n)?)) - | wo 1T/n |

The big-O in the first factor is negligible since tT'/n = O(p*/?-p/p?) = O(p~'/?)
and p/n = O(p~!). On the other hand, (p — 1)T/n =~ T'/\/n is roughly between
0.5 and 1 depending on how close n is to a power of two. Thus, the bias is
significant in general, and is maximal when (p—1)T'/n is smallest (close to 1/2),
which happens when n is just under a power of two. The bias B, (tK) is then
close to 1/(m-1/2) = 2/m ~ 0.637.

It is then straightforward to adapt Bleichenbacher’s attack to this setting by
targetting the values t-k instead of k. We can then break ECDSA signatures that
use nonces of the form k& = k1 + koA above using that variant. An implementation
of that attack is discussed in the next subsection.

4.3 Implementation of Bleichenbacher’s Attack in the GLS Setting

We carry out the attack described above on the 160-bit GLS curve E defined as
follows. Over the 80-bit prime field! Fp, p = 255 - 272 1+ 1, we define Ey: 3% =
2% — 32/23 + 104. Then, the elliptic curve E is the quadratic twist of Ey over
F,2 = F,(v/23), namely:

- 3
E:y* =2® — 3x 4104 - v23 over Fe. (3)

The order of Ey(F,) is p+ 1 — ¢t for t = 776009485427, and E(IF,2) is of prime
order n = (p — 1)2 4 t2. The theoretical value of the bias B, (tK), computed
using the exact formula above, is then ~ 0.634.

We performed the recovery of 32 MSB of a private key as in section 3.2. We
computed 233 signatures and unrolled the attack on (tc; mod n,th; mod n)
instead of (c;, h;). We checked the bias and obtained ~ 0.634116 which is close
to the theory. In practice the attack took about 2000 CPU-hours, with 56% for
the signature generation, 37% for the four sort-and-difference reduction steps,
5% for the candidate selection and FFT table preparation and less than 0.5%
for the FFT itself. In wall-clock time terms, except for the signature generation
which took (much) longer, other phases were identical as 3.2. We attribute this
unexpected increase in signing time to threshold effects: for example, represent-
ing elements on a prime field with ~ 2169 elements needs only 3 64-bit words,
whereas a on IFj2 we needed 4 x 2 = 8 words.

! This is an example of “optimal prime field” (OPF). See e.g. [32].
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5 Security Analysis of the Decomposition Technique

In this section, we analyze the security of algorithms for computing the decom-
position of the nonces used in the GLV method from a side-channel analytic
perspective. Many techniques have been proposed, including [15,28]. The origi-
nal GLV method [15] based on LLL reduction of a lattice that depends on the
nonce k, and variants thereof, have an execution time that depends on k, and
are therefore vulnerable to timing attacks.

Therefore, we examine the security of a potentially more secure approach, the
Park et al. [28] decomposition technique, using more involved power analysis
technique.

5.1 Decomposition Algorithm

Park et al. provide an alternative decomposition to the GLV paper [15] which
reduces the theoretical bound for the decomposition using the theory of u-
Euclidian algorithm and is a little bit faster. The algorithm requires two short
and independent vectors v; and vy of the two-dimensional lattice L = {(x,y) :
z + yA = Omod n}. We can find these vectors during a precomputation time
using the Gauss reduction. The algorithm consists in finding a vector in the lat-
tice L = Zwy + Zvs that is close to (k,0) using linear algebra. Then, (k1, ko) is
determined by the equation:

(K1, k2) = (k,0) = ([b1]v1 + [ba]v2),

where (k,0) = byv1 + bavs is an element of Q x Q.

Algorithm 3. Decomposition technique of Park et al. in [2§]

Require: k = n, the shortest vectors vi = (x1,y1),v2 = (22, Yy2)
Ensure: (k1,k2) such that k = k1 + k2 A(modn)

1: D:$1y2*$2y1,a1 :ka,GQ = 7y1k
2: z; = |a;/D] for i = 1,2
3 ki=k— (ZliEl + 22x2), k2 = z1y1 + 22y2 return (k'l, k2)

The decomposition technique depicted in Algorithm 3 makes many computa-
tions involving the sensitive nonce k. Particularly, the computation of a; (resp.
az) is based on a multiplication of the nonce k by ya (resp. y1) which is assumed
to be known since it is a precomputed value obtained from public parameters
using a deterministic algorithm.

Suppose now that we obtain the knowledge of the least significant byte of £
nonces k1, - - -, kg. The best strategy for finding the secret key x consists in per-
forming classical lattice attacks as proposed in [17,23,24]. For a 160-bit modulus,
the lattice attack works consistently for £ 2 27. However the side-channel attack
may sometimes fail, 7.e. the returned byte of some k; can be a wrong value.
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Thus, by denoting 0 < ¢ < 1 the confidence rate, the side-channel attack has to
be performed on m > [27/c] signatures. Then:

— Select 27 signatures at random among them.

— Perform the attack using these signatures.

— If the attack fails, goto the first step.
The probability of success at each iteration of the lattice attack is ("5;)/(5%)-
As an example, suppose we obtain m = 200 signatures, and can guess the least
significant byte with 90% accuracy (¢ = 0.9). Then the probability of success of
the lattice attack is about 4.7% and 21 lattice reductions have to be performed
on average. Since LLL reductions are cheap, much lower success probabilities are
tractable as well.

In the following, we discuss the side-channel attack that aims at recovering
the first byte of the nonce targeting the two aforementioned multiplications.
We present the attack in the particular case of a 8-bit implementation (that
corresponds to the device we used in experiments). Note that this attack may
also work for 16-bit implementation but in this case the computational cost will
be larger and the success rate smaller.

5.2 Side-Channel Attack on this Implementation

The details of the attack highly rely on the way the multiplication is imple-
mented. Depending of the underlying algorithm, the attack may be more or less
difficult. We present here the attack corresponding to the implementation we
target but we will discuss adaptations to different algorithms. The multiplica-
tion we target is a schoolbook multiplication with the nonce being scanned in
the outter loop. Algorithm 4 outlines the implementation of such multiplication
for £,,-bit nonces and £, o-bit b.

Algorithm 4. Multiplication v = kb of k = Zf;(/)s ;28 times b = Zfi/()z’/g b; 28
Require: £,-bit k and £, /»-bit b two integers, v = 0
Ensure: v =%k xb

1: v« 0

2: for i=0toi < ¢,/8 do

3: Co ~—0

4: for j =0to j <{,,2/8 do

5: Vitj = (kl X bj + Cj) & OxFF
6: Cjt+1 = (kz X b]' =+ Cj) > 8

T end for

8: end for return v

The idea is to take profit of all operations involving the first nonce-byte in the
inner loop to recover its value. This can be done by propagating a probability
distibution from an operation to another and updating it with the corresponding
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leakages. Since the nonce bits have to be recovered using a single trace (the nonce
is randomly generated for each signature) we place ourselves in the context of
a profiled attack. The application of such an attack in a non-profiled setting is
left as an open question.

Template Attack on One Step. One step of the inner loop consists in a multipli-
cation of the first byte of the nonce kg, a byte of the auxiliary input b; and the
carry ¢;. This results in a value v; and a new carry ¢;41. We may obtain leakages
for each of these variables. We denote by capital letters the output distributions
of template exploitation corresponding to small letter variables. For instance,
after processing the leakage corresponding to ¢;, the attacker gets a distribution

C; = (Pr(c; =0),Pr(c; = 1),...,Pr(c; = 255)).

Since these variables may be manipulated more than once during the compu-
tation, different leakage points may be combined by multiplicating probabilities
then normalizing the resulting distribution. More precisely, let I1,1s,...,l; be
leakages corresponding to variable kg, then the distribution K, obtained from
these leakages is computed as

l
1
Pl"(k‘o = .Z‘) = 7 H Pl"(k‘o = .’Il“lj),
j=1

where the normalizing coefficient Z is given by H;Zl Pr(ko = z|l;).

Propagating and Updating Distribution. Let us now discuss how to take profit
of all the leakages of the inner loop to gain information on the byte ky. The
main idea is to gather all the information from all variables of a given step i
into distribution Ky and C;1; then do the same at step i + 1 using the newly
updated distributions. From a probabilistic point of view we should compute the
joint distribution of variables of step i then compute marginalized distributions
Ky and C;11. The following algorithm updates the distributions Ky and C;11
according to the distributions of variables b;, v; and ¢;.

Algorithm 5. Information propagation for one step of the multiplication inner
loop

Require: distributions Ko, B;, Vi, C; and Cit+1

Ensure: K; and C;,, updated distribution

1: K= (0,0,...,0)

2: for 0 < k,b,c < 256 do

3: 2B utvekxbte

5 Ky(k) « Ki(k) + Ko(k) - Bi(b) - Ci-1(e) - Vi(v) - Ci(u)

5: i11(u) < Ciyi(u) + Ko(k) - Bi(b) - Ci(c) - Vi(v) - Ciya(u)
6: end for
7: return Kj/ >, Ko(k) and Ciy1/ >, Cigr(uw)
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The attacker starts with using Algorithm 5 for the first step. Then she uses
the newly updated distributions Ky and C; and the initial distributions By, V;
and Cy as inputs of Algorithm 5 and so on ... At the end, the attacker gets the
final distribution Ky from which she can derive the most likely value of the least
significant bit (or more).

References

10.

11.

12.

13.

14.

15.

16.

17.

. Aranha, D.F., Gouvéa, C.P.L.: RELIC is an Efficient LIbrary for Cryptography,

http://code.google.com/p/relic-toolkit/

. Batcher, K.E.: Sorting networks and their applications. In: Proceedings of the

Spring Joint Computer Conference, AFIPS 1968 (Spring), pp. 307-314. ACM,
New York (1968)

. Bleichenbacher, D.: On the generation of one-time keys in DL signature schemes.

Presentation at IEEE P1363 Working Group Meeting (2000)

. Blum, A., Kalai, A., Wasserman, H.: Noise-tolerant learning, the parity problem,

and the statistical query model. J. ACM 50(4), 506-519 (2003)

. Bos, J.W., Costello, C., Hisil, H., Lauter, K.: High-Performance Scalar Multiplica-

tion Using 8-Dimensional GLV/GLS Decomposition. In: Bertoni, G., Coron, J.-S.
(eds.) CHES 2013. LNCS, vol. 8086, pp. 331-348. Springer, Heidelberg (2013)

. Brumley, B.B., Hakala, R.M.: Cache-Timing Template Attacks. In: Matsui, M.

(ed.) ASTACRYPT 2009. LNCS, vol. 5912, pp. 667-684. Springer, Heidelberg
(2000)

. Brumley, B.B., Nyberg, K.: On Modular Decomposition of Integers. In: Preneel, B.

(ed.) AFRICACRYPT 2009. LNCS, vol. 5580, pp. 386-402. Springer, Heidelberg
(2009)

. Certicom Research. Standards for efficient cryptography, SEC 1: Elliptic curve

cryptography, Version 1.0 (September 2000)

. Chen, Y., Nguyen, P.Q.: BKZ 2.0: Better Lattice Security Estimates. In: Lee, D.H.,

Wang, X. (eds.) ASTACRYPT 2011. LNCS, vol. 7073, pp. 1-20. Springer, Heidel-
berg (2011)

Costello, C., Hisil, H., Smith, B.: Faster Compact Diffie-Hellman: Endomorphisms
on the z-line. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS,
vol. 8441, pp. 183-200. Springer, Heidelberg (2014)

David, H.A., Nagaraja, H.N.: Order Statistics. Wiley (2003)

Frigo, M., Johnson, S.G.: The design and implementation of FFTW3. Proceed-
ings of the IEEE 93(2), 216-231 (2005); Special issue on Program Generation,
Optimization, and Platform Adaptation

Galbraith, S.D., Lin, X., Scott, M.: Endomorphisms for faster elliptic curve cryp-
tography on a large class of curves. J. Cryptology 24(3), 446469 (2011)
Gallant, R.: Efficient multiplication on curves having an endomorphism of norm
1. In: Workshop on Elliptic Curve Cryptography (1999)

Gallant, R.P., Lambert, R.J., Vanstone, S.A.: Faster Point Multiplication on El-
liptic Curves with Efficient Endomorphisms. In: Kilian, J. (ed.) CRYPTO 2001.
LNCS, vol. 2139, pp. 190-200. Springer, Heidelberg (2001)

Guillevic, A., Ionica, S.: Four-Dimensional GLV via the Weil Restriction. In: Sako,
Sarkar (eds.) [30], pp. 79-96

Howgrave-Graham, N., Smart, N.P.: Lattice Attacks on Digital Signature
Schemes. Des. Codes Cryptography 23(3), 283-290 (2001)


http://code.google.com/p/relic-toolkit/

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

GLV/GLS Decomposition, Power Analysis, and Attacks 281

Levieil, E., Fouque, P.-A.: An Improved LPN Algorithm. In: De Prisco, R.,
Yung, M. (eds.) SCN 2006. LNCS, vol. 4116, pp. 348-359. Springer, Heidelberg
(2006)

Liu, M., Nguyen, P.Q.: Solving BDD by enumeration: An update. In: Dawson, E.
(ed.) CT-RSA 2013. LNCS, vol. 7779, pp. 293-309. Springer, Heidelberg (2013)
McKean, H., Moll, V.: Elliptic curves: function theory, geometry, arithmetic. Cam-
bridge University Press (1999)

Mulder, E.D., Hutter, M., Marson, M.E., Pearson, P.: Using Bleichenbacher’s
solution to the hidden number problem to attack nonce leaks in 384-bit ECDSA:
extended version. J. Cryptographic Engineering 4(1), 33-45 (2014)

Naccache, D., Nguyén, P.Q., Tunstall, M., Whelan, C.: Experimenting with
Faults, Lattices and the DSA. In: Vaudenay, S. (ed.) PKC 2005. LNCS, vol. 3386,
pp. 16-28. Springer, Heidelberg (2005)

Nguyen, P.Q., Shparlinski, I.: The Insecurity of the Digital Signature Algorithm
with Partially Known Nonces. J. Cryptology 15(3), 151-176 (2002)

Nguyen, P.Q., Shparlinski, I.: The Insecurity of the Elliptic Curve Digital Signa-
ture Algorithm with Partially Known Nonces. Des. Codes Cryptography 30(2),
201-217 (2003)

Nguyén, P.Q., Stehlé, D.: Low-Dimensional Lattice Basis Reduction Revisited. In:
Buell, D.A. (ed.) ANTS 2004. LNCS, vol. 3076, pp. 338-357. Springer, Heidelberg
(2004)

Nguyen, P.Q., Tibouchi, M.: Lattice-Based Fault Attacks on Signatures. In: Fault
Analysis in Cryptography. Information Security and Cryptography, pp. 201-220.
Springer (2012)

Oliveira, T., Lépez, J., Aranha, D.F., Rodriguez-Henriquez, F.: Two is the fastest
prime: lambda coordinates for binary elliptic curves. J. Cryptographic Engineer-
ing 4(1), 3-17 (2014)

Park, Y.-H., Jeong, S., Kim, C.H., Lim, J.: An Alternate Decomposition of an In-
teger for Faster Point Multiplication on Certain Elliptic Curves. In: Naccache, D.,
Paillier, P. (eds.) PKC 2002. LNCS, vol. 2274, pp. 323-334. Springer, Heidelberg
(2002)

Pollard, J.M.: Kangaroos, monopoly and discrete logarithms. J. Cryptology 13(4),
437-447 (2000)

Sako, K., Sarkar, P. (eds.): ASTACRYPT 2013, Part I. LNCS, vol. 8269. Springer,
Heidelberg (2013)

Smith, B.: Families of Fast Elliptic Curves from Q-curves. In: Sako, Sarkar (eds.)
[30], pp. 61-78

Wenger, E., Grofischédl, J.: An 8-bit AVR-based elliptic curve cryptographic RISC
processor for the Internet of Things. In: MICRO Workshops, pp. 39-46. IEEE
Computer Society (2012)



	GLV/GLS Decomposition, Power Analysis,
and Attacks on ECDSA Signatures
with Single-Bit Nonce Bias

	1 Introduction
	2 Preliminaries
	2.1 Bias Definition and Properties
	2.2 ECDSA Signature Generation

	3 Bleichenbacher’s Attack on Single Bit Bias
	3.1 Attack Analysis
	3.2 Implementation

	4 Security Analysis of the Recomposition Technique
	4.1 A Secure Choice of (k1, k2)

	4.2 Breaking Insecure Choices of (k1, k2) with Bleichenbacher’s
Attack

	4.3 Implementation of Bleichenbacher’s Attack in the GLS Setting

	5 Security Analysis of the Decomposition Technique
	5.1 Decomposition Algorithm
	5.2 Side-Channel Attack on this Implementation

	References




