Multi-valued Byzantine Broadcast: The t < n Case

Martin Hirt and Pavel Raykov

ETH Zurich, Switzerland {hirt,raykovp}@inf.ethz.ch

Abstract. Byzantine broadcast is a distributed primitive that allows a specific party to consistently distribute a message among n parties in the presence of potential misbehavior of up to t of the parties. All known protocols implementing broadcast of an ℓ -bit message from point-to-point channels tolerating any t < n Byzantine corruptions have communication complexity at least $\Omega(\ell n^2)$. In this paper we give cryptographically secure and information-theoretically secure protocols for t < n that communicate $\mathcal{O}(\ell n)$ bits when ℓ is sufficiently large. This matches the optimal communication complexity bound for any protocol allowing to broadcast ℓ -bit messages. While broadcast protocols with the optimal communication complexity exist for t < n/2, this paper is the first to present such protocols for t < n.

1 Introduction

1.1 Byzantine Broadcast

The Byzantine broadcast problem (aka Byzantine generals) is stated as follows [PSL80]: A specific party (the sender) wants to distribute a message among n parties in such a way that all correct parties obtain the same message, even when some of the parties are malicious. The malicious misbehavior is modeled by a central adversary who corrupts up to t parties and takes full control of their actions. Corrupted parties are called Byzantine and the remaining parties are called correct. Broadcast requires that all correct parties agree on the same value v, and if the sender is correct, then v is the value proposed by the sender. Broadcast is one of the most fundamental primitives in distributed computing. It is used to implement various protocols like voting, bidding, collective contract signing, etc. Basically, this list can be continued with all protocols for secure multi-party computation as defined by Yao [Yao82, GMW87].

There exist various implementations of Byzantine broadcast from synchronous point-to-point communication channels with different security guarantees. In the model without trusted setup, perfectly-secure Byzantine broadcast is achievable when t < n/3 [PSL80,BGP92,CW92]. In the model with trusted setup, cryptographically or information-theoretically secure Byzantine broadcast is achievable for any t < n [DS83,PW96].

Closely related to the broadcast problem is the consensus problem. In consensus each party holds a value as input, and then parties agree on a common value as output of consensus. In this paper we consider the case where any number of parties may be Byzantine. In this case the consensus problem is not well-defined, and hence we do not treat it here.

1.2 Efficiency of Byzantine Broadcast

In this paper we focus on the efficiency of broadcast protocols. In particular, we are interested in optimizing their *communication complexity*. The communication complexity of a protocol is defined by Yao [Yao79] to be the number of bits sent/received by correct parties during the protocol run.¹

Historically, the broadcast problem was introduced for binary values [PSL80]. However, in various applications long values are broadcast rather than bits. Examples of such applications are general purpose multi-party computation protocols and specific tasks like voting. Such a broadcast of long values is called multi-valued broadcast. In this paper we study the communication complexity of multi-valued broadcast protocols.

Many known protocols for multi-valued broadcast [TC84, FH06, LV11, Pat11] are actually *constructions* from a broadcast of short messages and point-to-point channels. Communication complexity of such constructions is computed in terms of the point-to-point channels and the broadcast for short messages usage. The security of the protocol is based on the security of the construction and the security of the broadcast for short messages.

Let us denote the communication complexity of a short s-bit message broad-cast with $\mathcal{B}(s)$. The most trivial construction is to broadcast the message bit by bit, which is perfectly secure for t < n and has communication complexity $\ell\mathcal{B}(1)$. The construction by Turpin and Coan [TC84] is perfectly secure and tolerates t < n/3 while communicating $\mathcal{O}(\ell n^2 + n\mathcal{B}(1))$ bits. The construction by Fitzi and Hirt [FH06] is information-theoretically secure and tolerates t < n/2 while communicating $\mathcal{O}(\ell n + n^3\kappa + n\mathcal{B}(n + \kappa))$ bits, where κ denotes a security parameter. The construction by Liang and Vaidya [LV11] is perfectly secure and tolerates t < n/3 while communicating $\mathcal{O}(\ell n + \sqrt{\ell} n^2 \mathcal{B}(1) + n^4 \mathcal{B}(1))$ bits. This construction can even be extended to tolerate more than n/3 corruptions [LV11]. However, the extended protocol inherently requires t < n/2 (see Appendix A for the details). The construction by Patra [Pat11] is perfectly secure and tolerates t < n/3 while communicating $\mathcal{O}(\ell n + n^2 \mathcal{B}(1))$ bits.

In this paper we consider the case where t < n. In this model existing protocols [DS83,PW96] were designed to broadcast bits, but they can be easily adopted to broadcast long messages. A simple modification of the protocol by Dolev and Strong [DS83] is cryptographically secure and has communication complexity $\Omega(\ell n^2 + n^3 \kappa)$. Analogously, the protocol by Pfitzmann and Waidner [PW96] is information-theoretically secure and has communication complexity $\Omega(\ell n^2 + n^6 \kappa)$

¹ When counting the number of bits received by correct players, we take into account only messages which were *actively* received by them, i.e., messages which should be received according to the protocol specification.

[Fit03]. Also the protocols of [HMR14] can be seen as multi-valued constructions for t < n. However, their resulting communication complexity is $\Omega(\ell n^3)$.

Another measure of protocol efficiency often considered is round complexity. There are two principal classes of protocols with respect to this measure: constant-round and non-constant round. In the model without trusted setup, constant-round binary Byzantine broadcast is achievable when t < n/3 [FM88]. In the model where public-key infrastructure (PKI) has been set up via a trusted party, constant-round binary Byzantine broadcast is achievable for t < n/2 [KK06], but is not achievable for t < n [GKK007].

1.3 Contributions

Consider any protocol for multi-valued broadcast. Since every correct player must learn the value proposed by the sender, the communication costs of the broadcast protocol must be at least $\mathcal{O}(\ell n)$. In this paper we give two generic constructions for a multi-valued broadcast which allow to achieve optimal communication complexity of $\mathcal{O}(\ell n)$ bits for t < n. The first construction is cryptographically secure and communicates $\mathcal{O}(\ell n + n(\mathcal{B}(\kappa) + n\mathcal{B}(1)))$ bits. The second construction is information-theoretically secure and communicates $\mathcal{O}(\ell n + n^3(\mathcal{B}(\kappa) + n\mathcal{B}(1)))$ bits. The constructions take $\mathcal{O}(n^2)$ and $\mathcal{O}(n^3)$ rounds, respectively. Table 1 summarizes the complexity costs of the existing constructions for multi-valued broadcast.²

Threshold	Security	Bits Communicated	Literature
t < n/3		$\mathcal{O}(\ell n^2 + n\mathcal{B}(1))$	[TC84]
	perfect	$\mathcal{O}(\ell n + (\sqrt{\ell}n^2 + n^4)\mathcal{B}(1))$	[LV11]
		$\mathcal{O}(\ell n + n^2 \mathcal{B}(1))$	[Pat11]
t < n/2	inftheor.	$\mathcal{O}(\ell n + n^3 \kappa + (n^2 + n\kappa)\mathcal{B}(1))$	[FH06]
t < n	perfect	$\ell\mathcal{B}(1)$	Trivial
	inftheor.	$\mathcal{O}(\ell n + (n^4 + n^3 \kappa) \mathcal{B}(1))$	This paper
	cryptographical	$\mathcal{O}(\ell n + (n^2 + n\kappa)\mathcal{B}(1))$	This paper

Table 1. The overview of multi-valued broadcast constructions

In order to obtain a concrete protocol for multi-valued broadcast one takes the above constructions and composes them with the existing protocols for a bit broadcast (e.g., [BGP92, DS83, PW96]). The security of the composed protocol is then the "minimal" security provided by the construction and the bit broadcast protocol employed. For example, when composing information-theoretical

² In order to facilitate comparison we substitute $\mathcal{B}(s)$ with $s\mathcal{B}(1)$ in the communication complexity of the constructions, which is trivially possible since $\mathcal{B}(s) \leq s\mathcal{B}(1)$ for all s and such arguments appear as summands inside the big \mathcal{O} .

construction for t < n/2 [FH06] with cryptographically secure protocol for t < n [DS83] we obtain multi-valued broadcast protocol with cryptographic security tolerating t < n/2 and communication complexity $\mathcal{O}(\ell n + n^4(n + \kappa))$. Further instantiations are described in Table 2.

Threshold	Security	Bits Communicated	Literature
t < n/3	perfect	$\mathcal{O}(\ell n^2)$	Trivial with [BGP92]
		$\mathcal{O}(\ell n + \sqrt{\ell}n^4 + n^6)$	[LV11] with [BGP92]
		$\mathcal{O}(\ell n + n^4)$	[Pat11] with [BGP92]
t < n/2	inftheor.	$\mathcal{O}(\ell n + n^7 \kappa)$	[FH06] with [PW96]
	cryptogr.	$\mathcal{O}(\ell n + n^4(n+\kappa))$	[FH06] with [DS83]
t < n	inftheor.	$\Omega(\ell n^2 + n^6 \kappa)$	[PW96]
		$\mathcal{O}(\ell n + n^{10}\kappa)$	This with [PW96]
	cryptogr.	$\Omega(\ell n^2 + n^3 \kappa)$	[DS83]
		$\mathcal{O}(\ell n + n^5 \kappa)$	This with [DS83]

Table 2. Instantiations of multi-valued broadcast constructions

We note that all multi-valued constructions are only asymptotically optimal in ℓ , i.e., they only outperform the trivial construction when relatively long messages are broadcast. Such long messages appear, for example, in voting protocols [CGS97] (where the set of authorities agree on the set of ballots), or in multi-party computation protocols [GMW87] (when all gates on a particular level of the circuit are evaluated in parallel). In particular, multi-party computation protocols for t < n (e.g., [AJLA⁺12, GGHR14]) achieve better communication complexity when combined with the broadcast constructions presented in this paper.

Furthermore, we investigate the round complexity of constructions for multivalued broadcast. While for the case of t < n/2 constant-round constructions exist (e.g., [FH06]), we prove that in the settings with t < n constant-round constructions do not exist.³ This is a generalization of the impossibility result given in [GKKO07], because the underlying broadcast procedure for small messages can be used to distribute PKI (by letting the parties broadcast their public keys) and hence PKI cannot be sufficient to implement broadcast in a constant number of rounds.

2 Model and Definitions

Parties. We consider a setting consisting of n parties (players) $\mathcal{P} = \{P_1, \dots, P_n\}$ with some designated party called the sender, which we denote with P_s for some

³ In the notation of [HMR14] this means that no non-trivial constant-round broadcast-amplification protocols tolerating t < n exist.

 $s \in \{1, ..., n\}$. For a set of parties $A \subseteq \mathcal{P}$ let \overline{A} denote $\mathcal{P} \setminus A$. We assume that the parties are connected with a synchronous authentic point-to-point network. Synchronous means that all parties share a common clock and that the message delay in the network is bounded by a constant.

Broadcast definition. A broadcast protocol allows the sender P_s to distribute a value v_s among parties \mathcal{P} such that:

TERMINATION: Every correct party $P_i \in \mathcal{P}$ terminates.

Consistency: All correct parties in \mathcal{P} decide on the same value.

VALIDITY: If the sender P_s is correct, then every correct party $P_i \in \mathcal{P}$ decides on the value proposed by the sender $v_i = v_s$.

Adversary. The faultiness of parties is modeled in terms of a central adversary corrupting up to t < n parties, making them deviate from the protocol in any desired manner. We distinguish two types of security in this paper: cryptographic and information-theoretic. Cryptographic security guarantees that the protocol is secure based on some computational assumptions (e.g., signatures and/or collision-resistant hash functions), while information-theoretical (also called statistical) security captures the fact that even a computationally unbounded adversary cannot violate the security of the protocol with a non-negligible probability.

3 Protocols Overview

We present cryptographically and information-theoretically secure constructions for multi-valued broadcast. Both constructions are built over point-to-point channels and an oracle for broadcasting short messages. When describing protocols we often say that players broadcast messages, while meaning that they actually use the given broadcast oracle.

On the highest level both constructions broadcast the long message block by block, where each block is broadcast using a special protocol for block broadcast. This block broadcast protocol achieves optimal communication complexity only in good executions, while in bad executions more bits need to be communicated. We select the number of blocks in such a way that good executions outnumber bad ones and the total communication complexity is optimal. Whether an execution is good or bad is determined using the Dispute Control Framework [BH06]. Dispute control is a technique which keeps track of disputes (also called conflicts) between players and ensures that occurred disputes cannot show up again. Intuitively, an execution is good if it is dispute-free, and bad otherwise.

We employ the dispute control framework as follows. We consider a set of unordered pairs of parties Δ , where $\{P_i, P_j\} \in \Delta$ represents the fact that parties P_i and P_j accuse each other of being Byzantine. Parties start a protocol by setting Δ to be the empty set. Then during the protocol run they add new disputes to Δ when they learn about new accusations. We ensure that Δ always remains valid, meaning that if $\{P_i, P_j\} \in \Delta$ then at least one of the players P_i, P_j is Byzantine.

4 Cryptographically Secure Construction

First, we present a protocol CryptoBlockBC for broadcasting blocks. The protocol CryptoBlockBC makes use of an external procedure for broadcasting short values and a set of disputes Δ . Then we plug CryptoBlockBC in the protocol CryptoBC, which broadcasts an ℓ -bit message block by block q times. In each invocation of CryptoBlockBC we will use the same global variable Δ with the disputes among the players. This means that if parties P_i and P_j conflict during some block broadcast, then they conflict in all later invocations of CryptoBlockBC. Then, we count the communication complexity of the resulting construction and select q which makes its optimal.

4.1 Block Broadcast Protocol CryptoBlockBC

The protocol CryptoBlockBC employs a collision-resistant hash function CRHash, i.e., no efficient algorithm can find two different inputs v, v' with CRHash(v) = CRHash(v'). In the beginning of the protocol the sender broadcasts a hash $h = CRHash(v_s)$ of the value it holds. The goal of the protocol is to ensure that all correct players learn v_s . All parties during the protocol run are divided into two sets: H and \overline{H} . The set H consists of happy players who have already learned v_s , and \overline{H} who have not. At each iteration of CryptoBlockBC we try to move a player from \overline{H} to H. We select a pair of players P_x, P_y such that $P_x \in H$ and $P_y \in \overline{H}$. Then P_x sends the value it holds to P_y . This procedure is meaningless if parties P_x, P_y are in the dispute, so the pair is chosen such that $\{P_x, P_y\} \notin \Delta$. Once P_y receives a value from P_x it verifies that its hash is h; in the positive case P_y is included in H and in the negative case a conflict between P_x and P_y is found. Hence at each iteration we either include one player into H or we discover a new conflict between a pair of players.

```
Protocol CryptoBlockBC(v_s):
```

- 1. Parties initialize happy set H to be $\{P_s\}$.
- 2. Sender P_s : Broadcast $h := \mathsf{CRHash}(v_s)$.
- 3. While $\exists P_x, P_y \in \mathcal{P}$ s.t. $P_x \in H$ and $P_y \in \overline{H}$ and $\{P_x, P_y\} \notin \Delta$ do
 - $r.1 P_x$: Send v_x to player P_y . Denote received value by v_y .
 - $r.2 P_v$: If $h = \mathsf{CRHash}(v_v)$ broadcast 1, else broadcast 0.
 - r.3 If P_y broadcasted 1 then parties add P_y to H, otherwise they add $\{P_x, P_y\}$ to Δ .
- 4. $\forall P_i \in \mathcal{P}$: If $P_i \in \mathcal{H}$ decide on v_i , otherwise decide on \perp .

Lemma 1. Given that the initial dispute set Δ_s is valid and CRHash is a collision-resistant hash function, protocol CryptoBlockBC achieves broadcast

⁴ This is rather informal definition of collision resistance for unkeyed hash functions, for a more formal treatment see [Rog06].

(of v_s) and terminates with a valid dispute set Δ_e . Furthermore, the protocol terminates in $\mathcal{O}(n+d)$ rounds communicating at most $\mathcal{B}(|h|)+(n+d)(|v_s|+\mathcal{B}(1))$ bits, where $d=|\Delta_e|-|\Delta_s|$, |h| is the output length of CRHash, and $|v_s|$ is the block length.

Proof. First, we prove that at each iteration of the while loop all correct players in H always hold the same value v such that $\mathsf{CRHash}(v) = h$. A player is included into H under condition that it broadcasts 1 at Step r.2, which he does only if it holds a value v with $\mathsf{CRHash}(v) = h$. Hence for any two correct players $P_i, P_j \in H$ it must hold that $\mathsf{CRHash}(v_i) = h$ and $\mathsf{CRHash}(v_j) = h$. Since CRHash is collision-resistant it implies that $v_i = v_j.5$

(Validity of Δ_e). We show that whenever P_x and P_y are correct then $\{P_x, P_y\}$ is not added to Δ at Step r.3. A correct $P_x \in H$ holds v_x with $\mathsf{CRHash}(v_x) = h$ and sends $v_x = v_y$ to P_y at Step r.1, who successfully verifies that $\mathsf{CRHash}(v_y) = h$ and broadcasts 1 at Step r.2, hence $\{P_x, P_y\}$ is not added to Δ at Step r.3.

(**Termination**). At each iteration of the while loop either the happy set H or the dispute set Δ grows. |H| is limited by n and $|\Delta|$ is limited by n^2 , hence the number of iterations is limited.

(Consistency). We prove that in the end of the protocol all correct players belong either to H (and decide on the same value v) or to \overline{H} (and decide on \bot). As shown above Δ remains valid in all iterations, hence for correct players P_x and P_y the pair $\{P_x, P_y\} \notin \Delta$. Hence, if $P_x \in H$ and $P_y \in \overline{H}$ then the while loop does not terminate.

(Validity). The sender P_s is always in H. If P_s is correct then it decides on v_s and due to the consistency criterion all other correct players decide on v_s as well.

(Complexity Analysis). At each iteration of the while loop either H or Δ grows. Hence, the total number of iterations of the while loop is upper bounded by n+d where d is $|\Delta_e|-|\Delta_s|$. This implies that the number of rounds the construction employs is $\mathcal{O}(n+d)$. Furthermore, the total communication costs of the protocol are upper bounded by $\mathcal{B}(|h|) + (n+d)(|v_s| + \mathcal{B}(1))$.

4.2 Constructing Broadcast for Long Messages

Now we plug in CryptoBlockBC in the protocol CryptoBC which broadcasts a message block by block.

⁵ More formally, when an adversary can provoke two correct players to hold colliding values for CRHash with non-negligible probability, then this adversary can be used to construct an efficient collision-finding algorithm for CRHash.

Protocol CryptoBC(v_s, q):

- 1. Parties initialize dispute set Δ with the empty set.
- 2. Sender P_s : Cut v_s in q pieces v^1, \ldots, v^q (add padding if required).
- 3. For r = 1, ..., q invoke CryptoBlockBC(v^r), denote the output of party P_i by v_i^r .
- 4. $\forall P_i \in \mathcal{P}$: If one of $v_i^r = \bot$ then output \bot , otherwise output $v_i^1 || \cdots || v_i^q$.

Since block broadcast is invoked q times, due to Lemma 1 the total communication complexity is at most

$$\sum_{i=1}^{q} \left[\mathcal{B}(|h|) + (n+d_i)(\ell/q + \mathcal{B}(1)) \right] = q\mathcal{B}(|h|) + (qn + \sum_{i=1}^{q} d_i)(\ell/q + \mathcal{B}(1))$$

bits. We know that the sum of d_i is upper bounded by the total number of possible disputes n^2 . Hence we have that communication complexity is upper bounded by $q\mathcal{B}(|h|) + (qn + n^2)(\ell/q + \mathcal{B}(1))$. By setting q = n we get that the total communication is at most $2\ell n + 2n^2\mathcal{B}(1) + n\mathcal{B}(|h|)$ which is $\mathcal{O}(\ell n + n(\mathcal{B}(\kappa) + n\mathcal{B}(1)))$.

The number of rounds the construction employs is $\sum_{i=1}^{q} r_i$, where each $r_i \in \mathcal{O}(n+d_i)$. Hence, for q=n we have that the total number of rounds is $\mathcal{O}(n^2)$.

The following theorem summarizes the cryptographically secure construction presented in this section:

Theorem 1. In the setting with t < n, the construction CryptoBC with q = n achieves cryptographically secure broadcast of ℓ -bit messages in $\mathcal{O}(n^2)$ rounds by communicating $\mathcal{O}(\ell n + n(\mathcal{B}(\kappa) + n\mathcal{B}(1)))$ bits (where κ is a security parameter and $\mathcal{B}(s)$ is the complexity of the underlying broadcast for short s-bit messages).

In order to obtain a concrete multi-valued broadcast protocol we instantiate CryptoBC with the protocol [DS83]:

Theorem 2. Instantiating the construction CryptoBC with q = n and [DS83] as underlying broadcast for short messages results in a cryptographically secure multi-valued broadcast protocol for t < n with communication complexity $\mathcal{O}(\ell n + n^5 \kappa)$ (where κ is a security parameter).

5 Information-Theoretically Secure Construction

This section is organized similar to the cryptographic case. First, we present a protocol ITBlockBC for broadcasting blocks which is analogous to CryptoBlockBC, with the difference that it relies on a universal hash function instead of a collision-resistant one. As in the cryptographic case we then plug ITBlockBC in the ITBC protocol, which broadcasts a message block by block q times. Then, we count the communication complexity of the resulting protocol ITBC, and select the number of blocks q which makes it optimal.

5.1 Universal Hash Functions

Consider a family of functions $\mathcal{U} = \{U_k\}_{k \in \mathcal{K}}$ indexed with a key set \mathcal{K} , where each function U_k maps elements of some set \mathcal{X} to a fixed set of bins \mathcal{Y} . The family \mathcal{U} is called ε -universal if for any two distinct messages v_1 and v_2 ,

$$\frac{|\{k \in \mathcal{K} \mid U_k(v_1) = U_k(v_2)\}|}{|\mathcal{K}|} \le \varepsilon.^6$$

A ε -universal hash function can for example be constructed as follows: Let $\mathcal{X} = \{0,1\}^{\ell}$, $\mathcal{K} = \mathcal{Y} = \mathrm{GF}(2^{\nu})$, and any value $v \in \{0,1\}^{\ell}$ be interpreted as a polynomial f_v over $\mathrm{GF}(2^{\nu})$ of degree $\lceil \ell/\nu \rceil - 1$. The hash function is defined as $U_k(v) = f_v(k)$. We know that two distinct polynomials of degree $\lceil \ell/\nu \rceil - 1$ can match in at most $\lceil \ell/\nu \rceil - 1$ points. Hence, for any two distinct $v_1, v_2 \in \{0,1\}^{\ell}$,

$$\frac{|\{k \in \{0,1\}^{\nu} \mid U_k(v_1) = U_k(v_2)\}|}{2^{\nu}} \le \frac{\lceil \ell/\nu \rceil - 1}{2^{\nu}} \le 2^{-\nu}\ell.$$

So, $\{U_k\}_{k\in\{0,1\}^{\nu}}$ is a family of $(2^{-\nu}\ell)$ -universal hash functions. We will denote a ε -universal hash function with ITHash.

5.2 Block Broadcast Protocol ITBlockBC

Similarly to the cryptographic case all parties during the run of the protocol ITBlockBC are divided into two sets: H and \overline{H} . The set H consists of happy players who have already learned v_s , and \overline{H} who have not. The difference to the cryptographic case is that the set H is not monotonically growing—it may happen that the same player may be added/removed from H several times. At each iteration of ITBlockBC we try to move a player from \overline{H} to H. We select a pair of players P_x, P_y such that $P_x \in H$, $P_y \in \overline{H}$ and $\{P_x, P_y\} \not\in \Delta$. Then P_x sends the value it holds to P_y . Now player P_y needs to verify that the value received from P_x is the value that correct parties in H hold. In order to do so, P_y broadcasts a key k for ε -universal hash function ITHash, and then P_s broadcasts a hash h for this key. As long as P_y honestly chooses k uniformly at random, with overwhelming probability correct players will obtain different hashes if they hold different values. If a party in $H \cup \{P_y\} \setminus \{P_s\}$ holds a value with a hash h, then he broadcasts 1, and 0 otherwise (the sender P_s does not broadcast because if he is correct he can broadcast only 1). If every party broadcasts 1, then the iteration was successful and P_y is added to H. Otherwise, some of the parties in $H \cup \{P_u\}$ do not hold the right value and we search for new disputes.

An important difference from the cryptographic case is that disputes may occur not only between P_x and P_y , but between any two parties in H. In order to find such disputes, one must be able to reason about the history of how H was formed. We will keep a history set T which will contain pairs of players (P_x, P_y) such that P_y learned the value it holds from P_x .

⁶ This is a combinatorial definition of a universal hash function, usually the last condition is written probabilistically as $\Pr[k \stackrel{\$}{\leftarrow} \mathcal{K} : U_k(v_1) = U_k(v_2)] \leq \varepsilon$.

Protocol ITBlockBC(v_s):

- 1. Parties initialize happy set H to be $\{P_s\}$ and history set T to be \emptyset .
- 2. While $\exists P_x, P_y \in \mathcal{P}$ s.t. $P_x \in H$ and $P_y \in \overline{H}$ and $\{P_x, P_y\} \notin \Delta$ do
 - r.1 P_x : Send v_x to player P_y . Denote received value by v_y . Add (P_x, P_y) to T.
 - r.2 P_y : Generate random $k \in \mathcal{K}$ and broadcast it.
 - Sender P_s : Broadcast $h := \mathsf{ITHash}_k(v_s)$. $\forall P_i \in H \cup \{P_u\} \setminus \{P_s\}$: If $h = \mathsf{ITHash}_k(v_i)$ then broadc
 - $r.3 \ \forall P_i \in H \cup \{P_y\} \setminus \{P_s\}$: If $h = \mathsf{ITHash}_k(v_i)$ then broadcast 1, otherwise 0.
 - r.4 If all parties broadcasted 1
 - Add P_y to H.

else

- For all $(P_i, P_j) \in T$ s.t. P_i broadcasted 1 (resp. $P_i = P_s$) and P_j broadcasted 0, add $\{P_i, P_j\}$ to Δ .
- Set H to $\{P_s\}$, T to \emptyset .
- 3. $\forall P_i \in \mathcal{P}$: If $P_i \in H$ decide on v_i , otherwise decide on \perp .

Lemma 2. Given that the initial dispute set Δ_s is valid and ITHash is a universal hash function, protocol ITBlockBC achieves broadcast (of v_s) and terminates with a valid dispute set Δ_e (except with negligible probability). Furthermore, the protocol terminates in $\mathcal{O}(n+nd)$ rounds communicating at most $(n+nd)(|v_s|+\mathcal{B}(|h|)+\mathcal{B}(|k|)+n\mathcal{B}(1))$ bits, where $d=|\Delta_e|-|\Delta_s|$, |h| is the output length of ITHash, |k| is the key length of ITHash, and $|v_s|$ is the block length.

Proof. First, we prove that at each iteration of the while loop all correct players in H always hold the same value v. More precisely, we need to show that if a correct player P_y is added to H, then, given that all correct players in H hold the same value v, it holds that $v_y = v$. We have that all parties in $H \cup \{P_y\} \setminus \{P_s\}$ broadcast 1 at Step r.3. This implies that P_y successfully verifies that $\mathsf{ITHash}_k(v_y) = h$, and all correct parties in H verify that $\mathsf{ITHash}_k(v) = h$. Due to the fact that P_y is correct, the key k is chosen uniformly at random, so given that $\mathsf{ITHash}_k(v_y) = \mathsf{ITHash}_k(v)$, it must hold with overwhelming probability $1 - \varepsilon$ that $v_y = v$.

Second, we show that if the condition at Step r.4 is false then at least one new conflict is found. We have that not all players in $H \cup \{P_y\} \setminus \{P_s\}$ broadcasted 1. Consider two possible cases:

(Exists $P_z \in H \setminus \{P_s\}$ which broadcasts 0 at step r.3) Since P_z is in H there must exist a sequence of players $P_{i_1}, P_{i_2}, \ldots, P_{i_k}$ in H such that $P_{i_1} = P_s, P_{i_k} = P_z$ and $(P_{i_j}, P_{i_{j+1}}) \in T$ for all $j = 1, \ldots, k-1$ (see illustration in Figure 1). In the r^{th} iteration some of the players in H stayed happy (P_s) and those who broadcasted 1) and some become unhappy (broadcasted 0). We know that P_s stayed happy and P_z became unhappy. Hence in a row $P_{i_1}, P_{i_2}, \ldots, P_{i_k}$ there are players of both types. Then we have that exist two players $P_{i_u}, P_{i_{u+1}}$ such that P_{i_u} stays happy and $P_{i_{u+1}}$ becomes unhappy. By construction of T, $(P_{i_u}, P_{i_{u+1}}) \in T$ implies that $\{P_{i_u}, P_{i_{u+1}}\}$ is not yet in Δ .

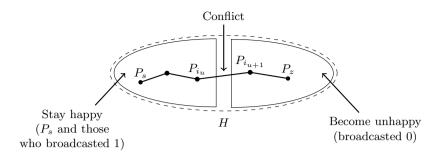


Fig. 1. Conflict finding in ITBlockBC

Consequently, the pair $\{P_{i_u}, P_{i_{u+1}}\}$ will be identified as having a conflict and will be added to Δ .

(Each $P_i \in H \setminus \{P_s\}$ broadcasts 1 at step r.3) It means that P_x broadcasts 1 (or $P_x = P_s$) and P_y broadcasts 0. Hence the new dispute $\{P_x, P_y\}$ will be added to Δ .

Now we proceed with the proof of the current lemma.

(Validity of Δ_e). We show that whenever P_i and P_j are correct then $\{P_i, P_j\}$ is never added to Δ . The pair $\{P_i, P_j\}$ is added to Δ only when P_i sent some v to P_j (i.e., $(P_i, P_j) \in T$), and they disagree for some key k whether $\mathsf{ITHash}_k(v)$ equals h. Hence, P_i or P_j is corrupted.

(Termination). There can be at most n successive iterations where the set H grows (condition at Step r.4 is true). As shown above whenever condition at Step r.4 is false a new conflict is found. The number of conflicts is limited and so must be the number of the while loop iterations.

(Consistency). We prove that in the end of the protocol all correct players belong either to H (and decide on the same value v) or to \overline{H} (and decide on \bot). As shown above Δ remains valid in all iterations, hence for any two correct players P_x, P_y , the pair $\{P_x, P_y\} \not\in \Delta$. Hence, if $P_x \in H$ and $P_y \in \overline{H}$ then the while loop does not terminate.

(Validity). The correct sender P_s is always in H. The sender P_s decides on v_s and due to the consistency criterion all other correct players decide on v_s as well.

(Complexity Analysis). There can be at most n consecutive iterations, where no conflict is found, hence the total number of iterations is at most n+nd, where $d = |\Delta_e| - |\Delta_s|$. This implies that the number of rounds the construction employs is $\mathcal{O}(n+nd)$. Furthermore, since the communication costs of each iteration are at most $|v_s| + \mathcal{B}(|h|) + \mathcal{B}(|k|) + n\mathcal{B}(1)$, we have that the total communication costs of the protocol are upper bounded by $(n+nd)(|v_s| + \mathcal{B}(|h|) + \mathcal{B}(|k|) + n\mathcal{B}(1))$. \square

5.3 Constructing Broadcast for Long Messages

Similarly to the cryptographic case, we plug ITBlockBC in the protocol ITBC which simply broadcasts a message block by block. The protocol ITBC is a copy of the protocol CryptoBC with the only difference that CryptoBlockBC is substituted with ITBlockBC.

Due to Lemma 2 the total communication complexity of ITBC is at most

$$\sum_{i=1}^{q} \left[(n+d_i n)(\ell/q + \mathcal{B}(|h|) + \mathcal{B}(|k|) + n\mathcal{B}(1)) \right] =$$

$$n(q+\sum_{i=1}^{q} d_i)(\ell/q + \mathcal{B}(|h|) + \mathcal{B}(|k|) + n\mathcal{B}(1)).$$

This expression is bound by $n(q+n^2)(\ell/q+\mathcal{B}(|h|)+\mathcal{B}(|k|)+n\mathcal{B}(1))$. By setting $q=n^2$ we have that communication costs are at most $2\ell n+2n^3(\mathcal{B}(|h|)+\mathcal{B}(|k|)+n\mathcal{B}(1))$ which is $\mathcal{O}(\ell n+n^3(\mathcal{B}(\kappa)+n\mathcal{B}(1)))$.

The number of rounds the construction employs is $\sum_{i=1}^{q} r_i$, where each $r_i \in \mathcal{O}(n+nd_i)$. Hence, for $q=n^2$ we have that the total number of rounds is $\mathcal{O}(n^3)$.

The following theorem summarizes the information-theoretically secure construction presented in this section:

Theorem 3. In the setting with t < n, the construction ITBC with $q = n^2$ achieves information-theoretically secure broadcast of ℓ -bit messages in $\mathcal{O}(n^3)$ rounds by communicating $\mathcal{O}(\ell n + n^3(\mathcal{B}(\kappa) + n\mathcal{B}(1)))$ bits (where κ is a security parameter and $\mathcal{B}(s)$ is the complexity of the underlying broadcast for short s-bit messages).

In order to obtain a concrete multi-valued broadcast protocol we instantiate ITBC with the protocol [PW96]:

Theorem 4. Instantiating the construction ITBC with $q = n^2$ and [PW96] as underlying broadcast for short messages results in an information-theoretically secure multi-valued broadcast protocol for t < n with communication complexity $\mathcal{O}(\ln + n^{10}\kappa)$ (where κ is a security parameter).

6 On the Round Complexity of Multi-valued Constructions

While the primary goal of this paper is to build communication efficient protocols, one often optimizes the protocols with respect to another measure of the protocols' efficiency, number of rounds employed by a protocol. According to this measure there are two principal classes of the protocols: constant-round and non-constant round. In the following we investigate whether it is possible to obtain protocols optimal in both measures, that is, constant-round multi-valued broadcast protocols with optimal communication complexity for t < n.

The goal of this paper is to build protocols for efficient multi-valued constructions. We stress that by construction we understand a protocol for n players which realizes multi-valued broadcast on top of bilateral channels and a special procedure for broadcasting bits. We explicitly distinguish such constructions and plain multi-valued broadcast protocols (e.g., [DS83, PW96]) that directly implement broadcast from bilateral channels.

When t < n/2 both communication and round optimal multi-valued broadcast protocols can be built by combining constant-round construction [FH06] with a constant-round binary broadcast protocol (e.g., [KK06, GKKO07]). For the case of arbitrary t < n it has been shown that no plain protocol can achieve broadcast in a constant number of rounds [GKKO07]. In the context of this paper this shows that no concrete instantiation of a multi-valued construction and a procedure for broadcasting bits can be constant-round. However, it is still interesting to understand whether a non-trivial constant-round construction for multi-valued broadcast exists separately. Next we show that this is not possible, i.e., there is a separation between t < n/2 and t < n cases not only for broadcast protocols but between constructions for multi-valued broadcast as well.

A Construction's Failure Probability (Based on [GY89]). Consider any multi-valued construction protocol $\pi = (\pi_1, \dots, \pi_n)$. A scenario is a triple (v, B, A) where $v \in \{0, 1\}^{\ell}$ is a value that the sender broadcasts, $B \subseteq \mathcal{P}$ is a set of malicious players controlled with an adversarial strategy A. We call an execution of the protocol π in a scenario successful if the outputs of honest parties $\mathcal{P} \setminus B$ satisfy broadcast properties (validity and consistency). We define the error $\varepsilon_{\pi,v,B,A}$ to be the probability of an unsuccessful execution over the randomness used by honest parties and the adversary in the corresponding scenario. Then the failure probability of π is defined as $\max_{v,B,A} \varepsilon_{\pi,v,B,A}$, i.e., as the maximum failure among all scenarios.

Impossibility Framework. We employ a standard indistinguishability argument that is used to prove that certain security goals cannot be achieved by any protocol in the Byzantine environment [PSL80]. Such a proof goes by contradiction, i.e., by assuming that the security goals can be satisfied by means of some protocol $\pi = (\pi_1, \dots, \pi_n)$. Then the programs π_i are used to build a configuration with contradictory behavior. The configuration consists of (possibly) multiple copies of π_i connected with bilateral channels and given admissible inputs. Once the configuration is built, one simultaneously starts all the programs in the configuration and analyzes the outputs produced by the programs locally. By arguing that the view of some programs π_i and π_j in the configuration is indistinguishable from their view when run by the corresponding players P_i and P_j (while the adversary corrupts the remaining players in $\mathcal{P} \setminus \{P_i, P_j\}$) we can deduce consistency conditions on the outputs by π_i and π_j that lead to a contradiction. The main novelty in the following proof is that we consider an extended communication model where in addition to bilateral channels players are given

⁷ In all executions we assume that the procedure to broadcast bits is perfectly secure, i.e., the values broadcast with it are consistently delivered to the parties.

access to a special procedure for broadcasting short messages. While following the path described above, we need to additionally describe how the calls to this procedure are handled.

Theorem 5. Every non-trivial ⁸ multi-valued broadcast construction for t < n which takes less than n-1 rounds fails with probability at least 1/(2n).

Proof. Take any non-trivial construction $\pi = (\pi_1, \dots, \pi_n)$ which requires q < n-1 rounds and has error probability ε . Without loss of generality, assume as well that the sender is P_1 , i.e., the sender's program is π_1 . On the highest level our proof consists of three steps. (i) we define a configuration (inspired by [GKKO07]). (ii) we show that all programs in the configuration must output the same value v with probability $1 - n\varepsilon$. (iii) we use an information flow argument to prove that there is a program in the configuration that outputs v with probability at most 1/2. Finally, we combine the probability inequalities given by (ii) and (iii) to conclude that $\varepsilon \geq 1/(2n)$.

- (i) Consider a chain of n programs $\pi_1, \pi_2, \pi_3, \ldots, \pi_n$ connected with bilateral channels as shown in Figure 2. In this configuration only programs that are connected communicate, i.e., π_1 communicates only with π_2 and receives no messages from parties in $\mathcal{P}\setminus\{P_1,P_2\}$. Let π_1 be given as input a uniform random variable V chosen from the input domain $\{0,1\}^{\ell}$. Now we execute the programs. Whenever any program broadcasts any value using the broadcast procedure this value is delivered to all programs in the configuration.
- (ii) First, we prove that any pair of connected programs (π_i, π_{i+1}) in the chain outputs the same value. One can view the configuration as the player P_i running the program π_i and P_{i+1} running π_{i+1} while the adversary corrupting $\mathcal{P} \setminus \{P_i, P_{i+1}\}$ is simulating the programs π_1, \ldots, π_{i-1} and π_{i+2}, \ldots, π_n . Due to the consistency property, π_i and π_{i+1} must output the same value with probability at least $1-\varepsilon$. Since every connected pair of programs in the chain outputs the same value with probability at least $1-\varepsilon$, then all the programs in the configuration output the same value with probability at least $1-(n-1)\varepsilon$. Moreover, the configuration can be viewed as P_1 executing π_1 while the adversary corrupts $\mathcal{P} \setminus \{P_1\}$ and simulates the remaining programs. Due to the validity property, π_1 must output V with probability at least $1-\varepsilon$. Finally, all the programs in the chain output V with probability $1-n\varepsilon$.
- (iii) Let S_i^r be a random variable denoting the state of the program π_i in the chain after r rounds of the protocol execution. By state we understand the input that the program has, the set of all messages that the program received up to the r^{th} round over point-to-point channels and via the underlying broadcast procedure together with the random coins it has used. Let B^r be a random

⁸ By non-trivial we mean every construction which broadcasts strictly less bits with the broadcast procedure than the length of the message broadcast ℓ .

Fig. 2. The configuration to show the impossibility of non-trivial construction

variable denoting the list of the values that have been broadcast with the broadcast procedure up to the r^{th} round.

After r rounds only programs $\pi_1, \pi_2, \ldots, \pi_{r+1}$ can receive full information about V. The remaining programs in the chain $\pi_{r+2}, \pi_{r+3}, \ldots, \pi_n$ can receive only the information that was distributed with the broadcast procedure, i.e., the information contained in B^r . That is, one can verify by induction that for any r and for all $i \geq r+2$ holds $I(V; S_i^r|B^r) = 0$. Hence, for the last program in the chain π_n after q rounds of computation it holds that $I(V; S_n^q|B^q) = 0$ and hence $I(V; S_n^q) \leq H(B^q)$. Because we assumed that the construction is non-trivial, at most $\ell-1$ bits can be broadcast with the broadcast procedure. Hence, we have that $H(B^q) \leq \ell-1$. Combining these facts we get that $I(V; S_n^q) \leq \ell-1$. Hence, the last program π_n outputs V with probability at most 1/2. However, we have shown above that all programs (including π_n) output V with probability at least $1-n\varepsilon$. Hence, we have that $1/2 \geq 1-n\varepsilon$ which implies that $\varepsilon \geq 1/(2n)$.

7 Conclusions

Existing multi-valued broadcast protocols achieve optimal communication complexity only for t < n/3 [LV11] or t < n/2 [FH06]. In this paper we proposed the first multi-valued broadcast protocols that tolerate any t < n Byzantine corruptions and achieve optimal communication complexity $\mathcal{O}(\ell n)$ for sufficiently long messages of ℓ bits. One of the proposed protocols is cryptographically secure and the other one is information-theoretically secure. The cryptographically secure protocol is based on the security of the signature scheme and a collision-resistance of the hash function employed. It communicates $\mathcal{O}(\ell n + n^5 \kappa)$ bits. The information-theoretically secure protocol may fail with a negligible probability and needs to communicate $\mathcal{O}(\ell n + n^{10} \kappa)$ bits.

The presented constructions CryptoBC and ITBC require $\mathcal{O}(n^2)$ and $\mathcal{O}(n^3)$ rounds, respectively. While constant-round constructions are unachievable, it is still unresolved whether more round-efficient constructions exist. We leave round-complexity optimizations and proving stronger lower bounds as open questions.

References

- [AJLA⁺12] Asharov, G., Jain, A., López-Alt, A., Tromer, E., Vaikuntanathan, V., Wichs, D.: Multiparty computation with low communication, computation and interaction via threshold FHE. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 483–501. Springer, Heidelberg (2012)
- [BGP92] Berman, P., Garay, J.A., Perry, K.J.: Bit optimal distributed consensus. In: Computer Science Research, pp. 313–322. Plenum Publishing Corporation, New York (1992); Preliminary version appeared in STOC 1989
- [BH06] Beerliová-Trubíniová, Z., Hirt, M.: Efficient multi-party computation with dispute control. In: Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876, pp. 305–328. Springer, Heidelberg (2006)
- [CGS97] Cramer, R., Gennaro, R., Schoenmakers, B.: A secure and optimally efficient multi-authority election scheme. In: Fumy, W. (ed.) EUROCRYPT 1997. LNCS, vol. 1233, pp. 103–118. Springer, Heidelberg (1997)
- [CW92] Coan, B.A., Welch, J.L.: Modular construction of a byzantine agreement protocol with optimal message bit complexity. Information and Computation 97, 61–85 (1992); Preliminary version appeared in PODC 1989
- [DS83] Dolev, D., Strong, H.R.: Authenticated algorithms for Byzantine agreement. SIAM Journal on Computing 12(4), 656–666 (1983); Preliminary version appeared in STOC 1982
- [FH06] Fitzi, M., Hirt, M.: Optimally efficient multi-valued Byzantine agreement. In: Proceedings of the 26th Annual ACM Symposium on Principles of Distributed Computing, PODC 2006, pp. 163–168. ACM, New York (2006)
- [Fit03] Fitzi, M.: Generalized Communication and Security Models in Byzantine Agreement. PhD thesis, ETH Zurich (March 2003), Reprint as vol. 4 of ETH Series in Information Security and Cryptography. Hartung-Gorre Verlag, Konstanz (2003) ISBN 3-89649-853-3
- [FM88] Feldman, P., Micali, S.: Optimal algorithms for byzantine agreement. In: Simon, J. (ed.) STOC, pp. 148–161. ACM (1988)
- [GGHR14] Garg, S., Gentry, C., Halevi, S., Raykova, M.: Two-round secure MPC from indistinguishability obfuscation. In: Lindell, Y. (ed.) TCC 2014. LNCS, vol. 8349, pp. 74–94. Springer, Heidelberg (2014)
- [GKKO07] Garay, J.A., Katz, J., Koo, C.-Y., Ostrovsky, R.: Round complexity of authenticated broadcast with a dishonest majority. In: Proceedings of the 48th Annual IEEE Symposium on Foundations of Computer Science, FOCS 2007, pp. 658–668. IEEE Computer Society, Washington, DC (2007)
- [GMW87] Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game. In: Proceedings of the 19th Annual ACM Symposium on Theory of Computing, STOC 1987, pp. 218–229. ACM, New York (1987)
- [GY89] Graham, R.L., Yao, A.C.: On the improbability of reaching byzantine agreements. In: Proceedings of the twenty-first Annual ACM Symposium on Theory of Computing, STOC 1989, pp. 467–478. ACM, New York (1989)
- [HMR14] Hirt, M., Maurer, U., Raykov, P.: Broadcast amplification. In: Lindell, Y. (ed.) TCC 2014. LNCS, vol. 8349, pp. 419–439. Springer, Heidelberg (2014)

- [KK06] Katz, J., Koo, C.-Y.: On expected constant-round protocols for byzantine agreement. In: Dwork, C. (ed.) CRYPTO 2006. LNCS, vol. 4117, pp. 445– 462. Springer, Heidelberg (2006)
- [LV10a] Liang, G., Vaidya, N.: Complexity of multi-value byzantine agreement. Technical report, University of Illinois at Urbana-Champaign (2010), http://www.crhc.illinois.edu/wireless/papers/ ba_sum_capacity_0729.pdf
- [LV10b] Liang, G., Vaidya, N.: Short note on complexity of multi-value byzantine agreement. CoRR, abs/1007.4857 (2010)
- [LV11] Liang, G., Vaidya, N.: Error-free multi-valued consensus with Byzantine failures. In: Proceedings of the 30th Annual ACM Symposium on Principles of Distributed Computing, PODC 2011, pp. 11–20. ACM, New York (2011), The arxiv version is available at http://arxiv.org/abs/1101.3520
- [LV14] Liang, G., Vaidya, N.: Personal Communication (2014)
- [Pat11] Patra, A.: Error-free multi-valued broadcast and Byzantine agreement with optimal communication complexity. In: Fernàndez Anta, A., Lipari, G., Roy, M. (eds.) OPODIS 2011. LNCS, vol. 7109, pp. 34–49. Springer, Heidelberg (2011)
- [PSL80] Pease, M.C., Shostak, R.E., Lamport, L.: Reaching agreement in the presence of faults. Journal of the ACM 27(2), 228–234 (1980)
- [PW96] Pfitzmann, B., Waidner, M.: Information-theoretic pseudosignatures and Byzantine agreement for $t \ge n/3$. Technical report, IBM Research (1996)
- [Rog06] Rogaway, P.: Formalizing human ignorance. In: Nguyên, P.Q. (ed.) VI-ETCRYPT 2006. LNCS, vol. 4341, pp. 211–228. Springer, Heidelberg (2006)
- [TC84] Turpin, R., Coan, B.A.: Extending binary Byzantine agreement to multivalued Byzantine agreement. Information Processing Letters 18(2), 73–76 (1984)
- [Yao79] Yao, A.C.: Some complexity questions related to distributive computing (preliminary report). In: Proceedings of the Eleventh Annual ACM Symposium on Theory of Computing, STOC 1979, pp. 209–213. ACM, New York (1979)
- [Yao82] Yao, A.C.: Protocols for secure computations. In: Proceedings of the 23rd Annual Symposium on Foundations of Computer Science, SFCS 1982, pp. 160–164. IEEE Computer Society, Washington, DC (1982)

A On the Constructions of Liang and Vaidya [LV11, LV10a, LV10b]

In [LV11] it is stated that the broadcast constructions presented there can be extended to tolerate $t \ge n/3$. We contacted the authors and they said that this statement is misleading and it should have been "t < n/2" instead of " $t \ge n/3$ " to be more clear [LV14]. Below we detail why [LV11] inherently requires t < n/2 and cannot be extended beyond this bound (this reasoning applies to the related constructions [LV10a, LV10b]).

Essentially, the construction relies on a player set S such that all players in S have the same value v and S is guaranteed to contain at least one correct player. The value v is the value that should be agreed on. This technique requires that such S is unique. Uniqueness of S can be guaranteed only when t < n/2. When $t \ge n/2$, even if all correct players do share the same value v, the Byzantine players can always pretend to have a different value v' and create a larger player set S' just among themselves to prevent protocol from reaching agreement.