A Fast Method of Statistical Assessment for Combinatorial Hypotheses Based on Frequent Itemset Enumeration Shin-ichi Minato^{1,2}, Takeaki Uno³, Koji Tsuda^{4,5,2}, Aika Terada⁶, and Jun Sese⁶ Graduate School of Information Science and Technology, Hokkaido University, Sapporo, 060-0814 Japan JST ERATO Minato Discrete Structure Manipulation System Project, Sapporo, 060-0814 Japan ³ National Institute of Informatics, Tokyo 101–8430, Japan ⁴ Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, 277–8561 Japan Omputational Biology Research Center, National Institute of Advanced Industrial Science and Technology, Tokyo, 135-0064 Japan ⁶ Department of Computer Science, Ochanomizu University, Tokyo, 112-8610 Japan **Abstract.** In many scientific communities using experiment databases, one of the crucial problems is how to assess the statistical significance (pvalue) of a discovered hypothesis. Especially, combinatorial hypothesis assessment is a hard problem because it requires a multiple-testing procedure with a very large factor of the p-value correction. Recently, Terada et al. proposed a novel method of the p-value correction, called "Limitless Arity Multiple-testing Procedure" (LAMP), which is based on frequent itemset enumeration to exclude meaninglessly infrequent itemsets which will never be significant. The LAMP makes much more accurate p-value correction than previous method, and it empowers the scientific discovery. However, the original LAMP implementation is sometimes too time-consuming for practical databases. We propose a new LAMP algorithm that essentially executes itemset mining algorithm once, while the previous one executes many times. Our experimental results show that the proposed method is much (10 to 100 times) faster than the original LAMP. This algorithm enables us to discover significant p-value patterns in quite short time even for very large-scale databases. ### 1 Introduction Discovering useful knowledge from large-scale databases has attracted considerable attention during the last decade. Such knowledge discovery techniques are widely utilized in many areas of experimental sciences, such as biochemistry, material science, medical science, etc. In those scientific communities using experiment databases, one of the crucial problems is how to assess the statistical significance (p-value) of a discovered hypothesis. The p-value-based assessment is T. Calders et al. (Eds.): ECML PKDD 2014, Part II, LNCS 8725, pp. 422–436, 2014. [©] Springer-Verlag Berlin Heidelberg 2014 one of the most important factors in the paper review process of academic journals in experimental sciences [11]. (Here are some related studies [8,26,18,15] on data mining algorithms considering p-values.) For those scientific applications, detecting a combinatorial regulation of multiple factors is sometimes a very important issue. For example, it is well known that a key to generate iPS cells consists of the four factors of genes [16]. However, statistical assessment of a hypothesis for detected combinatorial effect is a hard problem because it requires a multiple-testing procedure with a very large factor of the p-value correction. This correction is necessary to avoid a false discovery caused by repetition of statistical tests. When we consider the combinations of j out of n hypotheses, the number of tested combinations increases exponentially as $O(n^j)$, and if we use a naive correction method in j=4 or more, it is too conservative since almost all discoveries becomes extremely unlikely. Recently, Terada et al. developed a novel p-value correction procedure, called "Limitless Arity Multiple-testing Procedure" (LAMP). Their paper [20] was published in *PNAS*, a leading journal in scientific community. This new procedure excludes meaninglessly infrequent hypotheses which will never be significant. The p-value correction factor calculated by LAMP is much more accurate than previous method, and it empowers the scientific discovery from the experiment databases. However, the original LAMP implementation is sometimes too time-consuming for practical databases, and a state-of-the-art algorithm has been desired. The LAMP is based on the techniques of frequent itemset mining, to enumerate all frequent itemsets included in at least σ transactions of the database for a given threshold σ . Since the pioneering work by Agrawal et al. [1], various algorithms have been proposed to solve this problem [9,13,27]. Among those state-of-the-art algorithms, LCM (Linear time Closed itemset Miner)[24,22,23] by Uno et al. is known as one of the fastest algorithm, which is based on a depth-first traversal of a search tree for the combinatorial space. In this paper, we propose a fast itemset enumeration algorithm to find the minimum support for satisfying the LAMP condition. Our new algorithm essentially executes itemset mining algorithm once, while the previous one executes many times. We show that LAMP condition is a kind of threshold function which is monotonically decreasing or increasing. We developed a general scheme to explore the maximum frequency satisfying a given threshold function. We successfully applied this new scheme to the LAMP condition. Those new procedures are implemented into the newest version of the LCM program. Our experimental results show that the proposed method is much (10 to 100 times) faster than the original LAMP. This algorithm enables us to discover significant p-value patterns in quite short time even for very large-scale databases. In the rest of this paper, we first explain the preliminaries on frequent itemset mining algorithms. In Section 3, we then present the problem of statistical assessment for combinatorial hypotheses and the idea of LAMP. Section 4 describes our proposed methods for finding the minimum frequency for satisfying threshold function and the LAMP condition. Section 5 discusses efficient implementation, and Section 6 shows our experimental results, followed by the conclusion in Section 7. # 2 Preliminary Here we start with some basic definitions of itemset databases and frequent itemset mining. Let $E = \{1, ..., n\}$ be a set of items. A subset of E is called an *itemset*. A transaction database is a database composed of transactions where a transaction is an itemset. A transaction database can include two or more identical transactions. For a transaction database \mathcal{D} , $|\mathcal{D}|$ denotes the number of transactions in \mathcal{D} , and $||\mathcal{D}||$ denotes the size of \mathcal{D} , that is the sum of the size of the transactions in \mathcal{D} , i.e., $||\mathcal{D}|| = \sum_{T \in \mathcal{D}} |T|$. For an itemset X and a transaction database \mathcal{D} , an occurrence of X in \mathcal{D} is a transaction including X. The occurrence set of X, denoted by Occ(X) is the set of all occurrences of X in \mathcal{D} . The frequency of X is the number of occurrences of X, and is denoted by frq(X). For a given constant number σ called minimum support, an itemset X is called frequent. The frequent itemset mining problem is to enumerate all frequent itemsets for given database \mathcal{D} and threshold σ . Without confusions, an item e also represents the itemset $\{e\}$, hence frq(e), $X \cup e$ and $X \setminus e$ denote $frq(\{e\})$, $X \cup \{e\}$ and $X \setminus \{e\}$, respectively. Let $\kappa(\sigma)$ be the number of frequent patterns whose frequencies are no less than σ . ### 2.1 Frequent Itemset Mining Algorithm The set system given by the set of frequent itemsets is anti-monotone, i.e., any subset Y of a frequent itemset X is always frequent. Thus, enumeration of frequent itemsets is done efficiently by hill-climbing algorithms, that start from the emptyset and recursively add items unless the itemset is infrequent. In particular, depth-first search type algorithms (backtracking) are known to be efficient [9]. In the backtracking way, we add an item e to the current itemset X, and explore all itemsets generated from $X \cup e$ before processing $X \cup e'$, $e' \neq e$. To avoid duplicated solutions such that an itemset is output twice, backtracking adds only item e > tail(X) where tail(X) is the maximum item in X. Through this enumeration technique, any item Y is generated from the itemset $Y \setminus tail(X)$, thus no duplication occurs. The pseudo code of backtracking is written as follows. ### ALGORITHM **BackTracking_Basic** (X) - 1. output X - 2. **for** each item e > tail(X), if $frq(X \cup e) \ge \sigma$ then call BackTracking_Basic $(X \cup e)$ The most heavy computation in this algorithm is the computation of $frq(X \cup e)$ on Step 2 of the algorithm. There are several techniques for reducing this computation. Especially, recursive database reduction techniques, such as FP-tree representation of the database [12] and anytime database reduction [22], are quite efficient. These techniques can be applied only to depth-first type algorithm, this explains why BFS algorithms are slow compared to backtracking on real-world data [10]. There is one more important technique so called equisupport (see for example [24] written as hypercube decomposition). For an itemset X, we call an item $e \notin X$ addible if $frq(X \cup e) = frq(X)$. Eq(X) denotes the set of addible items e of X that satisfy e > tail(X). We can see that any itemset $X \cup S$, $S \subseteq Eq(X)$ satisfies $frq(X) = frq(X \cup S)$, thus we output all these itemsets without the computation of their frequency. Using this observation, a more efficient algorithm can be written as follows. Duplications can be avoided by not generating recursive calls for $X \cup e$ with $e \in Eq(X)$. ``` ALGORITHM BackTracking (X) 1. output X \cup S for all S \subseteq Eq(X) 2. for each item e > tail(X), \ e \notin Eq(X), if frq(X \cup e) > \sigma then call BackTracking (X \cup e) ``` Fast implementations of backtracking find up to one million solutions in a second [10]. # 3 Statistical Assessment for Combinatorial Hypotheses In this paper, we discuss a fast method of statistical assessment using the techniques of frequent itemset mining. First we assume the following experimental scenario. Consider a scientific database including experimental results for a number of human gene samples, and each sample shows a set of expressions of targeted factors. Here we assume only one expression level (exist or not) for each factor. We also have another classification result for each sample whether it is positive or negative, for example, the gene sample is given by a patient of breast cancer or a normal person. Then we want to discover a combination of factors which is highly correlated to incidence of a breast cancer. This is a quite simple scenario and many similar cases may commonly appear in various areas of experimental sciences. Since we assume only binary values in the database, we can represent it as a transaction database \mathcal{D} as shown in Fig. 1. Here we also assume a classifier $\mathcal{C}: \mathcal{D} \to \{pos, neg\}$, which classify each transaction into a positive or a negative one. Suppose that the database has n items for the expressions of factors, m transactions in total, and m_p positive transactions. Now we consider the assessment whether a given itemset has a strong correlation to appear in the positive transactions. Figure 2 shows a contingency table between the occurrence of the itemset X and the positive class of transactions. Here we note $\sigma = frq(X)$ and σ_p is a number of positive transactions in Occ(X). We also show the value of each cell when $X = \{2,3\}$ for the database shown in Fig. 1. If the distribution of the contingency table is very biased, we may consider this is a kind of knowledge discovery because it is unlikely that it happened incidentally. The *p-value* represents the probability that such a biased distribution incidentally happens. In other words, it is the probability of a false discovery, and we can accept the statistical significance if the p-value is smaller than an arbitrary threshold α . ($\alpha = 0.05$ is often used.) The p-value is quite important in the paper review process of academic journals in experimental sciences. | $T \in \mathcal{D}$ | C(T) | |-------------------------------------------------------|----------------| | <u>2</u> <u>3</u> 4 5 | neg | | 1 3 5 | pos | | <u>2</u> <u>3</u> 4 | pos | | $12 \ 45$ | neg | | 1 <u>2</u> <u>3</u> | pos | | 2 4 | neg | | | 0 | | 1 <u>2</u> <u>3</u> 5 | \mathbf{pos} | | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | | Fig. 1. An example of transaction database with positivenegative class | | pos | neg | all | |---------------------|--------------------|---------------------------|--------------| | Occ(X) | (σ_p) | $(\sigma - \sigma_p)$ | (σ) | | | 3 | 1 | 4 | | $\overline{Occ}(X)$ | $(m_p - \sigma_p)$ | $(m-m_p-\sigma+\sigma_p)$ | $(m-\sigma)$ | | | 1 | 4 | 5 | | all | (m_p) | $(m-m_p)$ | (m) | | | 4 | 5 | 9 | **Fig. 2.** Contingency table $(X = \{2, 3\})$ Fisher's exact test is one of the major methods for calculating the p-value for a given contingency table. This testing method assumes that each experimental result is independent and has an equal weight. Then, the p-value is calculated by counting all combinatorial cases to generate equally or more biased distributions. More exactly, the probability of generating a contingency table of Fig. 2 can be written as: $$P(\sigma_p) = \left(\begin{pmatrix} m_p \\ \sigma_p \end{pmatrix} \cdot \begin{pmatrix} m - m_p \\ \sigma - \sigma_p \end{pmatrix} \right) / \begin{pmatrix} m \\ \sigma \end{pmatrix}, \tag{1}$$ and the p-value is defined as $\sum_{\sigma_p'=\sigma_p}^{min(\sigma, m_p)} P(\sigma_p')$, which is the total probabilities of all equally or more biased distributions. ### 3.1 P-value Correction in Multiple Tests If we repeatedly calculate p-values for many different factors in a same database, we may more likely find a factor with an incidentally low p-value. For example, if we explore a family of hundred hypotheses each of which might be a false discovery in p=0.05, then at least one false discovery can be found in p=0.994. It is well known that such multiple tests may cause serious false positive problems [17]. Hence, a multiple testing correction must be used in order to avoid a false discovery. The family-wise error rate (FWER) indicates the probability that at least one false discovery happens in multiple tests. This rate increases at most linearly as the number of tests, which motivates the Bonferroni correction [7] that multiplies the raw p-value by the number of tests. In other words, we must compare the raw p-values with the adjusted threshold $\delta = \alpha/k$, where k is number of tests. The Bonferroni correction is a very conservative method, which likely causes false negative but hardly causes false positive, and often used in academic articles in experimental sciences. When we consider the combinations of j out of n items, the number of tested combinations increases exponentially as $O(n^j)$, and if we naively use Bonferroni correction in j=4 or more, most of the discoveries of combinatorial hypotheses becomes extremely unlikely. However, in many practical cases, not all the combinations occur in the databases, so the ideal size of hypothesis family would be much smaller than the naive combinatorial number. This is a motivation of the LAMP. ### 3.2 Idea of LAMP Recently, Terada et al. developed a novel p-value correction procedure, called "Limitless Arity Multiple-testing Procedure" (LAMP) [20]. This new procedure is based on frequent itemset enumeration for checking the two principles: - (1) Meaninglessly infrequent itemsets which never be significant can be excluded from the number of hypotheses to be counted. - (2) Any different itemsets having completely the same occurrence set can be counted as one hypothesis in the family. The principle (2) means that we may enumerate only the *closed* itemsets, and we can just use existing state-of-the-art algorithms of closed itemset mining [24,22,23]. Here we explain in detail how to check the principle (1). Suppose an itemset X with a very low frequency σ ($< m_p$). Using Fisher's exact test, the raw p-value cannot be smaller than $$f(\sigma) = \binom{m_p}{\sigma} / \binom{m}{\sigma}, \tag{2}$$ which means the most biased case of equation (1) that all Occ(X) are classified into the positive class. Note that $f(\sigma)$ is monotonically decreasing, namely, the less frequent itemsets has the larger $f(\sigma)$. This observation means that all the infrequent itemsets satisfying $f(\sigma) > \delta$ can never be significant, regardless of the classification result. Thus, we can exclude such itemsets from the number of hypotheses to be counted. This is the key idea of the LAMP. Let $\kappa_c(\sigma)$ be the number of all closed itemsets not less frequent than σ . Then, the adjusted threshold of Bonferroni correction can be written as $\delta = \alpha/\kappa_c(\sigma)$. Now our subject is to find the maximum frequency σ_{max} which satisfies: $$f(\sigma_{max} - 1) > \frac{\alpha}{\kappa_c(\sigma_{max})}$$ and $f(\sigma_{max}) \le \frac{\alpha}{\kappa_c(\sigma_{max} + 1)}$. (3) ### 3.3 Current Implementation of LAMP In the above inequation of the LAMP condition, the left side $f(\sigma - 1)$ is monotonically decreasing and the right side $\alpha/\kappa_c(\sigma)$ is monotonically increasing in the range $1 \le \sigma \le m_p$. Thus, a naive idea is to enumerate all the itemsets in an order from the highest σ to the lowest one, and we may stop the enumeration Fig. 3. An example of a breadth-first search procedure when the current σ first satisfies the condition. This is well known as the breadth-first search approach used in the "Apriori-type" [1] frequent itemset mining algorithms. Figure 3 illustrates the execution steps of a breadth-first search on the same database in Fig. 1. This approach requires a large size of memories to store all the itemsets at the current frontier for each step, and in general, it is not very efficient for practical size of databases. The current implementation of the original LAMP [19] is not using a breadth-first search due to memory limitation, but just calls the LCM algorithm repeatedly, as follows. ### ALGORITHM **Original_LAMP** (α) - 1. $\sigma := max_{e \in E}(frq(e))$ - 2. if $\sigma < m_p$ then $\sigma := m_p$ // m_p : number of positive transactions. - 3. $k := \kappa_c(\sigma)$ // call **LCM** algorithm to compute $\kappa_c(\sigma)$. - 4. if $f(\sigma 1) \le \alpha/k$ then $\sigma := \sigma 1$; goto 3 - 5. **output** (σ, k) This method requires less memory, but sometimes very time-consuming since the LCM may be called more than thousand times for practical cases, and it may take a day or more. The current LAMP has a bottleneck in computation time, and some efficient algorithms are desired. One may consider that we can apply a sampling technique [6] to quickly estimate the number of frequent itemsets satisfying the LAMP condition. However, the result is used for statistical assessment, thus we must ensure the worst-case upper bound, but it is difficult to find a feasible bound by sampling-based methods. Here we propose a fast and exact method of enumerating itemsets for the LAMP condition. # 4 Proposed Algorithms ### 4.1 A Threshold Function for the LAMP Condition Let $\theta(x,y): (\mathbf{N} \times \mathbf{N}) \to \{true, false\}$ be a given threshold function such that $\theta(x,y) = true$ implies $\theta(x',y) = true$ for any x' < x, and that $\theta(x,y) = true$ implies $\theta(x,y') = true$ for any y' > y. In other words, $\theta(x,y)$ is monotonically decreasing for x and increasing for y. Now we consider a general scheme of the itemset mining problems, to find the largest σ satisfying $\theta(\sigma, \kappa(\sigma))$. Note that $\kappa(\sigma)$ is monotonically decreasing for $1 \le \sigma \le m$, thus $\theta(\sigma, \kappa(\sigma))$ is monotonically decreasing for the same $1 \le \sigma \le m$. We call the largest σ maximum frequency for the threshold function, and denote it by σ_{max} . For examples of such threshold functions, the function for top-k mining can be defined as $\theta(x,y) = true$ iff $y \ge k$. We then explore the maximum frequency σ_{max} for satisfying $\theta(\sigma,\kappa(\sigma))$. It means that the k-th most frequent itemsets have the frequency σ_{max} . Here we define a threshold function for the LAMP condition as follows. $$\theta(x,y) = true \text{ iff } f(x-1) > \frac{\alpha}{y}$$ (4) As discussed in Section 3, we can confirm that this threshold function is decreasing for x and increasing for y. We then explore the maximum frequency σ_{max} for satisfying $\theta(\sigma, \kappa(\sigma))^1$. Hereafter we assume that $\theta(x, y)$ satisfies the above condition. ### 4.2 Support Increase Algorithm For the computation of the maximum frequency for $\theta(\sigma, \kappa(\sigma))$, a natural way is to compute $\kappa(\sigma)$ by frequent itemset mining with the minimum support σ , for all possible candidates σ , one by one. This computation takes long time when σ is small since $\kappa(\sigma)$ is huge, thus we should compute $\theta(\sigma, \kappa(\sigma))$ in the decreasing order of σ . This is the basic scheme of the original LAMP [20] shown in the previous section. However, this needs long computation time since many frequent itemset mining processes are executed. In this paper, we propose a new algorithm that basically executes mining algorithm just once. Suppose that we are given a function $\theta(\sigma, \kappa(\sigma))$. For a frequency σ , if we found some k and confirmed both $k \leq \kappa(\sigma)$ and $\theta(\sigma, k) = true$, then we get $\theta(\sigma, \kappa(\sigma)) = true$, since $\theta(x, y)$ is increasing for y. In such a case, we can see $\sigma_{max} \geq \sigma$, and in particular, $\sigma_{max} = \sigma$ if $\theta(\sigma + 1, \kappa(\sigma + 1)) = false$. Suppose that we execute a backtracking algorithm for minimum support σ to check $\theta(\sigma, \kappa(\sigma))$, and during the mining process we found k frequent itemsets satisfying $\theta(\sigma, k)$. From the assumption of the function $\theta(x, y)$, we can then confirm that $\theta(\sigma, \kappa(\sigma)) = true$. We are then motivated to re-execute the backtracking with $\sigma := \sigma + 1$ to check $\theta(\sigma + 1, \kappa(\sigma + 1))$. However, in the current execution, we already found possibly many itemsets of frequency $\sigma + 1$, and in the past search process, we never missed such itemsets. This implies that the execution until the current iteration can be skipped. We just need to remove all itemsets of frequency σ from the set of past solutions that have already been Our implementation uses $\kappa_c(\sigma)$ instead of $\kappa(\sigma)$ for the LAMP condition in equation (2). The number of closed itemsets are also monotonically decreasing for the frequency, so we can use $\kappa_c(\sigma)$ as well. This is discussed in Section 5.2. Fig. 4. The scheme of support increase algorithm found, and can re-start the backtracking algorithm with $\sigma := \sigma + 1$. This implies that even if we start from very small σ having huge $\kappa(\sigma)$, we can increase it during the mining process for reducing the computation time. A backtracking algorithm with this idea can be written as follows. Figure 4 illustrates the scheme of this algorithm. The algorithm start with $\sigma = 1$ and $S = \emptyset$ where S is a program variable for storing a set of frequent itemsets we already found. Let $S[\sigma]$ be the subset of itemsets in S whose frequency is σ . ``` ALGORITHM SupportIncrease (X) global variable: \sigma, \mathcal{S} (initialized \sigma = 1, \mathcal{S} = \emptyset) 1. \mathcal{S} := \mathcal{S} \cup \{X\} 2. if \theta(\sigma, |\mathcal{S}|) = true then \mathcal{S} := \mathcal{S} \setminus \mathcal{S}[\sigma], \ \sigma := \sigma + 1; go to 2 3. for each item e > tail(X), if frq(X \cup e) \geq \sigma then call SupportIncrease (X \cup e) ``` **Theorem 1.** Let σ^* and \mathcal{S}^* denote the resulting values of σ and \mathcal{S} after the execution of the algorithm **SupportIncrease**. Then it holds that $\sigma^* = \sigma_{max} + 1$ and $|\mathcal{S}^*| = \kappa(\sigma_{max} + 1)$. *Proof.* Since the algorithm never decreases σ , the itemsets of frequencies no less than σ^* cannot be missed, and are included in \mathcal{S}^* . Since no itemset of frequency less than σ^* is in \mathcal{S} , we have $|\mathcal{S}^*| = \kappa(\sigma^*)$. We then prove $\sigma^* = \sigma_{max} + 1$ by contradiction. Suppose that $\theta(\sigma^*, \kappa(\sigma^*)) = true$ holds. Let us consider the iteration in which the last itemset is inserted to \mathcal{S} . Since $\theta(\sigma^*, \kappa(\sigma^*)) = true$ holds, the latter part of step 2 is not executed in this iteration, otherwise σ is increased so that $\theta(\sigma^*, \kappa(\sigma^*)) = false$ holds. Thus, we have $\sigma = \sigma^*$ in the iteration. After step 1, there is no more itemset of frequency no less than σ^* that has not been found, thus we have $|\mathcal{S}| = \kappa(\sigma)$. This leads that $\theta(\sigma^*, \kappa(\sigma^*)) = false$, and contradicts to the assumption. We next suppose that $\theta(\sigma^* - 1, \kappa(\sigma^* - 1)) = false$ holds. Let us consider the iteration in which σ is increased to σ^* . In the iteration, the latter part of step 2 is executed, and thus we have $\theta(\sigma^* - 1, |\mathcal{S}|) = true$. Since $|\mathcal{S}|$ is always no greater than $\kappa(\sigma)$, it implies that $\theta(\sigma^* - 1, k) = true$ holds for some $k \leq \kappa(\sigma^* - 1)$. This contradicts to the assumption. The algorithm terminates in short time if $|\mathcal{S}[\sigma]|$ is relatively small compared to $|\mathcal{S}|$ on average. Particularly, if $|\mathcal{S}[\sigma]| \leq q$ always holds, we can bound the number of iterations by $q \cdot \sigma_{max} + |\mathcal{S}^*|$, since the algorithm removes at most $q \cdot \sigma_{max}$ itemsets from \mathcal{S} . In the real-world data, we can naturally expect that $|\mathcal{S}[\sigma]|$ is much smaller than $|\mathcal{S}|$. In fact, we could confirm it in our computational experiments. The computation of $|S[\sigma]|$ is done efficiently by using a heap that extracts the minimum frequency itemset from S. The computation then takes $O(|S[\sigma]|\log |S|)$ time. This computation time should be short than the computation time of an iteration, thus the total computation is expected not to increase much. However, if |S| is large on average, or $\kappa(\sigma^*)$ is very large, the algorithm may take very long time. In the next section, we focus on such cases, and propose an efficient method for reducing the computation time. ### 5 Fast Implementation The bottleneck of the computation of the algorithm in the previous section comes from the large size of the heap for \mathcal{S} . This effects not only the computation time but also the memory usage. We here propose to use histogram counters instead of the heap. The histogram counters $s[\sigma]$ are prepared for keeping $|\mathcal{S}[\sigma]|$, and an integer variable s is used for accumulating $|\mathcal{S}|$. By using the histogram counters, we do not have to use the heap for storing the itemsets. The point is that we can compute $|\mathcal{S} \setminus \mathcal{S}[\sigma]|$ by just one subtract operation $s - s[\sigma]$. Another important point is the memory usage. The number of the histogram counters can be bounded by the number of transactions, thus it is only a linear factor to the input data size. The use of histogram counters gives us one more advantage; we can use the equi-support technique. In each iteration with equi-support, we find many frequent itemsets, $2^{|Eq|}$ itemsets in exact, with the same frequency, at once. We can increase the counter for these in one step by adding $2^{|Eq|}$ to the counter. This saves the computation time of $2^{|Eq|} - 1$ iterations, thus the equi-support technique drastically shortens the total computation time. The algorithm is then written as follows. ``` ALGORITHM EquiSupportIncrease (X) global variable: \sigma, s, s[\] (initialized \sigma=1,\ s=0,\ s[i]=0 for each i) 1. s:=s+2^{|Eq(X)|},\ s[frq(X)]:=s[frq(X)]+2^{|Eq(X)|} 2. if \theta(\sigma,s)=true then s:=s-s[\sigma],\ \sigma:=\sigma+1; go to 2 3. for each item e>tail(X),\ e\not\in Eq(X), if frq(X\cup e)\geq \sigma then call EquiSupportIncrease (X\cup e) ``` **Theorem 2.** Let σ^* and s^* denote the resulting values of σ and s after the execution of the algorithm **EquiSupportIncrease**. Then it holds that $\sigma^* = \sigma_{max} + 1$ and $s^* = \kappa(\sigma_{max} + 1)$. *Proof.* We assume that the variable S is simultaneously computed as algorithm **SupportIncrease** during the execution of **EquiSupportIncrease**. Instead of insertion of itemsets X into S, **EquiSupportIncrease** increases s and s[frq(X)]. Thus, in any iteration, s = |S| and $s[\sigma] = |S[\sigma]|$ holds. This implies that the computation of σ in **EquiSupportIncrease** is the same as **Support-Increase**, thus the statement holds. **Theorem 3.** Let P be the itemset enumerated by **EquiSupportIncrease**. The number of iterations needed to enumerate P by **EquiSupportIncrease** is equal to that by backtracking algorithms with equi-support technique. ### 5.1 Calculating Family Size of the LAMP Theorem 1 states that $|\mathcal{S}^*| = \kappa(\sigma_{max} + 1)$, namely, the histogram counters holds $\kappa(\sigma_{max} + 1)$ after the execution of the proposed algorithm. However, our final purpose of the LAMP is to know $\kappa(\sigma_{max})$, which is the hypothesis family size for the p-value correction. An easy way to know $\kappa(\sigma_{max})$ is calling LCM algorithm once again with σ_{max} . This is not so bad since calculating $\kappa(\sigma_{max})$ is not more time-consuming than finding σ_{max} , however, we can avoid such two-pass executions if we maintain not only $s[\sigma]$ but also $s[\sigma-1]$ during the backtracking procedure. This can be done by a very small modification as shown below. ``` ALGORITHM EquiSupportIncreaseLAMP (X) global variable: \sigma, s, s[] (initialized \sigma = 1, \ s = 0, \ s[i] = 0 for each i) 1. s := s + 2^{|Eq(X)|}, \ s[frq(X)] := s[frq(X)] + 2^{|Eq(X)|} 2. if \theta(\sigma, \ s - s[\sigma - 1]) = true then s := s - s[\sigma - 1], \ \sigma := \sigma + 1; go to 2 3. for each item e > tail(X), \ e \notin Eq(X), if frq(X \cup e) \ge \sigma - 1 then call EquiSupportIncreaseLAMP (X \cup e) ``` In this modification, the total number of backtracking will be a little increase because the condition of the recursive call in Step 3 is relaxed to one smaller frequency. This overhead is relatively small in the total computation time, and it is a reasonable cost for computing $\kappa(\sigma_{max})$ correctly. #### 5.2 Generalization to Other Patterns Many patterns have been considered in the past researches of pattern mining. Our algorithm works on many of these patterns. The requirement is that the backtracking algorithm does work, i.e., the set of frequent patterns satisfies some monotone properties. For example, closed itemset mining accepts our algorithm, and also maximal frequent itemset mining also does. Closed itemsets have the anti-monotone property, and maximal frequent itemsets can be enumerated by backtracking. They can be solved by our implementation. Sequence pattern mining [25], frequent tree mining [4,5], frequent geograph mining [3], maximal motif mining [2], frequent graph mining [14], and other basic patterns also satisfy monotone property, so that we can construct a search tree in which parents have frequencies no smaller than their children, thereby backtracking works. They accept the counter implementation when the maximum possible frequency is not huge, and also Equi-support technique when it works. Our basic scheme of the algorithm is quite strong so that we can use it in many kinds of pattern mining problems. ## 6 Computational Experiments We implemented our new LAMP algorithm by modifying LCM ver. 5 that is available on the author's website [21]. This is the latest version of LCM algorithm that won in FIMI04 competition of fast pattern mining implementations [10]. The fundamental issues of the implementation is described in [22]. We note that the modification is quite small such that we added/modified only up to 30 lines of C codes. We could not observe any relatively large difference of computational performance after the modification of the LCM. For the comparison, we also evaluated the original version of LAMP [19]. The original LAMP repeatedly calls the same LCM ver. 5, as shown in Section 3 of this paper. Table 1 presents the specifications of the database instances used in our experiments. "yeast" and "breast cancer" are the real gene databases, which are also used in the original LAMP paper [20]. The others are well known benchmark datasets of FIMI competition and KDD CUP 2000, available from the FIMI repository [10]. The columns n and m show the numbers of items and transactions, respectively. Here we show the hypothesis family sizes of traditional Bonferroni correction if we limit the maximum arity (the number of items in a combination) up to 2, 3, and 4. We can see that the family size grows exponentially to the arity, and that it seems too large for meaningful knowledge discovery in practical size of databases. Table 2 shows our experimental results of the new and original versions of LAMP. The columns m_p , σ_{max} and $\kappa_c(\sigma_{max})$ indicate the number of positive transactions, the maximum frequency for the LAMP condition, and the number of frequent closed itemsets (hypothesis family size by LAMP), respectively. Here we used the significance threshold $\alpha=0.05$. Note that the datasets "yeast" and "breast cancer" have a positive-negative classification for each transaction. "mushroom" does not have such information but it has the two specific items which mean poisonous or edible mushroom, so we define the poisonous one as positive, and the rest of 117 items are assessed as the combinatorial hypotheses. For the other datasets, we did not specify a particular classification item, but we assumed the two cases that the positive transactions share 50% and 10% in the whole data. The experimental results show that the new LAMP is much faster than the original LAMP, as much as 10 to 100 times in many cases, and it can work well for practical size of databases with hundreds of items and thousands | database | n | m | Bonferroni (family size) | | | | |-----------------|------|--------|--------------------------|--------------|------------------------|--| | | | | max-arity: 2 | max-arity: 3 | max-arity: 4 | | | yeast | 102 | 6074 | 5253 | 176953 | 4426528 | | | breast cancer | 397 | 12773 | 79003 | 10428793 | 1029883108 | | | mushroom(3-119) | 117 | 8124 | 6903 | 267033 | 7680738 | | | T10I4D100K | 870 | 100000 | 378885 | 109751225 | 23816205920 | | | BMS-WebView-1 | 497 | 59602 | 123753 | 20460993 | 2532110133 | | | BMS-WebView-2 | 3340 | 77512 | 5579470 | 6209953450 | 5.182×10^{12} | | | BMS-POS | 1657 | 515597 | 1373653 | 758258113 | 3.137×10^{11} | | Table 1. Specifications of databases Table 2. Experimental Results of new and original LAMP | database | m_p | σ_{max} | $\kappa_c(\sigma_{max})$ | new LAMP | orig. LAMP | |----------------------------|--------|----------------|--------------------------|-----------|------------| | | | | (family size) | time(sec) | time(sec) | | yeast | 530 | 4 | 303 | 0.005 | 0.463 | | breast cancer | 1129 | 8 | 3750336 | 36.538 | 86.315 | | mushroom(3-119) | 3916 | 20 | 98723 | 0.740 | 141.327 | | $T10I4D100K(m_p:50\%)$ | 50000 | 21 | 107080 | 3.092 | 799.738 | | $T10I4D100K(m_p:10\%)$ | 10000 | 7 | 483300 | 5.714 | 820.756 | | BMS-WebView-1 $(m_p:50\%)$ | 29801 | 22 | 170660 | 12.349 | 122.303 | | BMS-WebView-1 $(m_p:10\%)$ | 5960 | 8 | 959435 | 33.351 | 248.055 | | BMS-WebView-2 $(m_p:50\%)$ | 38756 | 22 | 209016 | 1.813 | 229.406 | | BMS-WebView-2 $(m_p:10\%)$ | 7751 | 8 | 665411 | 5.655 | 246.278 | | BMS-POS $(m_p:50\%)$ | 257799 | 31 | 74373743 | 580.321 | 78801.858 | | BMS-POS $(m_p:10\%)$ | 51560 | 11 | 702878145 | 4513.052 | 50883.609 | Intel Core i7-3930K 3.2GHz, 64GB Mem, 12MB Cache, OpenSuSE 12.1 of transactions. We can also see that the family sizes given by LAMP are often smaller than ones by the traditional Bonferroni with the max-arity up to only 3. This is very powerful in practical applications because the LAMP has no arity limit up to n, and this correction still guarantees the family-wise error rate bounded by α . ### 7 Conclusion In this paper, we proposed a fast itemset enumeration algorithm to find the frequency threshold satisfying the LAMP condition. We developed a general scheme to explore the maximum frequency satisfying a monotonic threshold function. We successfully applied this new scheme to the LAMP condition. The procedure is implemented into the newest LCM program. Our experimental results show that the proposed method is much (10 to 100 times) faster than the original LAMP and that it can work well for practical size of experiment databases. The new enumeration algorithm solved the bottleneck of the LAMP for practical applications, and useful for various areas of experimental sciences. We may have several kinds of future work. As well as multiple-testing correction, computing the p-values for a particular hypothesis is also time-consuming procedure. It will be useful if we can efficiently compute the p-values for many combinatorial hypotheses and can discover the best or top-k significant one. In this paper, we considered Fisher's exact test, however, there are some other types of the p-value calculation, such as χ -squared test and Mann-Whitney test, and we may consider different statistical models. In addition, here we assumed only the binary-valued databases, but extension to non binary-valued databases is also interesting problem. As described in Section 5.2, our basic scheme of the algorithm is quite strong so that we can use it in many kinds of pattern mining problems. Anyway, our result demonstrated that the state-of-the-art enumeration techniques of pattern mining can be a useful means to many kinds of statistical problems. ### References - Agrawal, R., Imielinski, T., Swami, A.N.: Mining association rules between sets of items in large databases. In: Buneman, P., Jajodia, S. (eds.) Proc. of the 1993 ACM SIGMOD International Conference on Management of Data. SIGMOD Record, vol. 22(2), pp. 207–216 (1993) - Arimura, H., Uno, T.: A polynomial space and polynomial delay algorithm for enumeration of maximal motifs in a sequence. In: Deng, X., Du, D.-Z. (eds.) ISAAC 2005. LNCS, vol. 3827, pp. 724–737. Springer, Heidelberg (2005) - 3. Arimura, H., Uno, T., Shimozono, S.: Time and space efficient discovery of maximal geometric graphs. In: Corruble, V., Takeda, M., Suzuki, E. (eds.) DS 2007. LNCS (LNAI), vol. 4755, pp. 42–55. Springer, Heidelberg (2007) - Asai, T., Abe, K., Kawasoe, S., Sakamoto, H., Arimura, H., Arikawa, S.: Efficient substructure discovery from large semi-structured data. IEICE Trans. on Information and Systems E87-D(12), 2754-2763 (2004) - Asai, T., Arimura, H., Uno, T., Nakano, S.-i.: Discovering frequent substructures in large unordered trees. In: Grieser, G., Tanaka, Y., Yamamoto, A. (eds.) DS 2003. LNCS (LNAI), vol. 2843, pp. 47–61. Springer, Heidelberg (2003) - Boley, M., Gärtner, T., Grosskreutz, H., Fraunhofer, I.: Formal concept sampling for counting and threshold-free local pattern mining. In: Proc. of 2010 SIAM International Conference on Data Mining (SDM 2010), pp. 177–188 (April 2010) - 7. Bonferroni, C.: Teoria statistica delle classi e calcolo delle probabilita. Pubblicazioni del R Istituto Superiore di Scienze Economiche e Commerciali di Firenze (Libreria Internazionale Seeber, Florence, Italy), 8: Article 3–62 (1936) - Gallo, A., De Bie, T., Cristianini, N.: MINI: Mining informative non-redundant itemsets. In: Kok, J.N., Koronacki, J., Lopez de Mantaras, R., Matwin, S., Mladenič, D., Skowron, A. (eds.) PKDD 2007. LNCS (LNAI), vol. 4702, pp. 438– 445. Springer, Heidelberg (2007) - 9. Goethals, B.: Survey on frequent pattern mining (2003), http://www.cs.helsinki.fi/u/goethals/publications/survey.ps - Goethals, B., Zaki, M.J.: Frequent itemset mining dataset repository. In: Frequent Itemset Mining Implementations, FIMI 2003 (2003), http://fimi.cs.helsinki. fi/ - 11. Nature Publishing Group. Nature guide to authors: Statistical checklist, http://www.nature.com/nature/authors/gta/Statistical_checklist.doc - Han, J., Pei, J., Yin, Y.: Mining frequent patterns without candidate generation. In: Proc of the 2000 ACM SIGMOD International Conference on Management of Data, pp. 1–12 (2000) - Han, J., Pei, J., Yin, Y., Mao, R.: Mining frequent patterns without candidate generation: A frequent-pattern tree approach. Data Mining and Knowledge Discovery 8(1), 53–87 (2004) - Inokuchi, A., Washio, T., Motoda, H.: An apriori-based algorithm for mining frequent substructures from graph data. In: Zighed, D.A., Komorowski, J., Żytkow, J.M. (eds.) PKDD 2000. LNCS (LNAI), vol. 1910, pp. 13–23. Springer, Heidelberg (2000) - Low-Kam, C., Raissi, C., Kaytoue, M., Pei, J.: Mining statistically significant sequential patterns. In: Proc. of 13th IEEE International Conference on Data Mining (ICDM 2013), pp. 488–497 (2013) - Okita, K., Ichisaka, T., Yamanaka, S.: Generation of germline-competent induced pluripotent stem cells. Nature 448, 313–317 (2007) - van der Laan, M.J., Dudoit, S.: Multiple Testing Procedures with Applications to Genomics. Springer, New York (2008) - Tatti, N.: Maximum entropy based significance of itemsets. Knowledge and Information Systems 17(1), 57–77 (2008) - Terada, A., Okada-Hatakeyama, M., Tsuda, K., Sese, J.: LAMP limitless-arity multiple-testing procedure (2013), http://a-terada.github.io/lamp/ - Terada, A., Okada-Hatakeyama, M., Tsuda, K., Sese, J.: Statistical significance of combinatorial regulations. Proceedings of National Academy of Sciences of United States of America 110(32), 12996–13001 (2013) - Uno, T.: Program codes of takeaki uno, http://research.nii.ac.jp/~uno/ codes.htm - Uno, T., Kiyomi, M., Arimura, H.: LCM ver.2: Efficient mining algorithms for frequent/closed/maximal itemsets. In: Proc. IEEE ICDM 2004 Workshop FIMI 2004 (International Conference on Data Mining, Frequent Itemset Mining Implementations) (2004) - Uno, T., Kiyomi, M., Arimura, H.: LCM ver.3: Collaboration of array, bitmap and prefix tree for frequent itemset mining. In: Proc. Open Source Data Mining Workshop on Frequent Pattern Mining Implementations 2005 (2005) - 24. Uno, T., Uchida, Y., Asai, T., Arimura, H.: LCM: An efficient algorithm for enumerating frequent closed item sets. In: Proc. Workshop on Frequent Itemset Mining Implementations, FIMI 2003 (2003), http://fimi.cs.helsinki.fi/src/ - Wang, J., Han, J.: Bide: Efficient mining of frequent closed sequences. In: Proc. of 4th IEEE International Conference on Data Mining (ICDM 2004), pp. 79–90 (2007) - 26. Webb, G.I.: Discovering significant patterns. Machine Learning 68(1), 1–33 (2007) - Zaki, M.J.: Scalable algorithms for association mining. IEEE Trans. Knowl. Data Eng. 12(2), 372–390 (2000)