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Abstract. Service-based applications must be adaptable to cope with
the dynamic environments in which they reside. Dynamic service com-
position is a common solution to achieving adaptation, but it is challeng-
ing in mobile ad hoc network (MANET) environments where devices are
resource-constrained and mobile. Existing solutions to dynamic service
composition predefine the multiple configurations that may be possible,
but this requires knowledge of the configurations a-priori. Alternatively,
some solutions provide on-demand composition configurations, but they
depend on central entities which are inappropriate in MANET environ-
ments. We propose a decentralized service composition model, in which
a system dynamically adapts its business process by composing its frag-
ments on-demand, as appropriate to the constraints of the service con-
sumer and service providers. Results show a high composition success
rate for the service compositions in high mobility environments.

Keywords: Service composition·Distributed·MANET·Overlay networks.

1 Introduction

Extensive use of mobile devices, coupled with advances in wireless technology like
Wi-Fi direct, increase the potential for shared ownership applications for mobile
ad hoc networks (MANETs) [6]. Devices can employ computational resources
in a network to accomplish not only data routing tasks but also a complex
user task with value-added services. A widely accepted mechanism to carry out
such user tasks is service-based applications (SBAs), in which complex tasks are
modelled as loosely-coupled networks of services. A SBA provides appropriate
functionalities to consumers by composing cooperating services.

Typical MANET environments are dynamic; mobile SBAs must be adaptable
to cope with potential changes in their dynamic operating environments (e.g.
topology changes, network disconnections or service failures). Centralized service
management for traditional adaptive systems is not applicable to MANETs, as
device mobility is likely to be unpredictable, with devices joining and leaving the
network at any time. There is, therefore, no guarantee that a suitably resource-
rich central node will be available for the duration of a complex service provision.
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A number of approaches to distributed service composition [2], [15], [24], [25]
have been proposed. They support the specification of a full composition request
as an abstract workflow and distribute it through the network. They can also
partition a workflow into independent parts and then assign these parts to corre-
sponding nodes. However, most workflow-based distributed service composition
approaches have not addressed adaptation in abstract workflows. Thus, existing
systems may fail or have to rediscover service providers, if a service query in such
a request is not matched. Dynamic service compositions [8], [13], [16], cope with
the adaptation problem using task planning algorithms, or graph-theory based
techniques. However, graph-theory based techniques have limited support to an-
alyze multiple input/output (I/O) dependencies among services [13]. Moreover,
existing task planning algorithms either are constrained to sequential composi-
tion or require central knowledge bases.

In this paper, we introduce a service composition algorithm to form and adapt
a full business process for a complex user task on-the-fly, without the requirement
for a central node. Forming a business process relies on a novel overlay network
named Semantic Service Overlay Network (SSON), which clusters semantically
similar nodes and semantically dependent nodes for dynamic composition. On
SSON networks, a service provider can adapt composition requests and gener-
ate potential execution fragments that can be selected to build global execution
paths. New service providers may be discovered to replace any that result in
composition failures or service outages, composing them into the current execu-
tion.

The advantage of this work is that programmers can develop mobile applica-
tions structured based on complex user tasks, instead of concretely specifying
the possible workflows and configurations in advance. In addition, the approach
allows new services not known a-priori to add to the environment at composition
as well as execution time, increasing the composition success rate. The approach
can be used in application scenarios where service providers are intermittent,
or where there are dynamic complex applications with system configurations
that cannot be generated a-priori, such as automotive and wearable mobile de-
vices. Taking examples from the automotive domain, systems can benefit from
cooperation between vehicles to produce information such as forward collision
warning.

The main contribution of this work is a decentralized mechanism to enable
service compositions. Our evaluation compares our service composition approach
with a dynamic service composition model. The results show that service compo-
sitions can be adapted in a decentralized manner and provide a high composition
success ratio.

The reminder of this paper is organized as follows. Section 2 introduces the
system model. Section 3 illustrates a semantic-based mechanism that supports
service composition. Section 4 shows the service composition algorithm and the
strategy of service execution management. Section 5 presents the evaluation and
result. Section 6 discusses related work. Section 7 summaries this work.
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2 System Model Overview

In the service-based environment considered in this paper, a complex user task
can be supported with the collaboration of two or more basic services that are
composed into a composite service. To enable such collaboration, a service com-
position can specify complex user tasks as abstract workflows. In much of the
existing work that relies on abstract workflows, systems execute ordered service
queries individually in a predefined succession [6]. Each of the queries can match
with either one basic service, or trigger a process to generate a composite ser-
vice when there is no service that suffices independently. Such a service matching
scheme can be categorized as one-to-N matching (N≥1). This paper investigates
a novel, decentralized dynamic L-to-M (L≥1, M≥1) matching scheme for service
composition. Instead of matching one service query to N basic service(s), our
service composition model matches L service queries to M services, by adapting
abstract workflows and their concrete implementation details.

Consider a navigation task as an example. This navigation has a service query
list (abstract workflow) including two requirements: a GetLocation service and,
a Navigator service that needs the results of a GetLocation service as input. In
service composition, if a system can only find a Navigator service that uses both
location data and map data as inputs, the system should be able to adapt the
original service query list, by adding a requirement for getting map data.

The theory behind this L-to-M scheme is similar to that of semantic-based ser-
vice compositions [12], but we realize it without needing a centralized reasoning
mechanism, and systems can adapt a completed composition during execution.
This is a non-trivial challenge as it is based on the assumption that no single
node can maintain full knowledge of the network for execution planning. Our
approach relies on local nodes receiving a global composition request, and gen-
erating the potential fragments of the global execution plan. Network knowledge
can be gradually learned through interactions between participating nodes, and
each node can adjust a composition request when new knowledge becomes avail-
able. Our main hypothesis is that decentralized service compositions can reduce
composition failures from mismatched composition requests.

This work is supported by a three-layer composition structure, as illustrated in
Fig.1. Specifically, we have defined an overlay network called a Semantic Service
Overlay Network (SSON). A SSON can be constructed from service descriptions
which are semantically annotated using ontology concepts. We define these con-
cepts using standard taxonomies such as SIC1 to outline the goal of services.
Section 3 elaborates more on how to structure and maintain a SSON.

The lowest layer in the service composition structure is the service layer, which
includes services with annotated service descriptions. In particular, we annotate
the service with its functionality, inputs and outputs. Naturally, these annotated
elements can have different ontology concepts taken from a common standard
ontology. For example, an on-line meal order service can capture concepts such
as: restaurant meals delivery (functionality), address (input) and price (output),

1 http://www.epa.gov/envirofw/html/sic_lkup.html

http://www.epa.gov/envirofw/html/sic_lkup.html
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Fig. 1. Overview of Service Composition Model

which are drawn from an online NAICS 2 and Restaurant ontology3. The SSON
layer is built over the service layer, linking different services based on their
semantic similarity and dependency. Services are semantically similar if they
provide similar functionalities or they require similar input data and produce
outputs with similar types. Two services are semantically dependent if one’s
output has the same semantic type as the other’s input. In other words, it is
possible for one to use the others result to execute its own operations. The highest
layer is a user task specification layer where a set of composition requirements
are defined as a task specification, with the SSON layer aggregating appropriate
services for the task specified, as described in Section 4.

For the service model, we describe a service S =< Sid, IN,OUT >, con-
sisting of a service identification Sid and two sets capturing I/O parameters.
Semantic annotations for a service are defined in a Service Annotation Profile
AP =< Sid, AF,AIN,AOUT >, where AF , AIN , and AOUT are ontology con-
cepts mapped to corresponding functionalities and I/O parameters in a service
description. APs inform service compositions about services’ logical semantic in-
terfaces, and can be described by semantically rich data models, such as OWL-S
and SAWSDL.

3 Semantic Service Overlay Network (SSON)

Research on service composition has explored overlay networks underpinning the
service discovery process. There are existing different types of overlay networks
to this end, such as service-specific overlay networks [2], service overlay networks
[13], and semantic overlay networks (SONs) [5]. SSON is an extension of SONs
which were originally explored to improve service discovery performance for Peer-
to-Peer (P2P) networks. A SON is a logical network based on similarities between
peers shared content, which the network uses to organize peers and improve

2 http://www.census.gov/eos/www/naics/index.html
3 http://wise.vub.ac.be/ontologies/restaurant.owl

http://www.census.gov/eos/www/naics/index.html
http://wise.vub.ac.be/ontologies/restaurant.owl
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content-based search. The core notion of a SON is to bunch similar peers, making
query processes discover bunches instead of individual peers for faster locating.
Current research on facilitating distributed service discovery with SONs, like
DHT-SON [18] and SDSD [4], shows a SON can be structured at comparable
cost to that of producing a normal network by using probe messages.

This proposed SSON supports service composition by introducing the idea of
I/O dependencies from service overlay networks [13], [23] which create links be-
tween service providers by matching I/O parameters. A SSON combines service
overlay networks with normal SON activities. I/O parameters-dependent links
can be built as a byproduct of general SONs. A SSON is structured by link-
ing semantically-related services, and the relationship between services can be
classified as similarity or dependency. The former represents two service sharing
similar functionalities like that defined in traditional SONs; the latter indicates
two services with potential I/O data dependencies. Semantic links rely on match-
making techniques to be established.

3.1 Matchmaking Models

In this work, we introduce a deductive matchmaking model (MatchAP), com-
bined with a distributed similarity-based model called ERGOT [19]. ERGOT
uses a similarity function Csim(c1, c2) ∈ [0, 1] that returns whether two on-
tology concepts (c1 and c2) are similar. The MatchAP model explores semantic
connections (similarity and dependency) between two semantic service interfaces
AP1 and AP2. It matches the inputs of AP1 to that of AP2, as well as matching
their outputs and functionalities. It also matches the inputs (respectively, the
outputs) of AP1 to the outputs (respectively, the inputs) of AP2 to determine
any dependency between the two interfaces. We use a matching function [19]
between the parameters in two sets X1 and X2:

ParamSim(X1, X2) =
∑

b∈X2

max
a∈X1

Csim(a, b) (1)

where AP1 =< S1, AF1, AIN1, AOUT1 > and AP2 =<
S2, AF2, AIN2, AOUT2 >. The matching function between two APs can
then be defined by using of Equation1:

MatchAP (AP1, AP2) = αParamSim(AF1, AF2)
+β(ParamSim(AIN1, AIN2) + ParamSim(AOUT1, AOUT2))
+γParamSim(AIN1, AOUT2)

(2)

where the parameters α, β, and γ are used to weight similarity. Depending on val-
ues returned by function MatchAP (AP1, AP2), we state that if MatchAP (AP1,
AP2) is larger than a threshold value Θ, a semantic link can be built between the
services, and they become semantic neighbours to each other. A semantic link
A → B can be ranked. We define five different ranks for semantic links that are
listed below, taking into account their match types, which extend the definition
from a conventional SON [4]:
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– R0 same: A and B provide the same functionalities and ask for the same
sets of input data. (e.g. A: Get Location, B: Get Address)

– R1 reqI :A provides the same functionalities withB , but asks for additional
input data with respect to that of B. (e.g. A: Get Location, B: Get Address
by Name and Phone Number)

– R2 share: A and B have shared functionalities. (e.g. A: Navigator, B:
Route Planner)

– R3 dep: A depends on B’s execution result. (e.g. A: Navigator, B: Get Lo-
cation)

– R4 in: A can provide input data to B. (e.g. A: Navigator, B: Route Render)

3.2 SSON Construction

Nodes can join or leave the network over time, so they should be in a position
to discover their semantic neighbours. When a peer joins a new network, it
advertises its services by initializing a probe service request using the information
in the APs of the services and finding its semantic neighbours in the network.
The request also includes a threshold value for semantic matchmaking. Such a
service request query only operates once when the peer joins the network. As
soon as a peer has established semantic links with other peers, other newcomers
are able to take advantage of this peers knowledge through their own probe
service requests. For example, suppose a Navigator service relies on locations
and map data as inputs to generate navigation information between locations.
The semantic links Navigator → Get Location service can be created with a
rank: R3 dep if the latter can provide any of the inputs. Semantic neighbours
are neighbouring logically but physically it is also possible that multiple services
with semantic relations may be published in the same service provider (peer).

Considering peers’ mobility and the dynamic environment in which they re-
side, overlay management protocols like CYCLON [22] and some stabilization
protocols can be used to monitor the neighbours presence and to update the list
of semantic neighbours on peers. Updating the list of semantic neighbours can
trigger system adaptations that will be illustrated in Section 4.3.

4 Decentralized Service Composition

MANET environments cannot guarantee to provide a single, continuously ac-
cessible node to serve a service composition as a central entity because nodes
may leave the network, or otherwise fail. This section introduces an alternative
based on distributing the processing of service compositions, utilizing semantic
links in SSON network.

4.1 Task Model

Complex user tasks are handled by a service composition system that receives
the task’s specification as an input request and composes value-added services.
Our work specifies a task as SC T =< Tid, Tinput, Toutput, δ >, where Tid is the
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request’s identification. The end-to-end inputs and outputs are represented as
two sets: Tinput and Toutput. A set of operations δ is defined that summarise
the task’s goal, and an operation Opti =< Optid, IN,OUT >∈ δ consists of a
specification of operation name (Optid) and I/O parameters (IN and OUT ). A
composition request message containing a SC T can be defined as SC Req =<
SC T,Log, Comp Cache >, where Log accumulates message-passing history to
prevent providers repeatedly processing a request for the same workflow. The
Comp Cache is used to resolve service composition for a single operation when
a service for a requested operation is not found. It caches existing services to
discover if a combination from them can match the single operation. In this
work, we define a Composer role in a service composition process. Task requests
can be passed from a composer to its neighbours and adapted by the composer.

Definition 1 : A Composer is a node in a network who decides to participate
in a composition process. It can cooperate with other composers in the network
to dynamically generate and maintain the fragments of global execution paths.
One node becomes a composer as soon as it successfully matches a received com-
position request from other nodes. The node resigns this role when the provided
services have been executed, or no fragment remains in it.

4.2 Distributed Planning

Logical reasoning algorithms like forward- or backward chaining have previously
been used to facilitate semantic-based service composition [12]. General imple-
mentation of reasoning forwards and backwards uses decision trees, for which
systems require a global view of facts (available services) to build. Our approach
leverages a decentralized backward-chaining mechanism to create composition
plans using local knowledge for user tasks. The core function of this planning
process is twofold: a) it aggregates potential providers for a composition request
and dynamically adjusts composition requests hop-by-hop based on new local
knowledge; b) it allows a potential provider to generate a list of fragments for
system configurations. A fragment defines how the potential provider can com-
pose with its semantic neighbours to provide functionalities for the consumer.

Potential Provider Aggregation. When a consumer launches a service com-
position request, a distributed strategy to devise composition plans for this re-
quest, piece by piece, is initiated. Specifically, service consumers initiate a com-
position request from task specifications. As can be seen in Algorithm 1 (a),
an initiator sends the request over the network to discover potential providers
who can produce (or partially produce) the set of requested end-to- end outputs.
Afterwards, it waits for composers sending tokens to it. Each token represents a
discovered plan of a completed execution path, or a completed branch in a par-
allel execution path. The initiator receives tokens, and starts service execution
phases when a complete execution plan emerges (Line 6 in Algorithm 1 (a)).

When a node receives a composition request for the first time, it calls Algo-
rithm 1(b) to decide how its published services could combine to match one or
more operations specified in the request’s task specification. If an operation is
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List 1 : Algorithm 1 (a) - Initiator

1 Send SC R
2 Set timer T
3 /* Waiting */
4 if T expires : the composition fails;
5 Receive a token and store it
6 if a complete composition exists : send input data and execute;
7 else : back to step 3;

List 2 : Algorithm 1 (b) - Service provider S

Input: Service Composition Request: SC R
SC R: < Rid, Tinput, Toutput, δ, Log, Comp Cache >,Opti ∈ δ

Output: (i) template information and (ii) an updated request

1 /* Listening */
2 S Receives SC R from Composer Q and log(Log);
3 if ComposerMode S = ON: produceTemplateInfo (SC R); //Output (i)
4 else : for each operation Opt[i]{
5 if S supports no operation: back to step 1;
6 else{ ComposerMode S := ON
7 if S supports Opt[i]’s output type but Opt[i]’s functionality:
8 Strategy 1 - AddtoComp Cache (S);
9 if S (or S+ Comp Cache) can provide full functionality for Opt[i]: {
10 eliminate Opt[i]
11 if Opt[i] is the last operation in a branch : sendToken(Initiator);
12 if S (or S+ Comp Cache) requires extra input data which
13 is not specified in Opt[i]: Strategy 2 - create a new operation;
14 produceTemplateInfo (SC R) } //Output (i)
15 replyToSender(Q)
16 updateTask(SC R, S) //Output (ii)
17 SendOutList :=getSemanticNeighbours(R3 dep)
18 sendRequest (SC R, SendOutList) };
19 };

successfully matched, the node becomes a composer. This new composer then
stores the received request, eliminates the matched operation of the request and
sends out a new request. It also draws up template information for creating con-
figuration fragments. Therefore, the number of operations in a request reduces
hop by hop. If the eliminated operation is the last operation of a workflow branch
in the request, the composer sends a token to the initiator.

A node has a chance to provide a full service for an operation by combining to
other peers in the network when it can only provide a partial service for that op-
eration. To this end, we take into account two situations and apply corresponding
two strategies (Line 8 and Line 13 in Algorithm 1 (b)). These strategies allow
composers to adapt the abstract workflow on-the-fly. To illustrate such adap-
tation in our backward planning process, we present a brief example scenario:
finding a restaurant and routing to it. Table 1 shows the operations defined in the
composition request and the original abstract workflow. It also illustrates avail-
able service providers in the example scenario. We assume there is no provider
in the network that can work alone to serve operation oC .
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Table 1. An example scenario: finding a restaurant and routing to it

Abstract workflow: oA → oB → oC (deduced from the I&O dependencies)

Operations Functionality Input Output

oA Restaurant Recommender Personal profiles A list of restaurant
(food preferences)

oB Get Location Names Addresses
oC Navigator Addresses Audio routing results

Available Functionality Input Output
Providers

Provider A Restaurant Recommender Food preferences A list of restaurant
Provider B Get Address Names Addresses
Provider C Navigator Addresses+Map Text routing results

blocks
Provider Y Text to Audio Plain text Audio stream
Provider X Map cache Name of place Map blocks of the place

Fig. 2. An example of distributed backward task planning (req: a service composition
request. An abstract workflow is implied by the request.)

Fig. 3. Concrete workflow from a global perspective

As can be seen in Fig.2, the abstract workflow (oA → oB → oC ) is processed
backward with the forwarding of composition requests. This process starts from
an original composition request sent from the initiator (Arrow 1) to providers
that can produce audio streams. Provider Y receives the request and finds itself
cannot support the full functionality of oC . It applies Strategy 1, caching infor-
mation to indicate its capabilities and forwarding the request to its semantic
neighbours. Provider C gets the request from Provider Y. As shown in Table 1,
Provider C can fully serve oC , but requires extra support on input data. There-
fore, Provider C uses Strategy 2, eliminating oC from the request and adding
a new operation for discovering the required input data. Afterwards, the up-
dated request will be sent out to match the remainder of the operations. A
complete execution path exists after Provider A applies the requests sending
from Provider X and Provider B. During the distributed planning process, the
original abstract workflow (oA → oB → oC) is adapted as shown in Fig.3.
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Configuration Fragments Creation. A configuration fragment (CF) indi-
cates the possible position of a service in execution paths by defining the pre-
conditions and the post-conditions of the service’s execution. It is created from
template information that is one of the outputs of Algorithm 1(b). Template in-
formation includes a CF template that defines how many different pre-conditions
and post-conditions the execution of the service has. It also contains a set of
CF update instructions (CFUIs) for maintaining the list of CFs. To create
CFs we propose two notions: Pre-Conditional Neighbours (PreCNs) and Post-
Conditional Neighbours (PostCNs). They are both extracted from a potential
provider’s semantic neighbours. A PreCN or a PostCN has input or output de-
pendence on the potential provider, respectively.

Definition 2 : A CF can be described as CF =< CFid, S Pre, S Post >,
where S Pre represents a set of selected PreCNs as the entries of the CF; S Post
represents a set of selected PostCNs as the exits of the CF; and CFid is an
identification of the CF . An example of a CF for the scenario illustrated in
Table 1 is shown in Fig.4(a).

A CF is created by interactions between composers. A node becomes a com-
poser and gains template information (Output (i) in Algorithm 1(b)). This com-
poser then starts the creation of CFs with this information. The composer re-
gards the composition request sender as one PostCN in the S Post of a CF
and waits for replies from other nodes to select PreCNs for S Pre. If a group
of replies are received and the reply senders can satisfy the CF template in the
template information, a CF is created. If more than one group of reply senders
are available, a list of CF can be made by repeating the creation step.

4.3 Service Execution and Dynamic Adaptation of CFs

Traditional service composition techniques start service executions only after ser-
vice binding has completed. The composition mechanism in this paper combines
the service binding phase and the execution phase. Our previous work on op-
portunistic service composition illustrates a distributed execution model [10], [9]
that allows systems to bind one service provider, directly executing its provided
services, and then forwards the remainder of composition request on to the next
node. The bound provider then waits for other providers to reply with messages
that include their service functionality information. We apply the distributed
execution model in this work with some extensions to discovery mechanisms.
Instead of forwarding the rest of the request, the bound provider (composer)
selects the best matched CF, sending its execution results to the nodes in the
S Post of the CF.

This paper provides dynamic adaptationmechanisms for systems. Global adap-
tation is realized by selecting adaptable local CFs hop-by-hop during service exe-
cution. TheCFs of a composer can be adapted during composition planning phases
and service execution phases. Such adaptation is modelled by a MAPE (Monitor-
Analyze-Plan-Execute) loop, as shown in Fig 4(b). Composers canmonitor adap-
tation trigger events with SSON, analyze these eventswhen they appear and assign
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Fig. 4. (a) An example of the CF for Provider C (Table 1), (b) CFs Adaptation (SN:
Semantic Neighbours)

Table 2. Decentralized adaptation rules (Planning B)

Links Composer’s (A) adaptation actions to the new node (B)

R0 same Action 1 : A clones the CFs and the composition request kept in A to B.
B becomes a composer.

R1 reqI Action 2 : A clones the composition request kept in A to B. B becomes
a composer and calls Algorithm 1(b) to create CFs

R2 share Action 3 : A decides if the functionality it shares with B can support the
composition. If so, do Action 1 or Action 2 depending on the required
input of B

R3 dep Action 4 : A send the composition request updated by A to B. B calls
algorithm 1(b), deciding to take part in the composition or not.

theevent informationto correspondingplanning algorithms.Thesealgorithmsgen-
erate local adaptation plans which are executed to adapt CFs.

Adaptation can be triggered by newly arrived composition requests. When an
existing composer receives a new request for the same composition, it then anal-
yses the request using its historical data (stored requests and existing template
information), and directly generates template information (Planning A in Fig
4(b)). The CFUIs in template information are used to guide the execution of the
adaptation. According to different kinds of new requests, we define four CFUIs
for adaptation: clone, alter, wait and remove. For example, the Provider A in
our example scenario (as shown in Table 1) receives the request< req : oA, oX >,
and creates a CF (CF1 : S Pre = {Initiator}, S Post = {B}). When a new
request < req : oA → oB > is pushed to Provider A, this new request will trigger
adaptation to alter the CF1 to {S Pre = {Initiator}, S Post = {B,X}}.

This approach introduces a decentralized adaptation mechanism (Planning
B in Fig 4(b)) that deals with potential node failures and recently joined nodes
by adapting the CFs stored in composers. Node failures can be leaded by the
selection of invalid CFs during service execution. A CF becomes invalid when
the nodes that are recorded in it cannot be reached. If a semantic neighbour of a
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composer leaves the physical network, this absence of the node can be detected
through the management of SSON. The composer removes all the CFs that
contain the absent node. If a composer resigns its role, it sends a message to
all the PreCN and PostCN nodes, asking them to adapt their CFs by removing
invalid CFs. A node can also join the network and engage in the composition at
runtime. If a composer finds a new node in its semantic neighbour list, this new
node can participate in the composition in different ways depending on the rank
of the semantic link established between it and the composer (See Table 2).

5 Evaluation

Our approach maps a composition request to an L-to-M matching scheme to
address the problem where a queried service cannot be matched during service
composition. Solving one-to-one mis-matching has been investigated by several
approaches, for example, discovery algorithms to find more potential providers
and dynamic one-to- more composition [2], [13]. Our direction is similar in that
it tries to compose a basic service to match a single service query. Thus, we
conducted simulations to compare our solution against a Graph-Based (GB) ap-
proach [13]. The GB approach assumes a service provider entering a network by
broadcasting its service information. The network can rely on a central directory
that collects service information and maintains a global service network graph to
receive composition requests. The directory finds a consecutive execution path
out of the graph based on received requests. We measured the composition suc-
cess ratio, which is the number of composition requests that are successfully
processed with execution paths divided by the total number of requests.

We applied a simulation scenario [2] with services of alphabet converters and
joiners. In this scenario, a converter service receives input A and produce output
B (A → B), and a joiner service receives inputs A and B generating C as an
output (A+B → C). We employed 7 alphabets to represent I/O parameters in
the scenario; therefore, there are 21 different converter services and 35 different
joiner services. We used the NS-3 simulator to study the efficiency of our self-
adaptive approach and the GB approach.We simulated both approaches with the
same limitation of the maximum hops of broadcasting during service publishing.
We applied the random walk 2D mobility model, by which we control service
density and the proportion of mobile nodes. The service density is the radio
scope of a node divided by the whole field where all the nodes are located. This
simulation ran 10 rounds with varying numbers for mobile nodes and 9 rounds
with different service densities. Each of them is repeated 100 times with random
providers’ composition requests, and we report the average (see Fig.5). The
number of operations in a request is set to 4. We used Self-Adapt to represent
our approach in the following simulation study.

Fig.5 shows (a) the success ratio results with different service densities, and
(b) the success ratios at 70% service density with the ratio of mobile nodes vary-
ing from 20% to 100%. These two studies only employed the converter services
since the GB approach cannot model services with multiple I/O parameters.
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Fig. 5. The result of the study on composition success ratio

The result (a) shows that Self-Adapt has a higher success ratio, especially when
the density of services is low, because the SSON network, benefited from its
decentralized management, collects and mantains more service information than
the service overlay network used in the GB approach. The result (b) suggests
that Self-Adapt is more successful than the GB approach in high mobility scenar-
ios. Fig.5(c) illustrates the success ratio with varying service density of services,
comparing Self-Adapt using the multiple I/O strategy (see Section 4) with when
it does not use this strategy. It shows that the use of the strategy results in a
higher success ratio.

6 Related Work

Workflow-based adaptive systems [21] choose, or implement services from a pre-
defined abstract workflow that determines the structure of services. The abstract
workflow is implemented as a concrete (executable) workflow by selecting and
composing requested services. Adaptation of concrete workflows has been ex-
plored in the literature [1], [3]. However, these require central entities for com-
position and an explicit static abstract workflow, which is usually created manu-
ally. Decentralized process management approaches [24], [25] explore distributed
mechanisms, like process migration, to manage and update the execution of con-
crete workflows, which is close to our work in terms of service execution. However,
they still need a well- defined system business process at deployment time. In
our approach, the partial workflows that composers generate locally, distribute
over participating service providers during service discovery phases to gradually
devise a global one.

Dynamic service composition can also be reduced to an AI planning problem.
Similar to our solution, decentralized planning approaches [7], [11], [20] form a
global plan through merging fragments of plans that are created by individual
service agents. However, with these approaches, programmers need to provide
an explicitly defined goal for planning. The initial plan can become unreliable
when the environment changes. Automatic re-planning schemes [12], [14], [17]
allow plans to be adapted when matching services are unavailable, but existing
approaches depend on central knowledge bases.

Considerable research effort has targeted dynamic service compositions sup-
porting one-to-M (M > 1) matching while a matching basic service is not lo-
cated. They usually define a composition result as a directed acyclic graph [8],
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[13]. The nodes in a DAG represent services, and the edges show compositions
between the collaborating services. Service composition is modelled as a problem
of finding a shortest path (or the one with the lowest cost) from two services in
the DAG. However, existing work has limited support for services with multiple
I/O parameters. In addition, creating such DAG requires the aggregation of ser-
vice specifications from a central registry. Al- Oqily [2] proposed a decentralized
reasoning system for one-to-M (M > 1) matching, which is the closest work to
us. It composes services using a Service-Specific Overlay Network built over P2P
networks and enables self-organizing through management of the network. How-
ever, this approach is based on an assumption that every node in the network
knows its geographic location, as service discovery is realized by broadcasting
a request over its physical neighbours. Geographic locations usually can be ob-
tained from location services like GIS, but these are not readily accessible for
every node in the network. Our approach uses a semantic-based overlay network
to discover logical neighbours instead of geographic ones.

7 Conclusion and Future Work

Distributed service composition approaches allow systems to perform complex
user tasks without central entities, but do not fit well in dynamic environments.
The distributed service composition algorithm proposed in this paper addresses
this dynamic problem by adapting workflows during composition planning pro-
cesses as well as service execution phases. This paper also proposed a SSON
network to underpin such adaptation. The presented evaluation result shows an
improvement of composition success rate comparing to an influential abstract
workflow adaptation scheme for dynamic service composition.

In future work, first, we will investigate the performance of the proposed ap-
proach for different application scenarios and varying composition paths like
liner, parallel and hybrid composition paths. Although this approach provides
a higher success ratio than the GB approach, the cost of maintaining SSON
networks and adaptation processes may outweigh the high success ratio benefits
in some application scenarios. Second, our future research will include an inter-
esting topic for Quality of Service (QoS)-aware adaptation to not only increase
the composition ratio but also provide services with good quality.
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