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Abstract. In many scientific communities using experiment databases,
one of the crucial problems is how to assess the statistical significance (p-
value) of a discovered hypothesis. Especially, combinatorial hypothesis
assessment is a hard problem because it requires a multiple-testing proce-
dure with a very large factor of the p-value correction. Recently, Terada
et al. proposed a novel method of the p-value correction, called “Limit-
less Arity Multiple-testing Procedure” (LAMP), which is based on fre-
quent itemset enumeration to exclude meaninglessly infrequent itemsets
which will never be significant. The LAMP makes much more accurate
p-value correction than previous method, and it empowers the scientific
discovery. However, the original LAMP implementation is sometimes too
time-consuming for practical databases. We propose a new LAMP algo-
rithm that essentially executes itemset mining algorithm once, while the
previous one executes many times. Our experimental results show that
the proposed method is much (10 to 100 times) faster than the original
LAMP. This algorithm enables us to discover significant p-value patterns
in quite short time even for very large-scale databases.

1 Introduction

Discovering useful knowledge from large-scale databases has attracted consider-
able attention during the last decade. Such knowledge discovery techniques are
widely utilized in many areas of experimental sciences, such as biochemistry,
material science, medical science, etc. In those scientific communities using ex-
periment databases, one of the crucial problems is how to assess the statistical
significance (p-value) of a discovered hypothesis.The p-value-based assessment is
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one of the most important factors in the paper review process of academic jour-
nals in experimental sciences [11]. (Here are some related studies [8,26,18,15] on
data mining algorithms considering p-values.)

For those scientific applications, detecting a combinatorial regulation of mul-
tiple factors is sometimes a very important issue. For example, it is well known
that a key to generate iPS cells consists of the four factors of genes [16]. However,
statistical assessment of a hypothesis for detected combinatorial effect is a hard
problem because it requires a multiple-testing procedure with a very large factor
of the p-value correction. This correction is necessary to avoid a false discovery
caused by repetition of statistical tests. When we consider the combinations of j
out of n hypotheses, the number of tested combinations increases exponentially
as O(nj), and if we use a naive correction method in j = 4 or more, it is too
conservative since almost all discoveries becomes extremely unlikely.

Recently, Terada et al. developed a novel p-value correction procedure, called
“Limitless Arity Multiple-testing Procedure” (LAMP). Their paper [20] was pub-
lished in PNAS, a leading journal in scientific community. This new procedure ex-
cludes meaninglessly infrequent hypotheses which will never be significant. The
p-value correction factor calculated byLAMP ismuchmore accurate than previous
method, and it empowers the scientific discovery from the experiment databases.
However, the original LAMP implementation is sometimes too time-consuming for
practical databases, and a state-of-the-art algorithm has been desired.

The LAMP is based on the techniques of frequent itemset mining, to enu-
merate all frequent itemsets included in at least σ transactions of the database
for a given threshold σ. Since the pioneering work by Agrawal et al. [1], vari-
ous algorithms have been proposed to solve this problem [9,13,27]. Among those
state-of-the-art algorithms, LCM (Linear time Closed itemset Miner)[24,22,23]
by Uno et al. is known as one of the fastest algorithm, which is based on a
depth-first traversal of a search tree for the combinatorial space.

In this paper, we propose a fast itemset enumeration algorithm to find the
minimum support for satisfying the LAMP condition. Our new algorithm essen-
tially executes itemset mining algorithm once, while the previous one executes
many times. We show that LAMP condition is a kind of threshold function
which is monotonically decreasing or increasing. We developed a general scheme
to explore the maximum frequency satisfying a given threshold function. We suc-
cessfully applied this new scheme to the LAMP condition. Those new procedures
are implemented into the newest version of the LCM program. Our experimental
results show that the proposed method is much (10 to 100 times) faster than
the original LAMP. This algorithm enables us to discover significant p-value
patterns in quite short time even for very large-scale databases.

In the rest of this paper, we first explain the preliminaries on frequent itemset
mining algorithms. In Section 3, we then present the problem of statistical assess-
ment for combinatorial hypotheses and the idea of LAMP. Section 4 describes our
proposedmethods for finding theminimum frequency for satisfying threshold func-
tion and the LAMP condition. Section 5 discusses efficient implementation, and
Section 6 shows our experimental results, followed by the conclusion in Section 7.
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2 Preliminary

Here we start with some basic definitions of itemset databases and frequent
itemset mining.

Let E = {1, . . . , n} be a set of items. A subset of E is called an itemset. A
transaction database is a database composed of transactions where a transaction
is an itemset. A transaction database can include two or more identical transac-
tions. For a transaction database D, |D| denotes the number of transactions in
D, and ||D|| denotes the size of D, that is the sum of the size of the transactions
in D, i.e., ||D|| = ∑

T∈D |T |.
For an itemset X and a transaction database D, an occurrence of X in D is a

transaction including X . The occurrence set of X , denoted by Occ(X) is the set
of all occurrences of X in D. The frequency of X is the number of occurrences of
X , and is denoted by frq(X). For a given constant number σ called minimum
support, an itemset X is called frequent. The frequent itemset mining problem
is to enumerate all frequent itemsets for given database D and threshold σ.

Without confusions, an item e also represents the itemset {e}, hence frq(e),
X ∪ e and X \ e denote frq({e}), X ∪ {e} and X \ {e}, respectively. Let κ(σ)
be the number of frequent patterns whose frequencies are no less than σ.

2.1 Frequent Itemset Mining Algorithm

The set system given by the set of frequent itemsets is anti-monotone, i.e., any
subset Y of a frequent itemset X is always frequent. Thus, enumeration of fre-
quent itemsets is done efficiently by hill-climbing algorithms, that start from the
emptyset and recursively add items unless the itemset is infrequent. In particu-
lar, depth-first search type algorithms (backtracking) are known to be efficient
[9]. In the backtracking way, we add an item e to the current itemset X , and ex-
plore all itemsets generated from X ∪e before processing X ∪e′, e′ �= e. To avoid
duplicated solutions such that an itemset is output twice, backtracking adds only
item e > tail(X) where tail(X) is the maximum item in X . Through this enu-
meration technique, any item Y is generated from the itemset Y \ tail(X), thus
no duplication occurs. The pseudo code of backtracking is written as follows.

ALGORITHM BackTracking Basic (X)
1. output X
2. for each item e > tail(X),

if frq(X ∪ e) ≥ σ then call BackTracking Basic (X ∪ e)

The most heavy computation in this algorithm is the computation of frq(X∪
e) on Step 2 of the algorithm. There are several techniques for reducing this
computation. Especially, recursive database reduction techniques, such as FP-
tree representation of the database [12] and anytime database reduction [22],
are quite efficient. These techniques can be applied only to depth-first type
algorithm, this explains why BFS algorithms are slow compared to backtracking
on real-world data [10]. There is one more important technique so called equi-
support (see for example [24] written as hypercube decomposition). For an itemset
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X , we call an item e �∈ X addible if frq(X ∪ e) = frq(X). Eq(X) denotes the
set of addible items e of X that satisfy e > tail(X). We can see that any itemset
X ∪ S, S ⊆ Eq(X) satisfies frq(X) = frq(X ∪ S), thus we output all these
itemsets without the computation of their frequency. Using this observation, a
more efficient algorithm can be written as follows. Duplications can be avoided
by not generating recursive calls for X ∪ e with e ∈ Eq(X).

ALGORITHM BackTracking (X)
1. output X ∪ S for all S ⊆ Eq(X)
2. for each item e > tail(X), e �∈ Eq(X),

if frq(X ∪ e) ≥ σ then call BackTracking (X ∪ e)

Fast implementations of backtracking find up to one million solutions in a
second [10].

3 Statistical Assessment for Combinatorial Hypotheses

In this paper, we discuss a fast method of statistical assessment using the tech-
niques of frequent itemset mining. First we assume the following experimental
scenario.

Consider a scientific database including experimental results for a number of
human gene samples, and each sample shows a set of expressions of targeted
factors. Here we assume only one expression level (exist or not) for each factor.
We also have another classification result for each sample whether it is positive
or negative, for example, the gene sample is given by a patient of breast cancer
or a normal person. Then we want to discover a combination of factors which is
highly correlated to incidence of a breast cancer. This is a quite simple scenario
and many similar cases may commonly appear in various areas of experimental
sciences. Since we assume only binary values in the database, we can represent it
as a transaction database D as shown in Fig. 1. Here we also assume a classifier
C : D → {pos, neg}, which classify each transaction into a positive or a negative
one. Suppose that the database has n items for the expressions of factors, m
transactions in total, and mp positive transactions.

Now we consider the assessment whether a given itemset has a strong corre-
lation to appear in the positive transactions. Figure 2 shows a contingency table
between the occurrence of the itemset X and the positive class of transactions.
Here we note σ = frq(X) and σp is a number of positive transactions in Occ(X).
We also show the value of each cell when X = {2, 3} for the database shown in
Fig. 1.

If the distribution of the contingency table is very biased, we may consider
this is a kind of knowledge discovery because it is unlikely that it happened inci-
dentally. The p-value represents the probability that such a biased distribution
incidentally happens. In other words, it is the probability of a false discovery,
and we can accept the statistical significance if the p-value is smaller than an
arbitrary threshold α. (α = 0.05 is often used.) The p-value is quite important
in the paper review process of academic journals in experimental sciences.
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T ∈ D C(T )
2 3 4 5 neg

1 3 5 pos

2 3 4 pos

1 2 4 5 neg

1 2 3 pos

2 4 neg

1 2 3 5 pos

2 4 5 neg

1 3 4 neg

Fig. 1. An example of trans-
action database with positive-
negative class

pos neg all
Occ(X) (σp) (σ − σp) (σ)

3 1 4

Occ(X) (mp − σp) (m−mp − σ + σp) (m− σ)
1 4 5

all (mp) (m−mp) (m)
4 5 9

Fig. 2. Contingency table (X = {2, 3})

Fisher’s exact test is one of the major methods for calculating the p-value for
a given contingency table. This testing method assumes that each experimental
result is independent and has an equal weight. Then, the p-value is calculated by
counting all combinatorial cases to generate equally or more biased distributions.
More exactly, the probability of generating a contingency table of Fig. 2 can be
written as:

P (σp) =

((
mp

σp

)

·
(
m−mp

σ − σp

))

/

(
m
σ

)

, (1)

and the p-value is defined as

min(σ, mp)∑

σ′
p=σp

P (σ′
p), which is the total probabilities of

all equally or more biased distributions.

3.1 P-value Correction in Multiple Tests

If we repeatedly calculate p-values for many different factors in a same database,
we may more likely find a factor with an incidentally low p-value. For example,
if we explore a family of hundred hypotheses each of which might be a false
discovery in p = 0.05, then at least one false discovery can be found in p = 0.994.
It is well known that such multiple tests may cause serious false positive problems
[17]. Hence, a multiple testing correction must be used in order to avoid a false
discovery. The family-wise error rate (FWER) indicates the probability that at
least one false discovery happens in multiple tests. This rate increases at most
linearly as the number of tests, which motivates the Bonferroni correction [7]
that multiplies the raw p-value by the number of tests. In other words, we must
compare the raw p-values with the adjusted threshold δ = α/k, where k is
number of tests. The Bonferroni correction is a very conservative method, which
likely causes false negative but hardly causes false positive, and often used in
academic articles in experimental sciences.
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When we consider the combinations of j out of n items, the number of tested
combinations increases exponentially as O(nj), and if we naively use Bonferroni
correction in j = 4 or more, most of the discoveries of combinatorial hypotheses
becomes extremely unlikely. However, in many practical cases, not all the com-
binations occur in the databases, so the ideal size of hypothesis family would be
much smaller than the naive combinatorial number. This is a motivation of the
LAMP.

3.2 Idea of LAMP

Recently, Terada et al. developed a novel p-value correction procedure, called
“Limitless Arity Multiple-testing Procedure” (LAMP) [20]. This new procedure
is based on frequent itemset enumeration for checking the two principles:

(1) Meaninglessly infrequent itemsets which never be significant can be excluded
from the number of hypotheses to be counted.

(2) Any different itemsets having completely the same occurrence set can be
counted as one hypothesis in the family.

The principle (2) means that we may enumerate only the closed itemsets, and
we can just use existing state-of-the-art algorithms of closed itemset mining
[24,22,23]. Here we explain in detail how to check the principle (1).

Suppose an itemset X with a very low frequency σ (< mp). Using Fisher’s
exact test, the raw p-value cannot be smaller than

f(σ) =

(
mp

σ

)

/

(
m
σ

)

, (2)

which means the most biased case of equation (1) that all Occ(X) are classified
into the positive class. Note that f(σ) is monotonically decreasing, namely, the
less frequent itemsets has the larger f(σ). This observation means that all the
infrequent itemsets satisfying f(σ) > δ can never be significant, regardless of
the classification result. Thus, we can exclude such itemsets from the number of
hypotheses to be counted. This is the key idea of the LAMP.

Let κc(σ) be the number of all closed itemsets not less frequent than σ. Then,
the adjusted threshold of Bonferroni correction can be written as δ = α/κc(σ).
Now our subject is to find the maximum frequency σmax which satisfies:

f(σmax − 1) >
α

κc(σmax)
and f(σmax) ≤ α

κc(σmax + 1)
. (3)

3.3 Current Implementation of LAMP

In the above inequation of the LAMP condition, the left side f(σ − 1) is mono-
tonically decreasing and the right side α/κc(σ) is monotonically increasing in
the range 1 ≤ σ ≤ mp. Thus, a naive idea is to enumerate all the itemsets in an
order from the highest σ to the lowest one, and we may stop the enumeration
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Fig. 3. An example of a breadth-first search

procedure when the current σ first satisfies the condition. This is well known as
the breadth-first search approach used in the “Apriori-type” [1] frequent item-
set mining algorithms. Figure 3 illustrates the execution steps of a breadth-first
search on the same database in Fig. 1. This approach requires a large size of
memories to store all the itemsets at the current frontier for each step, and in
general, it is not very efficient for practical size of databases.

The current implementation of the original LAMP [19] is not using a breadth-
first search due to memory limitation, but just calls the LCM algorithm repeat-
edly, as follows.

ALGORITHM Original LAMP (α)
1. σ := maxe∈E(frq(e))
2. if σ < mp then σ := mp // mp: number of positive transactions.
3. k := κc(σ) // call LCM algorithm to compute κc(σ).
4. if f(σ − 1) ≤ α/k then σ := σ − 1; goto 3
5. output (σ, k)

This method requires less memory, but sometimes very time-consuming since
the LCM may be called more than thousand times for practical cases, and it
may take a day or more. The current LAMP has a bottleneck in computation
time, and some efficient algorithms are desired.

One may consider that we can apply a sampling technique [6] to quickly esti-
mate the number of frequent itemsets satisfying the LAMP condition. However,
the result is used for statistical assessment, thus we must ensure the worst-case
upper bound, but it is difficult to find a feasible bound by sampling-based meth-
ods. Here we propose a fast and exact method of enumerating itemsets for the
LAMP condition.

4 Proposed Algorithms

4.1 A Threshold Function for the LAMP Condition

Let θ(x, y) : (N ×N) → {true, false} be a given threshold function such that
θ(x, y) = true implies θ(x′, y) = true for any x′ < x, and that θ(x, y) = true
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implies θ(x, y′) = true for any y′ > y. In other words, θ(x, y) is monotonically
decreasing for x and increasing for y. Now we consider a general scheme of the
itemset mining problems, to find the largest σ satisfying θ(σ, κ(σ)). Note that
κ(σ) is monotonically decreasing for 1 ≤ σ ≤ m, thus θ(σ, κ(σ)) is monotonically
decreasing for the same 1 ≤ σ ≤ m. We call the largest σ maximum frequency
for the threshold function, and denote it by σmax.

For examples of such threshold functions, the function for top-k mining can
be defined as θ(x, y) = true iff y ≥ k. We then explore the maximum frequency
σmax for satisfying θ(σ, κ(σ)). It means that the k-th most frequent itemsets
have the frequency σmax.

Here we define a threshold function for the LAMP condition as follows.

θ(x, y) = true iff f(x− 1) >
α

y
(4)

As discussed in Section 3, we can confirm that this threshold function is decreas-
ing for x and increasing for y. We then explore the maximum frequency σmax

for satisfying θ(σ, κ(σ))1. Hereafter we assume that θ(x, y) satisfies the above
condition.

4.2 Support Increase Algorithm

For the computation of the maximum frequency for θ(σ, κ(σ)), a natural way
is to compute κ(σ) by frequent itemset mining with the minimum support σ,
for all possible candidates σ, one by one. This computation takes long time
when σ is small since κ(σ) is huge, thus we should compute θ(σ, κ(σ)) in the
decreasing order of σ. This is the basic scheme of the original LAMP [20] shown
in the previous section. However, this needs long computation time since many
frequent itemset mining processes are executed. In this paper, we propose a new
algorithm that basically executes mining algorithm just once.

Suppose that we are given a function θ(σ, κ(σ)). For a frequency σ, if we
found some k and confirmed both k ≤ κ(σ) and θ(σ, k) = true, then we get
θ(σ, κ(σ)) = true, since θ(x, y) is increasing for y. In such a case, we can see
σmax ≥ σ, and in particular, σmax = σ if θ(σ + 1, κ(σ + 1)) = false.

Suppose that we execute a backtracking algorithm for minimum support σ
to check θ(σ, κ(σ)), and during the mining process we found k frequent item-
sets satisfying θ(σ, k). From the assumption of the function θ(x, y), we can then
confirm that θ(σ, κ(σ)) = true. We are then motivated to re-execute the back-
tracking with σ := σ + 1 to check θ(σ + 1, κ(σ + 1)). However, in the current
execution, we already found possibly many itemsets of frequency σ + 1, and in
the past search process, we never missed such itemsets. This implies that the
execution until the current iteration can be skipped. We just need to remove all
itemsets of frequency σ from the set of past solutions that have already been

1 Our implementation uses κc(σ) instead of κ(σ) for the LAMP condition in equa-
tion (2). The number of closed itemsets are also monotonically decreasing for the
frequency, so we can use κc(σ) as well. This is discussed in Section 5.2.
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Fig. 4. The scheme of support increase algorithm

found, and can re-start the backtracking algorithm with σ := σ+1. This implies
that even if we start from very small σ having huge κ(σ), we can increase it
during the mining process for reducing the computation time.

A backtracking algorithm with this idea can be written as follows. Figure 4
illustrates the scheme of this algorithm. The algorithm start with σ = 1 and
S = ∅ where S is a program variable for storing a set of frequent itemsets we
already found. Let S[σ] be the subset of itemsets in S whose frequency is σ.

ALGORITHM SupportIncrease (X)
global variable: σ,S (initialized σ = 1, S = ∅)
1. S := S ∪ {X}
2. if θ(σ, |S|) = true then S := S \ S[σ], σ := σ + 1; go to 2
3. for each item e > tail(X),

if frq(X ∪ e) ≥ σ then call SupportIncrease (X ∪ e)

Theorem 1. Let σ∗ and S∗ denote the resulting values of σ and S after the
execution of the algorithm SupportIncrease. Then it holds that σ∗ = σmax+1
and |S∗| = κ(σmax + 1).

Proof. Since the algorithm never decreases σ, the itemsets of frequencies no less
than σ∗ cannot be missed, and are included in S∗. Since no itemset of frequency
less than σ∗ is in S, we have |S∗| = κ(σ∗). We then prove σ∗ = σmax + 1 by
contradiction.

Suppose that θ(σ∗, κ(σ∗)) = true holds. Let us consider the iteration in which
the last itemset is inserted to S. Since θ(σ∗, κ(σ∗)) = true holds, the latter
part of step 2 is not executed in this iteration, otherwise σ is increased so that
θ(σ∗, κ(σ∗)) = false holds. Thus, we have σ = σ∗ in the iteration. After step 1,
there is no more itemset of frequency no less than σ∗ that has not been found,
thus we have |S| = κ(σ). This leads that θ(σ∗, κ(σ∗)) = false, and contradicts
to the assumption.
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We next suppose that θ(σ∗ − 1, κ(σ∗ − 1)) = false holds. Let us consider the
iteration in which σ is increased to σ∗. In the iteration, the latter part of step 2
is executed, and thus we have θ(σ∗−1, |S|) = true. Since |S| is always no greater
than κ(σ), it implies that θ(σ∗ − 1, k) = true holds for some k ≤ κ(σ∗ − 1). This
contradicts to the assumption. 
�

The algorithm terminates in short time if |S[σ]| is relatively small compared
to |S| on average. Particularly, if |S[σ]| ≤ q always holds, we can bound the
number of iterations by q · σmax + |S∗|, since the algorithm removes at most
q · σmax itemsets from S. In the real-world data, we can naturally expect that
|S[σ]| is much smaller than |S|. In fact, we could confirm it in our computational
experiments.

The computation of |S[σ]| is done efficiently by using a heap that extracts the
minimum frequency itemset from S. The computation then takesO(|S[σ]| log |S|)
time. This computation time should be short than the computation time of an
iteration, thus the total computation is expected not to increase much. However,
if |S| is large on average, or κ(σ∗) is very large, the algorithm may take very
long time. In the next section, we focus on such cases, and propose an efficient
method for reducing the computation time.

5 Fast Implementation

The bottleneck of the computation of the algorithm in the previous section comes
from the large size of the heap for S. This effects not only the computation
time but also the memory usage. We here propose to use histogram counters
instead of the heap. The histogram counters s[σ] are prepared for keeping |S[σ]|,
and an integer variable s is used for accumulating |S|. By using the histogram
counters, we do not have to use the heap for storing the itemsets. The point is
that we can compute |S \ S[σ]| by just one subtract operation s− s[σ]. Another
important point is the memory usage. The number of the histogram counters
can be bounded by the number of transactions, thus it is only a linear factor to
the input data size.

The use of histogram counters gives us one more advantage; we can use the
equi-support technique. In each iteration with equi-support, we find many fre-
quent itemsets, 2|Eq| itemsets in exact, with the same frequency, at once. We
can increase the counter for these in one step by adding 2|Eq| to the counter.
This saves the computation time of 2|Eq| − 1 iterations, thus the equi-support
technique drastically shortens the total computation time. The algorithm is then
written as follows.

ALGORITHM EquiSupportIncrease (X)
global variable: σ, s, s[ ] (initialized σ = 1, s = 0, s[i] = 0 for each i)

1. s := s+ 2|Eq(X)|, s[frq(X)] := s[frq(X)] + 2|Eq(X)|

2. if θ(σ, s) = true then s := s− s[σ], σ := σ + 1; go to 2
3. for each item e > tail(X), e �∈ Eq(X),

if frq(X ∪ e) ≥ σ then call EquiSupportIncrease (X ∪ e)
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Theorem 2. Let σ∗ and s∗ denote the resulting values of σ and s after the
execution of the algorithm EquiSupportIncrease. Then it holds that σ∗ =
σmax + 1 and s∗ = κ(σmax + 1).

Proof. We assume that the variable S is simultaneously computed as algo-
rithm SupportIncrease during the execution of EquiSupportIncrease. In-
stead of insertion of itemsets X into S, EquiSupportIncrease increases s and
s[frq(X)]. Thus, in any iteration, s = |S| and s[σ] = |S[σ]| holds. This implies
that the computation of σ in EquiSupportIncrease is the same as Support-
Increase, thus the statement holds. 
�
Theorem 3. Let P be the itemset enumerated by EquiSupportIncrease. The
number of iterations needed to enumerate P by EquiSupportIncrease is equal
to that by backtracking algorithms with equi-support technique. 
�

5.1 Calculating Family Size of the LAMP

Theorem 1 states that |S∗| = κ(σmax + 1), namely, the histogram counters
holds κ(σmax + 1) after the execution of the proposed algorithm. However, our
final purpose of the LAMP is to know κ(σmax), which is the hypothesis family
size for the p-value correction. An easy way to know κ(σmax) is calling LCM
algorithm once again with σmax. This is not so bad since calculating κ(σmax)
is not more time-consuming than finding σmax, however, we can avoid such
two-pass executions if we maintain not only s[σ] but also s[σ − 1] during the
backtracking procedure. This can be done by a very small modification as shown
below.

ALGORITHM EquiSupportIncreaseLAMP (X)
global variable: σ, s, s[ ] (initialized σ = 1, s = 0, s[i] = 0 for each i)
1. s := s+ 2|Eq(X)|, s[frq(X)] := s[frq(X)] + 2|Eq(X)|

2. if θ(σ, s− s[σ − 1]) = true then s := s− s[σ − 1], σ := σ + 1; go to 2
3. for each item e > tail(X), e �∈ Eq(X),

if frq(X ∪ e) ≥ σ − 1 then call EquiSupportIncreaseLAMP (X ∪ e)

In this modification, the total number of backtracking will be a little increase
because the condition of the recursive call in Step 3 is relaxed to one smaller
frequency. This overhead is relatively small in the total computation time, and
it is a reasonable cost for computing κ(σmax) correctly.

5.2 Generalization to Other Patterns

Many patterns have been considered in the past researches of pattern mining.
Our algorithm works on many of these patterns. The requirement is that the
backtracking algorithm does work, i.e., the set of frequent patterns satisfies some
monotone properties. For example, closed itemset mining accepts our algorithm,
and also maximal frequent itemset mining also does. Closed itemsets have the
anti-monotone property, and maximal frequent itemsets can be enumerated by
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backtracking. They can be solved by our implementation. Sequence pattern min-
ing [25], frequent tree mining [4,5], frequent geograph mining [3], maximal motif
mining [2], frequent graph mining [14], and other basic patterns also satisfy
monotone property, so that we can construct a search tree in which parents have
frequencies no smaller than their children, thereby backtracking works. They ac-
cept the counter implementation when the maximum possible frequency is not
huge, and also Equi-support technique when it works. Our basic scheme of the
algorithm is quite strong so that we can use it in many kinds of pattern mining
problems.

6 Computational Experiments

We implemented our new LAMP algorithm by modifying LCM ver. 5 that is
available on the author’s website [21]. This is the latest version of LCM algorithm
that won in FIMI04 competition of fast pattern mining implementations [10].
The fundamental issues of the implementation is described in [22]. We note that
the modification is quite small such that we added/modified only up to 30 lines of
C codes. We could not observe any relatively large difference of computational
performance after the modification of the LCM. For the comparison, we also
evaluated the original version of LAMP [19]. The original LAMP repeatedly
calls the same LCM ver. 5, as shown in Section 3 of this paper.

Table 1 presents the specifications of the database instances used in our ex-
periments. “yeast” and “breast cancer” are the real gene databases, which are
also used in the original LAMP paper [20]. The others are well known bench-
mark datasets of FIMI competition and KDD CUP 2000, available from the
FIMI repository [10]. The columns n and m show the numbers of items and
transactions, respectively. Here we show the hypothesis family sizes of tradi-
tional Bonferroni correction if we limit the maximum arity (the number of items
in a combination) up to 2, 3, and 4. We can see that the family size grows ex-
ponentially to the arity, and that it seems too large for meaningful knowledge
discovery in practical size of databases.

Table 2 shows our experimental results of the new and original versions of
LAMP. The columns mp, σmax and κc(σmax) indicate the number of positive
transactions, the maximum frequency for the LAMP condition, and the number
of frequent closed itemsets (hypothesis family size by LAMP), respectively. Here
we used the significance threshold α = 0.05. Note that the datasets “yeast”
and “breast cancer” have a positive-negative classification for each transaction.
“mushroom” does not have such information but it has the two specific items
which mean poisonous or edible mushroom, so we define the poisonous one as
positive, and the rest of 117 items are assessed as the combinatorial hypotheses.
For the other datasets, we did not specify a particular classification item, but we
assumed the two cases that the positive transactions share 50% and 10% in the
whole data. The experimental results show that the new LAMP is much faster
than the original LAMP, as much as 10 to 100 times in many cases, and it can
work well for practical size of databases with hundreds of items and thousands
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Table 1. Specifications of databases

database n m Bonferroni (family size)
max-arity: 2 max-arity: 3 max-arity: 4

yeast 102 6074 5253 176953 4426528
breast cancer 397 12773 79003 10428793 1029883108
mushroom(3-119) 117 8124 6903 267033 7680738
T10I4D100K 870 100000 378885 109751225 23816205920
BMS-WebView-1 497 59602 123753 20460993 2532110133
BMS-WebView-2 3340 77512 5579470 6209953450 5.182 × 1012

BMS-POS 1657 515597 1373653 758258113 3.137 × 1011

Table 2. Experimental Results of new and original LAMP

database mp σmax κc(σmax) new LAMP orig. LAMP
(family size) time(sec) time(sec)

yeast 530 4 303 0.005 0.463
breast cancer 1129 8 3750336 36.538 86.315
mushroom(3-119) 3916 20 98723 0.740 141.327
T10I4D100K(mp:50%) 50000 21 107080 3.092 799.738
T10I4D100K(mp:10%) 10000 7 483300 5.714 820.756
BMS-WebView-1(mp:50%) 29801 22 170660 12.349 122.303
BMS-WebView-1(mp:10%) 5960 8 959435 33.351 248.055
BMS-WebView-2(mp:50%) 38756 22 209016 1.813 229.406
BMS-WebView-2(mp:10%) 7751 8 665411 5.655 246.278
BMS-POS(mp:50%) 257799 31 74373743 580.321 78801.858
BMS-POS(mp:10%) 51560 11 702878145 4513.052 50883.609

Intel Core i7-3930K 3.2GHz, 64GB Mem, 12MB Cache, OpenSuSE 12.1

of transactions. We can also see that the family sizes given by LAMP are often
smaller than ones by the traditional Bonferroni with the max-arity up to only
3. This is very powerful in practical applications because the LAMP has no
arity limit up to n, and this correction still guarantees the family-wise error rate
bounded by α.

7 Conclusion

In this paper, we proposed a fast itemset enumeration algorithm to find the fre-
quency threshold satisfying the LAMP condition. We developed a general scheme
to explore the maximum frequency satisfying a monotonic threshold function.
We successfully applied this new scheme to the LAMP condition. The procedure
is implemented into the newest LCM program. Our experimental results show
that the proposed method is much (10 to 100 times) faster than the original
LAMP and that it can work well for practical size of experiment databases. The
new enumeration algorithm solved the bottleneck of the LAMP for practical
applications, and useful for various areas of experimental sciences.

We may have several kinds of future work. As well as multiple-testing correc-
tion, computing the p-values for a particular hypothesis is also time-consuming
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procedure. It will be useful if we can efficiently compute the p-values for many
combinatorial hypotheses and can discover the best or top-k significant one. In
this paper, we considered Fisher’s exact test, however, there are some other types
of the p-value calculation, such as χ-squared test and Mann-Whitney test, and
we may consider different statistical models. In addition, here we assumed only
the binary-valued databases, but extension to non binary-valued databases is
also interesting problem. As described in Section 5.2, our basic scheme of the
algorithm is quite strong so that we can use it in many kinds of pattern mining
problems. Anyway, our result demonstrated that the state-of-the-art enumer-
ation techniques of pattern mining can be a useful means to many kinds of
statistical problems.
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