
Heterogeneous Stream Processing and

Crowdsourcing for Traffic Monitoring: Highlights

François Schnitzler1, Alexander Artikis2, Matthias Weidlich3, Ioannis Boutsis4,
Thomas Liebig5, Nico Piatkowski5, Christian Bockermann5, Katharina Morik5,

Vana Kalogeraki4, Jakub Marecek6, Avigdor Gal1, Shie Mannor1,
Dermot Kinane7, and Dimitrios Gunopulos8

1 Technion - Israel Institute of Technology, Haifa, Israel
2 Institute of Informatics & Telecommunications, NCSR Demokritos, Athens, Greece

3 Imperial College London, United Kingdom
4 Department Informatics, Athens University of Economics and Business, Greece

5 TU Dortmund University, Germany
6 IBM Research, Dublin, Ireland
7 Dublin City Council, Ireland

8 Department of Informatics and Telecommunications, University of Athens, Greece

Abstract. We give an overview of an intelligent urban traffic manage-
ment system. Complex events related to congestions are detected from
heterogeneous sources involving fixed sensors mounted on intersections
and mobile sensors mounted on public transport vehicles. To deal with
data veracity, sensor disagreements are resolved by crowdsourcing. To
deal with data sparsity, a traffic model offers information in areas with
low sensor coverage. We apply the system to a real-world use-case.

Keywords: smart cities, crowdsourcing, event pattern matching, traffic,
stream processing, big data.

1 Introduction

New technologies related to mobile computing combined with sensing infrastruc-
tures distributed in a city or country are generating massive, heterogeneous data
and creating opportunities for innovative applications. Levering such data to ob-
tain a detailed and real-time picture of traffic, water or power networks, to name
a few, is a key challenge to achieve better management and planning.

In this context, the goal of the INSIGHT project1 is to support city or country
managers in the detection of interesting events. The present work, originally
presented in [3], gives a high-level overview of a traffic monitoring application in
Dublin City, Ireland. Two particularly interesting features of this work for the
machine learning and data mining communities are as follows.

– We present the general framework of an advanced smart city monitoring sys-
tem leveraging large scale and heterogenous streams of sensor measurements,
and the challenges that come up from a real application.

1 www.insight-ict.eu/

T. Calders et al. (Eds.): ECML PKDD 2014, Part III, LNCS 8726, pp. 520–523, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

www.insight-ict.eu/


Heterogeneous Stream Processing and Crowdsourcing 521

Fig. 1. Architecture overview

time
Q136 Q138Q137

Working Memory

Q139

Fig. 2. RTEC event recognition

– We used real data streams coming from the buses and vehicle count SCATS
sensors of Dublin city that we made publicly available2. The bus dataset
includes 942 buses. Operating buses emit every 20-30 seconds. The SCATS
dataset includes 966 sensors transmitting information every few minutes.
They were collected during January 2013 and totalize 13GB of data.

The system architecture is schematized in Fig. 1. Inputs consist in the afore-
mentioned sensors. Additional inputs can be requested from volunteering citi-
zens through a crowdsourcing component (Sec. 4). The system outputs, in
real time, a set of complex events (CEs) (Sec. 3), and congestion estimates
for every intersection (Sec. 5). The architecture is implemented as a streaming
system, using the Streams framework (Sec. 2).

2 Stream Processing

The Streams framework [4] is the backbone of our system. It provides a XML-
based language to describe data flow graphs that work on sequences of data items
(key-value pairs, i.e. attributes and their values). Nodes of the data flow graph
are processes that comprise a sequence of processors. Processes take a stream
or a queue as input and processors apply a function to the data items in a
stream. These concepts are implemented in Java. Adding customized processors
is realized by implementing the appropriate interfaces of the Streams API.

3 Complex Event Processing

For complex event processing, we use the Event Calculus for Run-Time reasoning
(RTEC) [1,2], a Prolog-based engine. Event Calculus is a logic programming
language to represent and reason about events and their effects.

In RTEC, event types are represented as n-ary predicates of the form
event(Attribute1,. . . ,AttributeN). The occurrence of an event E at time T is
modeled by the predicate happensAt(E, T ). The effects of events are expressed
by means of fluents, i.e. properties that may have different values at different
points in time, for example holdsAt(F =V, T ).

2 www.dublinked.ie

www.dublinked.ie


522 F. Schnitzler et al.

In collaboration with domain experts, CEs have been defined over the input
streams. For example, an intersection is congested if at least n (n > 1) of its
SCATS sensors are congested, or if busses suffer a high delay. CEs are modeled
as logical rules defining event instances, for example,

happensAt(delayIncrease(Bus), T )← happensAt(move(Bus ,Delay ′), T ′),
happensAt(move(Bus ,Delay), T ),

Delay−Delay ′ > d , 0 < T−T ′ < t .

A delayIncrease(Bus) CE is recognized when the delay value of a Bus increases
by more than d seconds in less than t seconds.

At query times Qi, RTEC recognizes CEs within a specified ‘working memory’
(WM) interval, based on data items received during the WM. Overlapping WMs
allow to process, at Qi, data items generated in [Qi−WM, Qi−1] but arrived
after Qi−1. This is illustrated in Fig. 2. We performed both ‘static’ recognition,
taking into consideration all sources, and ‘self-adaptive recognition’, where noisy
sources are detected at run-time and temporarily discarded.

4 Crowdsourcing

We use crowdsourcing to ameliorate the veracity problem of the data. When
the bus and SCATS sensors disagree about a congestion, the CE processing
component requests additional inputs from the crowdsourcing component that
queries human volunteers, or ‘workers’, close to the location of the disagreement.

Workers are presented with a set of possible labels (such as ‘no congestion’
or ‘traffic jam’) and select one. A key problem is to estimate the reliability of
each worker, which we model by pi, the probability that worker i provides a
wrong label. Estimating Θ ≡ {pi}i is typically done in batch mode, for example
using the Expectation-Maximization (EM) algorithm. In order to estimate Θ on
streaming data, we use an online EM based on stochastic approximation.

We employ the MapReduce programming model to communicate queries to
the workers without effort from the user to reach him and to achieve real-
time and reliable communication [5]. MapReduce allows processing parallelizable
tasks across distributed nodes by decomposing the computational task into two
steps, namely map and reduce. In our system, the crowdsourcing query engine
communicates the queries to the workers (map task), and aggregates the results
(reduce task). The interface of the mobile application is illustrated in Fig. 3.

5 Traffic Modeling

Large parts of the city are not covered by the sensors available. A Gaussian
Process regression provides operators with a picture on the entire city [6,7] .

To each vertex vi in the traffic graph G corresponds a latent variable fi, the
true traffic flow at junction vi. We assume that any finite set f = fj has a

multivariate Gaussian distribution P (f) = N (0, K̂). K̂ =
[
β(L + I/α2)

]−1
is



Heterogeneous Stream Processing and Crowdsourcing 523

Fig. 3. Interface of the mobile crowd-
sourcing application

Fig. 4. Traffic Flow estimates. Green dots in-
dicate low traffic, red dots congestions

the regularized Laplacian kernel function, with hyperparameters α and β. Zero
mean is assumed without loss of generality. L = D − A is the Laplacian, A the
adjacency matrix of G, and D a diagonal matrix with entries di,i =

∑
j Ai,j .

We also assume observations are affected by Gaussian noise: yi = fi + εi,
εi ∼ N (0, σ2). A joint distribution over observed and unobserved traffic flows
can be defined, and the distribution of the unobserved flows conditionally on the
observed ones computed. Results visible to operators are illustrated in Fig. 4.

Acknowledgments. This work is funded by the following projects: EU FP7
INSIGHT (318225); ERC IDEAS NGHCS; the Deutsche Forschungsgemeinschaft
within the CRC SFB 876 “Providing Information by Resource-Constrained Data
Analysis”, A1 and C1.

References

1. Artikis, A., Sergot, M., Paliouras, G.: Run-time composite event recognition. In:
DEBS, pp. 69–80. ACM (2012)

2. Artikis, A., Weidlich, M., Gal, A., Kalogeraki, V., Gunopulos, D.: Self-adaptive
event recognition for intelligent transport management. In: Big Data, pp. 319–325.
IEEE (2013)

3. Artikis, A., Weidlich, M., Schnitzler, F., Boutsis, I., Liebig, T., Piatkowski, N., Bock-
ermann, C., Morik, K., Kalogeraki, V., Marecek, J., Gal, A., Mannor, S., Gunopulos,
D., Kinane, D.: Heterogeneous stream processing and crowdsourcing for urban traffic
management. In: EDBT, pp. 712–723 (2014)

4. Bockermann, C., Blom, H.: The streams framework. Tech. Rep. 5, TU Dortmund
University (December 2012)

5. Kakantousis, T., Boutsis, I., Kalogeraki, V., Gunopulos, D., Gasparis, G., Dou, A.:
Misco: A system for data analysis applications on networks of smartphones using
mapreduce. In: MDM 2012, pp. 356–359 (2012)

6. Liebig, T., Xu, Z., May, M., Wrobel, S.: Pedestrian quantity estimation with trajec-
tory patterns. In: Flach, P.A., De Bie, T., Cristianini, N. (eds.) ECML PKDD 2012,
Part II. LNCS, vol. 7524, pp. 629–643. Springer, Heidelberg (2012)

7. Schnitzler, F., Liebig, T., Mannor, S., Morik, K.: Combining a gauss-markov model
and gaussian process for traffic prediction in dublin city center. In: EDBT/ICDT
Workshops, pp. 373–374 (2014)


	Heterogeneous Stream Processing and
Crowdsourcing for Traffic Monitoring: Highlights

	1 Introduction
	2 Stream Processing
	3 Complex Event Processing
	4 Crowdsourcing
	5 Traffic Modeling
	References




