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Abstract. The propagation and management of changes in process
choreographies has been recently addressed as crucial challenge by sev-
eral approaches. A change rarely confines itself to a single change, but
triggers other changes in different partner processes. Specifically, it has
been stated that with an increasing number of partner processes, the risk
for transitive propagations and costly negotiations increases as well. In
this context, utilizing past change events to learn and analyze the prop-
agation behavior over process choreographies will help avoiding signifi-
cant costs related to unsuccessful propagations and negotiation failures,
of further change requests. This paper aims at the posteriori analysis
of change requests in process choreographies by the provision of mining
algorithms based on change logs. In particular, a novel implementation
of the memetic mining algorithm for change logs, with the appropri-
ate heuristics is presented. The results of the memetic mining algorithm
are compared with the results of the actual propagation of the analyzed
change events.

Keywords: Change Mining, Process Choreographies, Memetic Mining,
Process Mining.

1 Introduction

As a result of easier and faster iterations during the design process and at run-
time, the management of business process changes, their propagation and their
impacts are likely to become increasingly important [1]. Companies with a higher
amount of critical changes list change propagation as the second most frequent
objective. In particular, in around 50% of the critical changes, the change neces-
sity stems from change propagation. Thus critical changes are tightly connected
to change propagation in terms of cause and effects [2].

In practice, companies still struggle to assess the scope of a given change. This
is mainly because a change initiated in one process partner can create knock-on
changes to others that are not directly connected. Failures of change propaga-
tions can become extremely expensive as they are mostly accompanied by costly
negotiations. Therefore, through accurate assessments of change impact, changes
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not providing any net benefit can be avoided. Resource requirements and lead
times can be accounted for when planning the redesign process [3]. With early
consideration of derived costs and by preventing change propagation, bears the
potential to avoid and reduce both average and critical changes [2].

Hence it is crucial to analyze propagation behavior, particularly, transitive
propagation over several partners. Note that change propagation might even be
cyclic, i.e., the propagation affects either the change initiator again or one of the
already affected partners. This is mainly due to transitivity; e.g., when a change
propagation to a partner not only results in direct changes he has to apply, but
also leading to redesigns in different parts of his process. In turn, this may have
consequences on the change initiator or a different partner.

This paper is based on change event logs and uses mining techniques to
understand and manage change propagation, and assess how changes propa-
gate between process partners that are not directly connected (cf. Figure 1). A
novel contribution is the implementation of a memetic mining algorithm coupled
with the appropriate heuristics, that enables the mining of prediction models on
change event logs, i.e., no information about the propagation between partners
is provided.

In the following, Section 2 illustrates a motivating example, while Section 3
presents change log formats and gives the global overview of the problem. Section
4 follows up with a set of heuristics for change mining. Based on these heuristics,
we introduce a memetic change mining algorithm in Section 5, which we discuss
and evaluate in Section 6. In Section 7 we discuss related work and conclude in
Section 8.

2 Motivating Example and Preliminaries

A process choreography is defined as a set of business partners collaborating
together to achieve a common goal. Based on [4], we adopt a simplified definition
of a process choreography C := (Π,R) with Π = {πi}i∈P denoting the set of
all processes distributed over a set of partners P and R as a binary function
that returns the set of interactions between pairs of partner; e.g., in terms of
message exchanges. Typical change operations comprise, for example, adding or
removing a set of activities from a process model or modifying the interaction
dependencies between a set of partners. A change operation is described by a
tuple (δ, π) where δ ∈ {Insert, Delete, Replace} is the change operation to be
performed on the partner process model π that transforms the original model π
in a new model π′ [4].

Consider the choreography process scenario as sketched in Figure 1 consisting
of four partners Acquirer, Airline, Traveler, and TravelAgency. In this paper,
we abstract from the notions private and public processes and assume that logs
with change information on all partners exist (e.g. anonymized and collected). The
Acquirer initiates a change of its process (δ, Acq) that requires a propagation to
the direct partner Airline. In order to keep the interaction between Acquirer

and Airline correct and consistent, the Airline has to react on the change by
inserting a new fragment F3 into its process. This insertion, in turn, necessitates a
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πAcq
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δAcq=Replace(F2,F2‘)

Change 
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Change 
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resp_date=2013-09-21
resp_time=10:21:03:201
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Change 
Propagation

status=reject
resp_date=2013-09-22
resp_time=18:41:27:78
cost=0

Fig. 1. Running Example: process choreography with Change Propagation

propagation to the Traveler that reacts by deleting process fragment F4. Finally,
the change propagates to the TravelAgency that would have to replace fragment
F5 by new fragment F5’. However, as the TravelAgency rejects the change, the
entire change propagation fails. According to [4], such change propagation is de-
fined as a function γ : {Insert, Delete, Replace} ×Π �→ 2{Insert,Delete,Replace}×Π

with γ((δi, πi)) = {(δj, πj)}. γ takes as an input an initial change on a given pro-
cess model and generates the ripple effects on the different partners affected by
the change.

The approach presented in this paper is based on change event logs collected
from different partners. Figure 2 outlines the overall approach and distinguishes
this work from previous ones. In [4], the overall picture of change propagation
in process choreographies has been set out. Also the basic algorithms for change
propagation are provided in [4]. We started analyzing change impacts in pro-
cess choreography scenarios using a priori techniques in [5]. The latter work is
based on the choreography structure only and does not consider information on
previous change propagations that occurred between the partners.

3 Problem Formulation

In this section, we introduce two different change log types and give a global
view on our approach.

3.1 Change Logs in Process Choreographies

Change logs are a common way to record information on change operations ap-
plied during process design and runtime for several reasons such as recovery and
compact process instance representation [6]. For process orchestrations, change
logs have been also used as basis for change mining in business processes in order
to support users in defining future change operations [7].

Change logs can be also used for process choreographies. Here, every change
log contains all individual change requests performed by every partner, where no
propagation information are described in the log. At a certain time, all the public
parts of the change logs owned by the partners participating in the collaboration
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Table 1. Change Event Record

Attribute Value

Initial Change ID 15d6b27b

Request time 2014-08-03T00:41:15

Change type Insert

Partner TravelAgency

Magnitude 0.6

Status completed

Response time 2014-08-05T12:32

Table 2. Change Propagation Record

Attribute Value

Initial Change ID 15d6b27b

Request time 2014-08-03T00:41:15

Change type Insert

Partner TravelAgency

Partner target Airline

Derived change ID c25b8c67a

Derived change type Insert

Magnitude 0.6

Status completed

Response time 2014-08-05T12:32

are anonymized [8], normalized, collected and put in one file to be mined. In the
following, we refer to this type of log as CEL (Change Event Log).

In practice, it is also possible to have a change propagation log CPL (i.e.
containing the change requests, their impacts and the propagation information
as well). However, since the processes are distributed, it is not always possible
for a partner to track the complete propagation results of his change requests
(due to transitivity and privacy). To be more generic, we adopt change logs that
contain solely change events CEL (without information about propagations)
to be mined. However, in order to validate our mining approach, and assess
the quality of the mined model from the CEL, we also maintain a log of the
actual propagations CPL. The results of the predicted model from the CEL are
compared and replayed on the CPL propagation events.

Anonymization of the logs represents an important privacy step [8], which is
a trivial operation in a non-distributed setting. In a distributed environment a
consistent anonymization scheme needs to be employed, where for example π2

is consistently labeled as X .
Table 1 describes a sample of a change record. Each record includes informa-

tion about the partner that implemented the change (anonymized), the change
ID and type, the timestamps and the magnitude of the change. The latter is cal-
culated using the number of affected nodes (in the process model), the costs (gen-
erated randomly), and the response time. Other costs can be added as needed.
Table 2 describes a propagation record, with more propagation information.

3.2 Overview

As aforementioned, the main problem is to generate and analyze a propagation
model by mining the change event log CEL, which contains all change events
that occurred on the process partners involved in the choreography. Figure 2
gives a global overview of the main components for managing changes in col-
laborative processes. The first set of components (C3Pro framework) provides
support for specifying, propagating, negotiating, and implementing changes in
choreographies. In particular, the change propagation component calculates the
ripple effects of an initial change on the affected partners and checks the sound-
ness of the collaboration if changes are accepted and implemented. The details
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Fig. 2. Overview of the Approach

of the propagations are stored in the CPL, and all individual change events are
stored in the CEL. Based on the change simulation data, posteriori and a priori
techniques are provided to evaluate and understand the propagation behavior
in the choreography through prediction models. The a priori technique [5] uses
the choreography structure to assess and predict the impact of a change request.
The posteriori technique, described in this paper, generates prediction models by
mining the previously stored change data. Derived models are validated through
a replay of the CPL.

In the CEL, the relationships between the change events are not explicitly
represented. The changes are collected from different partners without any in-
formation if a change on a business partner is a consequence of a change on
another business partner or if they are independent (because of the transitiv-
ity). In order to correlate between the change events and understand the prop-
agation behavior, we adopted different heuristics related to change in process
choreographies.

4 Heuristics

In this section we present 4 groups of heuristics that can be exploited for mining
change events in process choreographies.

Time Related Heuristic (TRH): In connection with process mining [9,10,11],
if two activities a and b whose most occurrences in the log are such as the
completion time of a always precedes the start time for the execution of b, then
we conclude that a precedes b in the process model. If there exist cases where
the execution start time of b occurs before the completion of a, then we can say
that a and b could be in parallel. In change mining, a partner π2 that always
performs changes directly after a partner π1 has changed its process, may lead to
the conclusion that the changes on π2 are the consequences of the changes of π1.
However, this does not always hold true. Indeed, the change events are collected
and merged from different sources, and several independent change requests can
be implemented by different partners at the same time.

In addition, in process execution logs, each trace represents a sequence of
events that refer to an execution case (i.e. an instance of the process execution).
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ti = change event timestamp
δij = jth change operation on i  
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ε = small time interval

change events on 1

change events on 1

L2       (δ31, 3)       t1'

L7       (δ43, 4)       t3' 

Fig. 3. Change Event Log (CEL): Representation over Time

The precedence relationships between events of a same trace are explicit. In
change logs CEL, each trace represents solely one change event. Even if the
timestamps give an explicit precedence relationship between different traces, it
is not possible to directly conclude that they are correlated. For example, we
assume that the actual propagation of two initial change requests on different
partners (δ1, π1) and (δ2, π2) are such that:

– the actual propagation of (δ1, π1) results in (δ3, π3).
– the actual propagation of (δ2, π2) results in (δ4, π4).

Since, in this paper, we consider that we do not have the information about
the propagations, and that each of these change events is logged separately
by the partner which implemented it, then, according to the timestamps, the
merging and ordering of these change events in the CEL may lead to the following
sequence: [(δ1, π1), (δ2, π2), (δ3, π3), (δ4, π4)]. According to this ordering, (δ2, π2)
may be considered as a consequence of (δ1, π1) and (δ4, π4) as a consequence of
(δ1, π1). In order to avoid such erroneous interpretations of the log, we need to
enhance the heuristic with new elements.

Figure 3 illustrates an example of a sample CEL and its representation over
time. The Figure shows a log file containing traces of 8 change events occurred
on process partners π1, π2, π3 and π4 at different times. We assume that the
log is chronologically ordered. According to the timestamps, there is a strict
precedence relationship between the change occurrences on π1 and the change
occurrences on π2. However, we can not directly deduce that the latter are the
effects of the changes on π1. Therefore, it is necessary to find another correlation
between the timestamps that is more relevant regarding the identification of
the propagation patterns. In this sense, we can remark that each time a change
operation δ1 occurs on π1 at time t, there is a change operation δ2 that occurs
on π2 at t+Δ with a variance of ±ε. This deduction holds true when the number
of change occurrences on π2 in the interval [t+Δ− ε, t+Δ+ ε] becomes high,
and when Δ corresponds to the average latency between partners π1 and π2.
The identification of Δ and ε are calculated empirically and should consider the
noise in the event logs (e.g. rare and infrequent behavior).

Window Related Heuristic (WRH): Figure 4 presents another example of
change events extracted from a CEL. For instance, we consider a Replace on
partner Acquirer (A) followed by an Insert on Airline (B), which in turn,
followed by a Delete on the TravelAgency (C). We also consider Γi as the
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Fig. 4. Correlating change events using forward and backward windows

response time of partner i (the average time required by partner i to implement
a change). When mining this log, the first challenge is to know if a change event
is the originator or a consequence of another change. For this purpose, we define
two types of windows; i.e., backward and forward. Given a change event, the
forward window represents all the following change events that can be considered
as effects of its propagation. In contrast, a backward window includes all previous
change events that can be considered as the originators of the change event in
question. For instance, in Figure 4, the forward window of A (i.e., ω+

A), is defined
by the maximum of the response times of all change events (i.e.,Maxi∈P(Γi)).
Indeed, Γi is the time required by a partner to react and implement a change.
So, with respect to A, if a following change event B was implemented at a time
tB such as tB − tA > ΓB, then B cannot be considered as consequence of A. In
turn, if tB− tA < ΓB, then B might be a consequence of A (but not necessarily).

For a given change A, since we know that only change events that respect
this constraint can be considered, then the possible candidate events as conse-
quences of A should be within this window ω+

A = Maxi∈P(Γi). According to
this approach, in Figure 4, the possible change events that can be considered as
effects of A are B and C.

This forward window allows to avoid parsing all change events that come after
A to the end of the log CEL. However, a change event within this window does
not necessarily imply that it is a consequence of A. for example, C is within the
ω+
A window, but ΓC can be such as ΓC < tC − tA < ω+

A or tC − tA < ΓC < ω+
A .

For instance, if we assume that in time scale, tA = 3, ω+
A = 10, tC = 9 and

Γc = 4, then ΓC = 4 < tC − tA = 6 < ω+
A = 10. In this case, C is within the

window of A, but did not occur within its response time tA + ΓC ± ε (ε is a
variance value).

On the other hand, for a given change event C, the backward window ω−
C in-

cludes all possible change events that can be considered as the originators that
triggered C. In this sense, if C is a consequence of another change A, then tC − tA
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should be approximately equal to ΓC , and therefore ω−
C = ΓC . However, a change

event A that occurred at tC − ΓC ± ε does not necessarily mean that C is conse-
quence of A. Indeed, both events can be independent.

Back to Figure 4, the table shows the possible propagation models that can
be generated according to the assumptions based on backward and forward win-
dows. In the first assumption, we assume that the response time of B matches
the time of its occurrence after A, and the time of its occurrence with respect
to B. Therefore, C can be seen as a possible consequence of either A or B. In
the same time the occurrence of B after A falls within its response time ΓB, and
therefore B can be possibly a consequence of A. As aforementioned, matching
the timestamps of the change events do not necessarily mean they are correlated,
and then we have to consider the possibility that the events might be indepen-
dent. The possible propagation models are then depicted in the second column,
which, merged together, give the probabilistic model in column 3. In the second
assumption, we assume that C can not be candidate for A (according to its
response time), and therefore the number of possible propagation models is re-
duced to only 4. In the last assumption, C can not be considered as consequence
of both A and B, and then the number of models is reduced to 2.

To conclude, the forward and backward windows can be very useful in reducing
the search space and highlighting the more probable propagation paths between
the change events. In addition, the example of Figure 4 considers only a small
window of events, where each event type occurred only once. In a bigger log, a
same change event (e.g. a Replace on a partner) can occur several times, which
may improve the precision of the probabilistic models.

Change Related Heuristics (CRH): The calculation of the prediction model
could benefit from the relationships between change operation types. Indeed,
from our experience [4], and considering solely the structural and public impacts,
an initial change request of type Insert always generates insertions on the affected
partners, and the same holds for Delete which generates only deletions. However,
the Replace could generate all (three) types of changes. From this we deduce, that
we can not have propagation of the type (Insert, π1) → (Delete∨Replace, π2) or
(Delete, π1) → (Insert ∨ Replace, π2). Using these as punishments, the mining
techniques could reduce the search space and therefore avoid incorrect behavior.

Choreography Model Heuristics (CMH): Another improvement consists
in using the choreography model. The latter sketches all the interactions between
the partners and gives a global overview on the collaboration structure. In this
sense, we can use the dependencies between the partner interactions as a heuristic
to identify transitive propagations (e.g. centrality). More details about heuristics
that stem from the choreography structure can be found in [5]. These heuristics
can be used to improve the mining results. For example, an identified direct
propagation link between two partners through mining could be invalidated if
the partners have no direct interactions together in the choreography model, and
the change type is Delete. Because, unlike the Replace and Insert, the Delete
does not result in new dependencies between the partners.
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Fig. 5. (a) Genetic Encoding of a candidate solution (b) Candidate solution in graph
form (c) Visualization of heuristics affecting a candidate solution

The implementation and the evaluation of the proposed heuristics within the
memetic mining is described in the following sections.

5 Memetic Change Propagation Mining

In this section we outline the memetic algorithm for mining change event logs
used to build change propagation models. This core algorithm is enriched with
an implementation of the heuristics sketched out in the previous Section 4. Em-
ploying a change propagation model, predicting the behaviour of change requests
in the choreography becomes possible. Memetic algorithms follow the basic flow
of genetic algorithms (GAs) [12], which are stochastic optimization methods
based on the principle of evolution via natural selection. They employ a popula-
tion of individuals that undergo selection in the presence of variation-inducing
operators, such as mutation and crossover. For evaluating individuals, a fitness
function is used, which affects reproductive success. The procedure starts with
an initial population and iteratively generates new offspring via selection, muta-
tion and crossover operators. Memetic Algorithms are in their core GAs adding
an inner local optimization loop with the goal of maintaining a pool of locally
optimized candidate solutions in each generation [13].

Genetic Encoding: The genetic encoding is the most critical decision about
how best to represent a candidate solution for change propagation, as it affects
other parts of the genetic algorithm design. In this paper, we represent an indi-
vidual as a matrix D that states the change relationships between the partners
(the genotype). Each cell dij in the matrix has a boolean value equal to 1 only
if a change on πi is propagated to πj , and zero otherwise. The matrix is non
symmetric and the corresponding graph for change propagation is directed. This
means that the probabilities of propagating changes from πi to πj and from πj

to πi are not equal. This is due to the fact that the log file may contain more
change propagations from πi to πj than from πj to πi. Figure 5(a) shows the
representation of a candidate solution. Internally, the table rows are collapsed
resulting in a bitstring of length (m×n)2 where n is the number of partners and
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m is the number of change operation types (e.g., (3 × 3)2 in the Figure 5(a)).
Figure 5(b) represents the corresponding propagation model graph. Figure 5(c)
shows the importance of the heuristics in reducing the search space and their
effects on candidate solutions.

Initial Population Generation: Two approaches are applicable for generat-
ing an initial population: (i) starting with random change propagation models
by defining random paths for propagating change requests in each of the part-
ners. This generated model may not respect the dependencies defined by the
choreography model. Also considering the complexity of the problem caused by
several constraints, the obtained results prove to be not sufficient. (ii) starting
with an initial good solution using a part of the propagation dependencies ex-
isting in the log file. This solution could represent an incomplete behavior since
some propagation paths of the log are not incorporated into the model. For the
implementation we have chosen approach (ii) as it allows us to start with an
approximate solution using that as the basis for search space exploration.

Heuristics: Here we briefly outline the implemented heuristics extracted from
Section 4.

– H1 (CMH) - A change to a partner’s process (π1) never results in a prop-
agation to him- or herself (e.g. π1 = π2). We can avoid solutions with this
property in the search space by applying this heuristic.

– H2 (CMH) - Through our extensive simulations we can rule out the case
where the originating change is of the type Insert and where the propagated
change type is anything other than Insert (e.g. Delete and Replace).

– H3 (CMH) - Similarly to H2 we can rule out the cases where the originating
change type is Delete, and the propagated change type is anything other than
Delete (e.g. Insert and Replace).

– H4 (CRH) - Rule out propagated changes of type Delete ⇐⇒ the origi-
nating change is of type Delete, and there is no interaction between the two
partners (i.e. R(π1, π2) ∩R(π2, π1) = {∅}, R is defined in Section 2).

– H5 (CRH) - Rule out propagated changes of type Delete ⇐⇒ the orig-
inating change is of type Replace, and there is no interaction between the
two partners (i.e. R(π1, π2) ∩R(π2, π1) = {∅}).

– H6 (CRH) - Rule out propagated changes of type Replace ⇐⇒ the
originating change is of type Replace, and there is no interaction between
the two partners (i.e. R(π1, π2) ∩R(π2, π1) = {∅}).

– H7 - The mutation as well as the crossover operation change a solution
candidate in random ways. We can limit candidates of lower quality by taking
into consideration only those events where both the partner and the change
operation type occur (in pairs) in the change event log.

– H8 (TRH/WRH) - Both the timestamp and the window related heuris-
tics are implemented as H8. The goal of both is to probabilistically find
the correct (i) affected events given an originating event and (ii) originator
given an affected event. This is accomplished via the forward (i.e. ω+

i ) as
well as the backward window (i.e. ω−

i ) concept to limit the filtering process
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for the most probable candidate events. Both windows are determined by
Maxi∈P(Γi), i.e. the maximum average response times over all partner re-
sponse times. For change event candidate selection inside the window, the
individual timestamps are used to determine Δ. For the actual selection, the
variance value ε can be determined empirically. We have opted to base this
value on the candidate partner’s average response time.

Fitness Function: The fitness function measures the quality of a solution in
terms of change propagation according to the change event log CEL. The fitness
score is a major component in (i) parent selection, determining each individual’s
eligibility for generating offspring and (ii) survival selection, determining which
individuals survive into the next generation to pass on their genes. The following
scoring logic is implemented as the fitness function as follows.

fitness = w1 × completeness+ w2 × precision (1)

Where w1 and w2 are weights, the completeness privileges individuals that are
more complete according to the CEL and the precision penalizes propagation
models that have extra behavior according to the CEL. We define ξij as the
probability that a change event type (i.e., Replace, Insert or Delete) on partner
j is a consequence of a change event type on i. This probability is calculated based
on the backward and forward windows, weighted by the number of occurrences
of the same sequence of changes in the CEL. As illustrated in Figure 4, the
individuals are probabilistic models that represent all or a subset of the change
events of the CEL. A node in the propagation model σ is represented by a
tuple (δ, π) containing a change type and a partner. The propagation probability
between nodes i and j in σ is equal to ξij . Then the completeness is given by
the following weighted equation:

completeness = w11 ×
∑

i∈σ (δi, πi)
∑

i∈CEL (δi, πi)
+ w12 ×

∑

i,j=1..n

ξij × φij with φij =

⎧
⎨

⎩

1 if(i, j) ∈ σ

0 otherwise

(2)

The first term concerns the percentage of traces of the CEL that are represented
by the predicted model, while the second term calculates the percentage of the
identified correlations between change events in the CEL that are considered by
the propagation model. The attributes w11 and w12 are the weights given to each
term of the equation.

precision =
∑

i,j=1..n

(k × ξij − 1) × φij with φij =

⎧
⎨

⎩

1 if(i, j) ∈ σ

−1 otherwise
(3)

The precision penalizes individuals with extra behavior (noise), by accumulating
appropriate negative scores for propagation paths with very low propagation
probabilities. The variable k is used to define when an event is considered to be
noise; e.g., k=5, means propagation edges with probabilities less then 1/5=0.2
are considered as noise. Therefore, models containing several propagation paths
with probabilities lower than 0.2 are classified as bad models. In this equation,
we used a simple linear function to penalize noise k×ξij −1, but can be changed
to a more complex function (e.g. logarithmic). k is determined empirically.
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6 Discussion and Evaluation

In this section we briefly describe the data set as well as the experimental setup in
order to evaluate the memetic change mining algorithm coupled with the propsed
heuristics for building change propagationmodels from change event logs (σCEL).

6.1 Data Set

The data used in this paper are obtained through our C3Pro change propagation
prototype1. During the simulation process, we generated change requests of type
Replace, Insert and Delete. In total, 17068 change requests were created with
an average of 682.7 requests per partner resulting in 49754 change propagation
records in the CPL with an average of 2.9 derived propagations per initiated
change request. In total 66822 change event records were generated and logged
in the CEL. The logged data are in CSV format.

6.2 Benchmark Results

For the benchmark, the goal was on one hand to observe the effects of the ap-
plied heuristics on reducing the search space and on the other hand to validate
the resulting mined model. Towards the former, each inclusion of a new heuris-
tic should increase the maximal achievable score, as it takes less time to find
an improved candidate solution. The benchmark was conducted in the following
manner: (1) We start with creating distinct CEL slices with differing partner
sizes of the range [3, 16]. Λ = {λi}i∈[3,16] (2) Then we define the heuristic sets
to benchmark. The heuristic set None means we do not apply any heuristics,
which practically reduces the memetic algorithm into a genetic algorithm. A
heuristic set H1-H3 means we apply heuristics H1, H2 and H3 within the local

Table 3. Benchmark Results: Memetic Mining of Change Logs. P=Partner Size.
G=Generation. Score values are in range [−∞, 1] (inclusive), where 1 represents the
best possible validation score.

P=3 P=9 P=15

G=1 G=10 G=20 G=1 G=10 G=20 G=1 G=10 G=20

Heuristics

None -48.74 -48.26 -27.80 -268.75 -226.71 -186.64 -553.90 -502.61 -476.96

H1 -38.08 -30.03 -22.96 -241.34 -197.63 -168.61 -520.53 -482.92 -449.32

H1-H2 -25.94 -20.24 -17.17 -138.19 -106.18 -88.86 -337.45 -289.14 -250.25

H1-H3 0.73 0.78 0.80 0.50 0.55 0.56 0.54 0.55 0.55

H1-H4 0.72 0.76 0.75 0.53 0.58 0.55 0.57 0.55 0.61

H1-H5 0.72 0.77 0.75 0.56 0.50 0.64 0.60 0.62 0.56

H1-H6 0.72 0.77 0.80 0.50 0.63 0.63 0.62 0.65 0.67

H1-H7 0.72 0.78 0.77 0.65 0.67 0.56 0.71 0.73 0.72

H1-H8 0.71 0.77 0.75 0.65 0.68 0.70 0.71 0.73 0.75

1 http://www.wst.univie.ac.at/communities/c3pro/index.php?t=downloads

http://www.wst.univie.ac.at/communities/c3pro/index.php?t=downloads
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(a) (b)

Fig. 6. Mined change propagation models (a) via CPL and (b) via CEL

optimization loop of the memetic algorithm. We have several such heuristic sets
as can be observed by the rows in Table 3. (3) Each heuristic set is loaded
into the memetic algorithm and executed on the change logs in Λ for up to 20
generations in turn. (4) For validating the mined model, we derive a propagation
model from the CPL (i.e. σCPL), and compare it to the mined model (i.e. σCEL)
by applying the following scoring function:

fitnessvalidation = completeness× precision− penalites (4)

precision =
Nb extra propagation paths

Nb total propagation paths
(5)

completeness =
Nb valid traces

Nb total traces
(6)

This validation function returns score values in the range [−∞, 1], where 1 rep-
resents the best possible validation score, meaning the two models are identical.
We repeat this process ten times, storing the average score into the respective
cells in Table 3. Underlined values are the best scores identified for each column.

We can generally observe the following: regardless of the employed heuristics,
with each increasing partner size we obtain a lower quality candidate, except
in the case where H8 is introduced. This behaviour signals the positive effects
of time related heuristics (TRH) as well as window related heuristics (WRH).
Similarly, with each increasing generation, the best candidate solution score in-
creases. This holds true, except in cases where the survival selection routine
(tournament selection) misses the current best candidate solution, resulting in a
lower fitness score. Finally, we can indeed conclude that the proposed heuristics
reduce the search space, as the quality of the best candidate solutions increase
as more heuristics are added to the memetic change mining algorithm.

In terms of validation, Figure 6(b) shows the mined change propagation model
using the described memetic change mining algorithm (on the CEL) with pa-
rameters: partners = 3, heuristics H1-H6 applied, and generation = 20. In con-
trast, Figure 6(a) represents the change propagation extracted from the CPL.
According to Table 3, the average validation score of these two models are 0.72.
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The differences between these two models are visually illustrated in the annota-
tions in Figure 6(b). As can be seen in that figure, the memetic change mining
algorithm could find a good approximation for the prediction model, showing
only three extraneous edges (i.e. (Replace, π8) → (Delete, π9), (Replace, π8) →
(Delete, π7) and (Delete, π7) → (Delete, π9)). Our proposed memetic change
mining algorithm fared well in this instance. As more partners are added, more
candidates are included as potential consequences, leading to bigger models with
more extraneous edges.

7 Related Work

Only few approaches have been proposed to compute the changes and their prop-
agation in collaborative process settings [4,14,15,16]. Most of these approaches
use either the public parts of the partner processes or the choreography/collab-
oration model; i.e., the global view on all interactions, to calculate the derived
changes. They mainly calculate the public parts to be changed, but cannot an-
ticipate the impacts on the private parts, which in turn, could engage knock-on
effects on other partners. Besides, in some collaboration scenarios, a partner may
have access to only a subset of the partner processes, and consequently could
not estimate the transitive effects of the change propagation.

Change impact analysis has been an active research area in the context of large
complex systems and software engineering [17,18,19,20]. As pointed out in [5], we
studied these approaches, but found major differences to the problem discussed in
this paper. One difference is based on the different structure of the underlying sys-
tems. Moreover, the use of the structured change propagation logs combined with
memetic as well as genetic mining has not been employed before in these fields.

There exist approaches on impact analysis of change propagation within chore-
ographies, i.e., [19,21]. However, they do not consider previous change propaga-
tion experience to enhance the prediction models.

Also they do not take into consideration the different metrics related to the
specific structure of business process choreographies. Our previous work [5] on
analyzing change impacts in collaborative process scenarios is based on the chore-
ography structure only, i.e., it does not take into consideration any information
on previously applied changes.

8 Conclusion

Being able to predict the change propagation behavior in collaborative process
scenarios can contribute to time as well as cost reductions, which can deter-
mine the overall success of the cooperative process execution. Towards this end
we have shown a memetic change mining approach for building a posteriori
prediction models based on change event logs (CEL). This approach helps in
cases where change propagation logs (CPL) (i.e. those logs which include com-
plete propagation information) are lacking. In addition to the CEL as input, we
have proposed a set of heuristics embedded in the memetic change algorithm
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to guide the candidate selection process towards higher quality ones. The con-
ducted benchmarks and validation of the mined models (see Table 3) show the
positive effects of the defined heuristics for reducing the search space, thus re-
ducing the exploration time for finding accurate prediction models. Future work
aims at mining change propagation logs (CPL), and analyzing dynamic impacts
of process choreography changes.
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