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Abstract. We consider a simple power analysis on an 8-bit software
implementation of the AES key expansion. Assuming that an attacker
is able to observe the Hamming weights of the key bytes generated by
the key expansion, previous works from Mangard and from VanLaven
et al. showed how to exploit this information to recover the key from
unprotected implementations.

Our contribution considers several possible countermeasures that are
commonly used to protect the encryption process and may well be adopted
to protect the computation and/or the manipulation of round keys from
this attack. We study two different Boolean masking countermeasures and
present efficient attacks against both of them. We also study a third coun-
termeasure based on the computation of the key expansion in a shuffled
order. We show that it is also possible to attack this countermeasure by
exploiting the side-channel leakage only. As this last attack requires a not
negligible computation effort, we also propose a passive and active com-
bined attack (PACA) where faults injected during the key expansion are
analyzed to derive information that render the side-channel analysis more
efficient. These results put a new light on the (in-)security of implemen-
tations of the key expansion with respect to SPA.

As a side contribution of this paper, we also investigate the open
question whether two different ciphering keys may be undistinguishable
in the sense that they have exactly the same set of expanded key bytes
Hamming weights. We think that this problem is of theoretical interest
as being related to the quality of the diffusion process in the AES key
expansion. We answer positively to this open question by devising a
constructive method that exhibits many examples of such ambiguous
observations.

Keywords: side-channel analysis, simple power analysis, passive and

active combined attacks, AES key expansion.

1 Introduction

Side channel analysis is an effective means to derive secrets stored in a secu-
rity device like a smart card from measurements of a leaking physical signal
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such as the execution duration, the power consumption or the electromagnetic
emanation. Since the first publication of a timing attack by Kocher [6] many
side-channel analysis methods have been presented that exploit a large num-
ber of leakage traces by a statistical method: Differential Power Analysis [7],
Correlation Power Analysis [2], Mutual Information Analysis [4] and Template
Analysis [3] are few such well known methods.

Simple Power Analysis (SPA) also permits to infer information in a more di-
rect manner by ”visually” inspecting a single (in the most favorable cases) trace.
Two kinds of information can be retrieved by SPA. At a high level it allows to
recognize different instructions or blocks of instructions that are executed on
the device. This capability is typically exploited either to recover a sequence of
arithmetic operations of a modular exponentiation used in public key cryptog-
raphy, or for a rough reverse engineering and/or a first characterization phase of
an implementation or of the leakage behavior of the device. At a lower level SPA
informs about the values of the operands involved in each elementary instruction
particularly for load and store operations when this data is read from or written
to the bus. The dependency between the value of a data and that of the power
consumption that leaks when it is manipulated has early been studied [11,9,10]
and in the classical models the power consumption is tightly linked either with
the Hamming weight of the data or with the Hamming distance between this
data and the value it replaces on the bus.

In this paper we consider an attacker that is able to infer the Hamming
weights of the data manipulated by targeted instructions of a software AES
implementation on an 8-bit microprocessor. Specifically the targeted data are
the different bytes of the different round keys, while the targeted instructions
may be located either in the AES key expansion process which computes these
round keys, or in the AddRoundKey function which XOR the round keys with
the current state of the encryption process. While the problem of inferring an
AES key from the Hamming weights and the expanded key bytes has first been
mentioned in [1], Mangard [8] was the first to describe such an attack which
has later been improved by VanLaven et al. [13]. While the SPA on the AES
key expansion described in these works only apply on naive unprotected imple-
mentations, we study in this paper to which extent this attack may be adapted
to implementations featuring side-channel countermeasures. We consider three
different scenarios where either a Boolean masking is applied to the round keys
or the order of computation of the expanded key bytes is randomly shuffled.
The masking countermeasure prevents the attacker from obtaining the Ham-
ming weight of actual key bytes, while the shuffling countermeasure prevents
him to precisely know to which key byte an observation is related.

The paper is organized as follows: The problem statement and a background
on the related previous works are presented in Sect. 2. This section also considers
the open problem whether two expanded keys may have the same of Hamming
weights. Section 3 presents our main contribution where we describe attacks
on three countermeasures. In the light of these results we give implementation
recommendations in Sect. 4 while Sect. 5 concludes this work.
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2 Problem Statement and Previous Work

Given a 16-byte ciphering key K, the AES key expansion derives eleven 16-byte
round keys K, (r = 0,...,10) with Ky = K and where individual bytes of K,
are denoted ky; (¢ =0,...,15).

The expanded key K = {Ky,..., Ko} is computed column by column by
means of two types — a linear and a non-linear — of relations:

kr,i = kr—l,i @ kri—a (fOI‘ 1=4,..., 15) (1)
kr,i = krfl,i D S(kr—1,12+((i+1) mod 4)) D C{r‘ (fOf i = Oa ey 3) (2)

where S is the S-Box substitution and ¢ is a round specific constant equal to
{02}t if i = 0 and equal to 0 if i € {1,2,3}. We refer the interesting reader to
the AES specifications [12] for further details on the AES ciphering process.

The problem considered in this paper is how to identify the ciphering key K
based on a set {HW(k,;)}r; of part or all Hamming weights of the expanded
key bytes.

Mangard [8] was the first to give a solution to this problem. He proposed to
build lists of values of 5-byte key parts which are both compatible with the ob-
served Hamming weights of these bytes, and also compatible with the Hamming
weights of 9 other key bytes (and several other intermediate bytes) that can be
computed from the 5-tuple.

In [13] VanLaven et al. also consider the same problem and give an elegant
analysis of the key byte links which allows them to derive an efficient guess-
compute-and-backtrack algorithm where a sequence of key bytes are successively
guessed in an optimal order that maximizes the number of other bytes that
can be computed and checked with respect to their Hamming weight. Once an
inconsistency with respect to the observations is found the algorithm considers
the next possible value for the current guessed byte and eventually backtracks
one level back in the sequence of key bytes when all values for the current guessed
byte have been considered. Interestingly the last contribution of this work shows
that their algorithm can cope with (slightly) erroneous observation at the price
of a more demanding computational work in the key space exploration process.

Undistinguishable Keys. We study the open question whether there exist key
pairs — or more generally key sets — which are undistinguishable for having the
same Hamming weights signatures!. We are thus concerned by the existence or
non-existence of two different keys K and K’ such that K and K’ have exactly
the same 176 Hamming weights.

If the AES key expansion was deriving round keys K; to Kig9 with an ideal
random behavior, the probability that there exist two keys having the same
signature would be overwhelming low. Indeed the probability that two random
bytes have same Hamming weight is p = 272348 5o that the probability that the

! By Hamming weights signature of a key K we mean the set of all the Hamming
weights of its expanded key K.
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signatures of two random keys are the same is ¢ = p'7® ~ 27413:3 Tt follows that
the probability that at least one collision of signatures occurs among the whole
key space is about 1 — e~ 52" ~ 2-158:3,

While the AES key expansion is far from having a random behavior, it was
considered in [8] that so-called twin keys probably do not exist or should be
very rare?. We show in this paper that this belief is wrong by proposing a
constructive method that can easily generate millions of them. We refer the
reader to Appendix A for the description of this method and just provide here

an example of such key pair:

K =B3 65 58 9D B4 EB 57 72 1F 51 F7 58 02 0C 00 17
K’ =F2 65 19 DC B4 EB 57 33 5E 51 F7 19 02 0C 00 56

Note that the existence of twin keys is of theoretical interest as it gives a
new demonstration of the quite non-ideal behavior of the diffusion process of
the AES key expansion. Nevertheless, it has no practical impact on the attacks
considered in this paper since the only consequence is that when attacking a key
belonging to such pair, the attack process ends with two possible keys instead
of a unique one. The correct key can then be identified thanks to a known
plaintext /ciphertext pair.

3 Key Recovery on Protected Implementations

In this section we study three different countermeasures that may be imple-
mented to protect the key expansion function against simple power analysis.
The first two countermeasures are natural ways to apply a Boolean masking
on the expanded key. They make use of 11-byte and 16-byte masks respectively
in order to cope with limited RAM resources and/or small random entropy
generation capacity that usually prevail on embedded devices. The third coun-
termeasure is a columnwise shuffling of the expanded key computation.

3.1 11-byte Entropy Boolean Masking

We consider here that at each execution all round keys are masked by 11 specific
random bytes m, so that the attacker has no longer access to the leakages of
individual bytes k,; of each K, but rather to those of masked versions K, =
(K. ;)i with k. ; = k;; © m,.. Figure 1 depicts the mask pattern that applies on
the expanded key bytes.

The basic attack does not apply directly since the measured Hamming weights
are related to masked bytes that do not verify neither linear nor non-linear links
of the key expansion process.

In order to apply the guess-compute-and-backtrack strategy of the basic at-
tack we now have to make also guesses about the values of the masks of all key

2 The exact sentence of the author was: The high diffusion of the AES key expansion
suggests that there are only very few keys of this kind, if there are such keys at all.
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Fig. 1. Part of the 8-byte masking scheme

bytes involved in the key search. As each extra mask that must be guessed in-
duces a multiplication by 28 of the searched space, we use two tricks to contain
the necessary computing work factor.

The first idea is to exploit some extra information that can be inferred about
the key bytes k,; by considering measured Hamming weights from multiple
traces. More precisely, consider two bytes x and y masked by the same random
value m. The respective Hamming weights of the masked bytes ' = x & m and
y' = y & m verify the two following properties:

| HW(2") — HW(y')| < HD(z,y) < min(8, HW(2') + HW(y')) 3)
HD(z,y) = HW(z') + HW(y') (mod 2) (4)

Both equations give information about the Hamming distance between un-
masked values x and y. For example, suppose that = 30 and y = 121 (i.e.
HD(z,y) = 5). With a first trace for which m = 70, we measure HW(2') =
HW(30 @ 70) = 3 and HW(y') = HW(121 & 70) = 6. From Eq. (3) we infer
that 3 < HD(z,y) < 8, and due to the odd parity given by Eq. (4) we learn
that HD(z,y) € {3,5,7}. With a second trace for which m = 24, we measure
HW(z') = HW(30 @ 24) = 2 and HW(y') = HW(121 & 24) = 3. This second
measure allows to further constrain HD(z,y) which now belongs to {3,5}. By
exploiting more and more traces we can decrease the number of possible can-
didates and ultimately expect to identify the Hamming distance between the
unmasked bytes. Interestingly we notice that the parity equation may be used
to detect erroneous measurements. For example, if the measurements from ten
traces give an odd parity for HW(2') + HW(y') eight times and an even parity
only twice, then one may conclude that either HW(2’) or HW(y’) has not been
correctly measured on these two last traces.

In a first phase of the attack, multiple traces are analysed in order to get as
much possible information about the Hamming distance HD(k,.;, k) of each
couple of bytes belonging to the same round key. Then in a second phase a smart
exploration of the key space is performed based on the Hamming weights mea-
sured from a unique trace, and on the Hamming distances constraints obtained
in the first phase.

The second idea to reduce to computational effort is to limit the process of
guessing and computing key bytes to only two adjacent round keys K, and K,41.
That way we have to guess only two mask bytes. For each (m,., m,4+1) candidate
we perform a key search where we guess successive bytes of K, and derive the
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values of successive bytes of K, 1. For example, consider that we start the search
by guessing k. 12 (equivalently we could start at positions 13, 14 or 15). In a first
step we guess k, 3 and compute k41 3. In a second step we guess k,.7 and com-
pute k,11,7. Then we guess k, 11 and compute k,.11,11, and so on. Figure 2 shows
the order in which successive bytes of K, and K, are respectively guessed and
computed. As in the basic attack, each time a key byte is guessed or computed we
check the consistency with the measured Hamming weights of its masked values.
A more efficient consistency check consists in verifying that each newly guessed
or computed byte has compatible Hamming distances with all already known key
bytes belonging to the same round key. For example, when k, 11 is guessed in
the third step four constraints on HW (k, 11 ®m,.), HD(ky 11, kr7), HD(kp 11, kr.3)
and HD(k; 11, kr12) are verified, and when k41,11 is computed three checks im-
ply HW(kr-i,-Ln @mr+1), HD(/{:T+17117 k‘r+177) and HD(]CT_;,_LH, /{27«4_173). As we can
see, the more deeper we are in the exploration process, the more opportunities
we have to invalidate wrong guess sequences and backtrack.

K’r K’l’+1 K’r Kr+1
0 13[14]15] 0 13[14]15]15
101112 9 [10]11]12
=
/_\\\ 567
11213 N2 |3 11213

\_/U

Fig. 2. Guess order of the 11-byte masking scheme

We have extensively simulated our attack by generating perfect measurement
sets of Hamming weights. For different numbers T of exploited traces (T €
{5,10,15,20,30}) — this number influences the tightness of the bounds derived
for the Hamming distances — we ran N simulations (N = 1000 in most cases) of
the attack. For each run we picked a key at random, and for each T' executions
we computed a masked expanded key based on an execution specific set of masks
(mg, ..., mip), from which we derived the set of Hamming weights assumed to
be available to the attacker. Given a round r we computed the sets of possible
Hamming distances between each couple (ky;, kr i) and (Kry1,4, kr41,i7). Then
we choose one particular trace (actually a set of Hamming weights) among the
T available ones and a starting position of the guess sequence®, and executed
the second phase of the attack (exploration process).

Table 1 shows the simulation results obtained on a classical PC equipped
with an 2.4 MHz I5 core processor and 4 GB of RAM. For each number of
exploited traces we give the average computation time as well as the average

3 Note that an attacker can freely choose both the trace which is exploited for the key
search, the round r from 0 to 9 and the starting position from 12 to 15. We took
this opportunity to select those parameters that minimize the number of possible
values of the starting triplet — i.e. (kr12,kr 3, kr+1,3) in the example above — that
are compatible with the measured Hamming weights.
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residual entropy of the key (the log, of the number of compatible keys returned
by the attack). Because of a large variance in the attack computation time, we
choose to limit the exploration with a given timeout. The value of this timeout
as well as the percentage of simulations that terminated within this limit are
also presented. Note that the average figures in the second and third columns
are computed over the set of terminating simulations.

Table 1. Simulation results of the attack on the 11-byte masking countermeasure

Number of Average Average residual Simulation Percentage of Number of
traces (T') time (s) entropy (bits) timeout (s) terminating runs runs (N)

5 398 5.9 1800 47.0 83

10 40.6 0.66 300 93.4 500
15 10.0 0.29 60 94.7 1000
20 5.9 0.24 60 98.2 1000
30 3.0 0.24 60 100.0 1000

The proposed attack is quite efficient, even for a number of exploited traces
reduced to five. In this case about 45% of runs terminate in less than 30 minutes
and the average entropy of the key set that remains to exhaust is only about
five bits.

Remark 1. From a practical point of view related to the ability for the attacker
to infer Hamming weight from the leakage traces, we notice that in this attack
not all 176 Hamming weights are needed per trace but only 32 ones. Also, the
opportunity that the attacker has to choose which round key he wants to attack
may be exploited to select the portion of the traces where he is the more confident
about the measured Hamming weights.

3.2 16-byte Entropy Boolean Masking

The second countermeasure that we consider consists in masking all bytes of a
round key with a different random byte, while repeating these 16 masks for all
round keys. Precisely, each masked round key is defined as K; = (k; ;); with
ki.;=kri®m; (i =0,...,15). Figure 3 depicts the mask pattern that applies
on the expanded key bytes.

As in the attack on the 11-byte masking scheme, we will first exploit several
traces in order to obtain information on Hamming distances between key bytes
sharing a same mask. We also want to limit to two the number of mask values
that must be simultaneously guessed in the most explosive (less constrained) part
of the key space exploration. It follows from this that the sequence of guesses
should extend horizontally on a same byte position 7 rather than on a same
round key 7.
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Fig. 3. Part of the 16-byte masking scheme

Given a starting position a € {0,1,2,3}, we define the related position b =
12+ ((a+1) mod 4). For each guess on the couple of masks (m,, my), we perform
an exploration of the key space as follows. First we guess kg . Then repeatedly
for r =0,...,9 we guess k,; and derive k41 ,. As in the attack described in
Sect. 3.1, each newly guessed or computed key byte is checked against available
information about the Hamming weight of its masked value and the Hamming
distances with other already known bytes at the same position. We have now
performed the most demanding part of the exploration since we had to make a
new guess for each byte k; ;. At this point we have a reasonably small number of
compatible key candidates for which we know all key bytes at positions a and b
except k19, We now guess kig,p which is quite constrained by the Hamming dis-
tances at position b and so does not increase much the exploration size. Knowing
k10,6, we can now successively compute key bytes at position ¢ = b —4 backward
from ki,c to k1 ,.. Note that m. is the only value that we must guess to compute
this line up to ki,.. We terminate the line ¢ by guessing the quite constrained last
byte ko .. Now, guessing the mask mg at position d = ¢ — 4 we can compute in
the same way all the line d from k19,4 to k1,4, and terminate the line by guessing
ko,q. We can pursue the same process with one more line at position e = d — 4
and then the next line is located at position f = 124 ((b+1) mod 4) and is com-
puted forward from ko r to kg s terminating with a guess on kig,r. Successively
we determine all the expanded key, line after line, at positions whose sequence
a,b,c,...1is presented on Fig. 4.

Interestingly, we can notice a property that stands for the first line a and
which allows to dramatically speed up the attack. For each solution found on

Ky K Ko - Kiq
| L a e | ] L—=eqe— |~ | __.".'.'—¥a

@ IR T ]
Q@O [ [T [c[d[H0 | [c[d[]

N~ e f o« I " f o« I " f «

o

S|®

Fig. 4. Guess order of the 16-byte masking scheme
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lines a and b by assuming the couple of masks (mg,mp) we would have found
a companion solution with any other value m/, where all k,.; are the same and
where each k., is replaced by k, o ® (m, & m,,). As key bytes at position a do
not influence those recovered on the successive lines b, ¢, d,. .. we do not have to
know the exact value of m, and can fix it arbitrary. At the end of the attack we
are able to compute the correct value of the line a by inferring the error made on
m, based for example on the difference between the assumed value of kj¢ , and
its exact value which can be computed as kg , ® k19, where p = a + 4. Doing so,
the first part of the exploration, which results in knowing values at positions a
and b, can be done by guessing virtually only one mask byte (my). A speed-up
factor of 28 is achieved which results in a particularly efficient attack.

Table 2 presents simulation results for this attack in a similar manner than
in Sect. 3.1. Surprisingly, the key recovery in the presence of a 16-byte masking
is much more efficient than with the 11-byte masking despite the higher mask
entropy. For example the key is recovered within 1 second on average when
10 traces are exploited against 40 seconds for the 11-byte masking. Also, it is
possible to use only 3 traces with still small computation time and residual key
entropy in a significant proportion of cases.

Table 2. Simulation results of the attack on the 16-byte masking countermeasure

Number of Average Average residual Simulation Percentage of Number of
traces (T') time (s) entropy (bits) timeout (s) terminating runs runs (N)

3 7.3 7.3 600 60.7 28

5 25.3 4.2 300 88.5 1000
10 1.09 1.7 60 100.0 1000
15 0.24 0.93 60 100.0 1000
20 0.12 0.55 60 100.0 1000
30 0.07 0.24 60 100.0 1000

3.3 Column-Wise Random Order Countermeasure

The third countermeasure consists in calculating independent bytes in a random
order. Due to the column based structure of the key schedule the four bytes of
each column can be calculated independently. Figure 5 gives an example of a
possible sequence of permutation.

This countermeasure is hiding a part of information. We still assume that
the attacker is able to correctly identify all 176 Hamming weights but for every
column he only obtains a non-ordered set of 4 values. For example, given the
example key represented in Figure 6 where key bytes Hamming weights are
indicated in the corner, the information that an attacker has access to is shown
on Figure 7. The key bytes of each column have been involved in a random order
so that the attacker can only infer non-ordered quadruplets of Hamming weights.
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Ky K Ko
ko2 | ko,a | ko,o |Ko,14 kio | k1,7 | k111 | k115 ko3 | k2,7 | k2,8 [ k2,13

)

ko3 | ko6 | Kko,11 |Ko,12 ki1 | kie | k110 | K114 koo | k25 | k2,9 [ k2,15

)

ko,1 | ko,5 | ko,10 [Ko,13| | k1,3 | k1,5 | k1,9 [Kk1,12| | k2,0 | k2,6 | K211 | K214
koo | ko,7 | ko,g [Ko,is| | k12 | ki,a | ki [k1,13| | k21 | k2,4 | K210 | K212

)

Fig. 5. Part of an example of effect of random order countermeasure

Ky K Ko
2Bg28 QABQ 09@ AOQSSQQ?)QQA{i F‘2&7A&59&73{i

7E&AE§F7ECF{Q FA&SZLQAZ%&GCﬂi (32Q96g35&59{i
15@D2&15@4F{é FEEQC@?@&%{é QSEBQ&BOQFG{Q
16@A6&88Q3C& 17&2131&1«39&05@ F2§43@7A&7Fi

’ hexadecimal key byte value ‘ ’ corresponding Hamming weight ‘

Fig. 6. Three first round keys derived from an example key with their corresponding
Hamming weights

Since all 24 permutations on the quadruplet can be considered as valid a pri-
ori*, the computational effort for considering every permutation on each column
makes the key search computationally unfeasible. In order to reduce the explo-
ration cost we use what we call a booking system. During our attack we will
book Hamming weights at fixed positions, either by choice when the byte value
is guessed, or by constraint when it is computed from a key byte relation. Once it
is booked a Hamming weight is no more available in its column until a backtrack
releases it due to a modification of the last guessed byte.

For instance, when we have to guess a value for k; 15 we first guess its Ham-
ming weight among the list {2,3,4,5} of available Hamming weights. If we guess
that HW (k1 15) = 4, then the guess on ky 15 itself ranges over all values having
an Hamming weight equal to 4, and the list of available Hamming weights for
that column is now reduced to {2,3,5}. When another byte of the same column
will be also guessed (or computed) at a deeper step of the exploration process its
Hamming weight will necessarily have to belong to this reduced set. If at some
point a backtrack occurs on ki 15 then the Hamming weight value 4 is released
and will be possibly available for other bytes of this column.

We describe here two versions of this attack, one using information given by
one acquisition, which can take non-negligible time, and faster version which
exploits faulty executions in order to gather more information.

* Due to possible Hamming weight duplicates, some columns may have a reduced
number of possible permutations.
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Fig. 7. Information gained by the attacker reduces to quadruplets of Hamming weights
of each column

Basic Attack. In a basic version of our attack we follow an equivalent explo-
ration pattern than the one used in [13] for a non-protected implementation. The
only difference is that the guess may have different possible Hamming weights.
As explained above, before guessing a byte value at a current position we have to
guess which un-booked Hamming weight value will be used at this position and
book it while it’s corresponding values are exhausted. When we have guessed
bytes at enough positions to compute key bytes from others we check that the
Hamming weight of the computed values are available for their columns and we
book these Hamming weights also. If the Hamming weight of a computed byte is
not available then this solution is not valid and we backtrack from the previous
guessed byte. Note that if a same Hamming weight value is available n times in
a column it can be booked n times too.

We simulated this attack by considering random keys and corresponding non-
ordered quadruplets for each column. Table 3 presents the number of executions
over 100 runs that ended before a time limit which ranges from 30 minutes to
6 hours. As it can take undefined long time we choose to interrupt a run if it
takes more than 6 hours (27 % of cases). Note that the average time for the non-
interrupted executions is about 2 hours, so that average time over all executions
could possibly be quite larger.

Faulting Attack. We describe here a more efficient version of the attack which
uses fault injections in order to significantly reduce the execution time of the
key search.

We assume that the attacker can induce a fault in a random byte of a chosen
column, and we take the example of the first column in the following expla-
nations. The fault model assumes a random modification of the faulted byte
value.

Table 3. Results of non-faulted attack against random order counter-measure

Time Elapsed < 30 min < 1h < 2h < 3h < 4h < 5h < 6h + 6h
# over 100 runs 6 25 41 55 66 71 73 27
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The key observation used in this attack is that a differential induced at some
key byte of the first column propagates following a fixed pattern of active bytes.
For example, if the fault modifies the value of kg then Figure 8 shows the
positions of all active bytes in the first three round keys®. Due to the shuffling
counter-measure, the attacker does not know which of ko o, ko,1, ko,2 or ko 3 has
been modified by the fault, but what is important is that the vertical relative
positions of the active bytes are fixed (given by the pattern of Figure 8) and
known from the attacker.

Ky K Ko
ko,0 | ko,a | ko, |ko,12 kio | k1,4 | k1,8 k1,12 koo | k2,4 | k2,8 | k2,12

ko,1 | ko5 | koo |Kko,i3| | k1,1 | k1,5 | k1o [Kk1,13| | k2o | k2,5 | k2,9 | K213

ko2 | ko,6 | ko,10 |Ko,14| | k1,2 | k1,6 | k1,10 [KR1,14| | k2,2 | k2,6 | k2,10 | K214

s

ko3 | ko,7 | ko,11 [Ko,15| | k1,3 | k1,7 | k111 [K1,is | | K23 | k2,7 | K2aa | K215

Fig. 8. Part of the pattern induced by a fault on first byte of first column of Ky

As in the basic attack described above, the attacker can exploit a non-faulted
execution to infer the reference quadruplets of Hamming weights for each column.

When exploiting a faulted execution, the attacker can compare, for each col-
umn, the possibly modified quadruplet of Hamming weights with the original
one. He is thus able to identify which Hamming weights have been modified and
thus concern active bytes. Let’s consider an example where the faulted byte is
ko2 which value has been modified from 0x15 to 0xB1. This example case is
depicted on Figure 9 where one can see all subsequent active bytes. Note that in
this example, some active bytes (kg 5, k2.9 and k3 13) have been modified while
their Hamming weights remained unchanged.

Due to the shuffling counter-measure, the attacker faces round keys where
each column has been shuffled as shown on Figure 10. Remind that the attacker
does not know neither the byte values nor the active bytes positions (colored in
red on the figure), but only the quadruplets of Hamming weights. Comparing for
example the original ({2,4,6,7} on Figure 7) and faulted ({2,4,4,6} on Figure 10)
quadruplets of column 4, he can infer that 7 is the Hamming weight of the only
active cell in this column. Similarly, he can also infer that the Hamming weight
of the only active cell in the column 7 is 5. Considering column 10, the attacker
infers the partial information that one of the two active bytes Hamming weights
is equal to 1.

Even if the information retrieved about the Hamming weights of the active
bytes of each column is only partial, we can nevertheless exploit them in the
key search algorithm. For example, in the guess-compute-and-backtrack process,
when one guesses that the value of e.g. k1 3 has an Hamming weight of 7 (so that

® Obviously, the pattern is not limited to the three round keys, it extends on all 11
round keys.
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Ko K, Ko

o84 28 2B 09 2] [a0l2l 8512 23 B3[54 18] |po 874 15] 59 4] 7515

Z?E@AE@WECFﬁ Fa L8] 54 B3] a5l 4] |4pl5]1pldlpsl4lpyld
514 D24l 1518l 415 (54 Ml g RloplBlnoldl |37 1815915 54 [2] 1 6]

16 3 a6 83 2304 1745114 59 4 0512} o8] 43 374 5] 7p [T

Fig. 9. Details of fault effect without considering countermeasure Red /darkgrey Active,
green/lightgrey Active but remains unchanged

{2,4,4,5} {2,4,5,6} {2,2,3,4} {2,3,4,4} {3,4,5,5} {4,5,6,7}
Ky K Ko
BIIAAGEF'TECF{Q FA& SBQA?)gQA{i 31@7A&5QED44

o424 aB15 09 (2] [5aH 54131 30 [4]poldl o 15} 541 gg 14 1o L6]
B0 AR s8 Zap 5] | 17145114 2303{ 0512 [po 5l gy 574 5] 7p ]
16 3] 28 2] 15 Bl3c 4] (2028 Zopl8 04| |ap!8] 43 Bf2412] 73 15]
(3,4,4,6} {2,3.5,7) {2.4,4,6} {3,4,4,5) {3,5,5.5} {2.4,4,5}

Fig. 10. Attacker point of view of faulted execution, underlined values in sets are thoses
detected by the attacker as modified by the fault

k13 would be an active byte), then in column 7 the active byte is necessarily
located in the bottom cell also (cf. the active bytes pattern of Figure 8), so that
we know that HW(k; 15) = 5.

As one can see, the principle of the faulting attack is to exploit in the key search
phase information about Hamming weights of active bytes (whose relative verti-
cal positions is fixed) which have been acquired by comparing Hamming weight
quadruplets of faulted executions from original ones. While the detailed explana-
tions are quite intricate, it is though possible to infer more information from suc-
cessive faulty executions to further reduce the execution time of the key search.

We have simulated the faulting attack by exploiting as much information
given by faults as possible. We give in Table 4 average execution times of the
key search phase as a function of the number of exploited faulty executions. Note
that even with only one faulty execution the average attack time is dramatically
reduced from several hours to only 20 minutes.

Table 4. Results of faulted attack against random order counter-measure

fault number time (min)

1 20

5 5
10 3
20 2
30 2
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Remark 2. Tt is interesting to notice that if the fault did not occur in the first
column then the attack is still possible while possibly less efficient. Indeed the
pattern of active bytes induced by a fault in any column is always a subset of the
pattern induced by a fault in the first column. Consequently this shorter pattern
has the same shape as the pattern starting from the first column and can then
be exploited in the same way but will provide information only for rightmost
columns. This allows to perform this attack even when the attacker do not have
a precise control on the timing of the fault.

4 Recommendations for Secure Implementations

Considering the problem of recovering a key by analysing the Hamming weights
of the key bytes computed during the key expansion process, several counter-
measures are proposed in the seminal contribution [8] among which the Boolean
masking of the key expansion. We showed that two versions of this countermea-
sure with 11 and 16 bytes of mask entropy are not sufficient to prevent the key
recovery when the attacker can precisely infer the Hamming weights. Our at-
tacks on the Boolean masking also apply if the expanded key is computed once
for all and there is no key expansion process computed by the device. In that
case the Hamming weights can still be measured, not while the key bytes are
computed but rather when they are transferred into RAM and/or used in the
AddRoundKey function.

Using an hardware or an 16- or 32-bit AES implementation prevents our at-
tacks which only apply on 8-bit software implementations. On these later devices
we recommend either to implement (if ever possible) a full 176-byte key masking
where all key bytes are masked by independent random values, or to combine
a weaker masking with other countermeasures that reinforce its security. For
example, combining one of the two masking methods considered in this paper
together with the column-wise shuffling should be sufficient to prevent the at-
tacker from obtaining enough exploitable information from the computation of
the round keys itself. As for the manipulation of the key bytes in the encryption
process, the combination of masking and shuffling should also be sufficient with
the advantage here that the entropy of the shuffling is higher in this later case
since all 16 bytes may be shuffled together instead of per chunks of four bytes.
Obviously, on top of these fundamental countermeasures, any means to make it
difficult to find the relevant points of interest on the side-channel trace — e.g.
random delays — or to interpret the leakage in terms of Hamming weight — added
signal noise — would add extra security to the AES implementation.

5 Conclusion

In this paper we have revisited a simple power analysis on the AES key expan-
sion. While previous works only apply on unprotected implementations, we have
considered three different countermeasures and presented efficient attacks in each
scenario. In two Boolean masking cases (11-byte and 16-byte mask entropy) our
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attacks recover the key in a matter of seconds when a few power traces are ex-
ploited. In the case of a column-wise shuffling of the key expansion process, we
have devised an attack which takes several hours on average and proposed an
improved version that takes advantage of extra information provided by fault
analysis so that the computation time is reduced to a few minutes.

Our attacks assume that the attacker is able to obtain correct values of the
Hamming weights of the key bytes. As a future work it may be interesting to
study how more difficult it would be to cope with erroneous observations.

Acknowledgments. Simulations presented in this paper have been partly per-
formed on the CALI computing cluster of university of Limoges, funded by the
Limousin region, XLIM, IPAM and GEIST institutes, as well as the university
of Limoges.
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A Generating Undistinguishable Keys Pairs

The core idea of our method comes from the observation that given a permu-
tation 7 of {0,...,7} and the byte transformation 7w : b = (br...bo) — 7w(b) =
(br(7y - - - br(0)) we have HW(7(b)) = HW(b). Thus, a sufficient condition for K
and K’ to form a twin pair is that k7 = 7(k;) for all j = 0,...,175. Our goal
is to find K such that defining K’ by kj ; = 77(/4:07,'),2' =0,...,15 the sufficient
condition propagates up to (near) the end of the expansion. As 7 is linear the
sufficient condition propagates well on all linear relations. The only difficult task
is to ensure the propagation of the condition also for non-linear relations. Denot-
ing ¢, = {02}~ the constant involved in the first non-linear relation at round
r=1,...,10, and assuming that the sufficient conditions hold up to round key
K, _1, they propagate to K, provided that:

o = m(kro) < S(m(kr—1,13)) © ¢ = 7(S(kr—1,13)) © 7(c,) (5)
ky1 = m(kr1) & S(m(kr-1,14)) = 7(S(kr—1,14)) (6)
ro = T(kr2) & S(m(kr—115)) = 7(S(kr-1,15)) (7)
ky 3 = m(kr3) & S(m(kr—112)) = 7(S(kr—1,12)) (8)

The first task is to find a suitable bit permutation which maximizes the prob-
ability that these conditions hold by chance. Interestingly the probability that
any condition (6) to (8) holds is as large as about ; when 7 permutes only 2 bits®.
This is due to the fact that S(7(z)) = 7(S(z)) as soon as 7(z) = z and 7(y) =y
for y = S(z) where both fixed-point conditions hold with probability % Finding
a twin pair only necessitates that all k._1,; (r = 1,...10 and i = 12,...,15)
belong the following sets:

O ={z:S(m(x)) ®c, =7(S(x)) ®7(c,)} (fori=13)
2 ={z:S(w(z)) =n(S(x))} (forie {12,14,15})

It is important that either {2 or {2; contains some value x which satisfies the
condition without being a fixed point for 7 otherwise K’ would be equal to K.
We have chosen 7 which permutes bits 0 and 6. Note that it is the only bit
transposition having a non fixed point for f2.

The second task is to generate many key candidates which verify by con-
struction as many sufficient conditions as possible. We devised a method that
efficiently generates a large number of candidates that systematically fulfill suf-
ficient conditions for all » < 5. First we make vary the twelve key bytes k1 124n,
k2 124n and k3 1245 (n =0, ..., 3) which are free except that they must all belong

5 This is also true for condition (5) for a similar reason.
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to their respective relevant §2, {25, {23 or {24 set. Due to the previous remark the
number of possible choices for these bytes is lower bounded by (256/4)'% = 272,
We also make use of the following relations among the key bytes

kg 124n = ko,124n @ S(k3 124 (nt1) mod 4) B 4 (9)
ko,84n = k0,124n @ S(k2 124 (n+1) mod 4) B ¢3 ® k3 124n (10)
ko,a4n = ko,84n ® S(k1,124 (nt1) mod 4) D 5 & k2 124n ® S(k2, 124 (n41) mod 4) B 5 & k3 1247 (11)
ko,04n = k0,84n ® S(ko, 124 (n+1) mod 4) ® 1 & k1 124n & S(k1,124 (n+1) mod 4) B 5 & k2 1247 (12)

where ¢ is defined to be ¢, if n = 0 and 0 otherwise. The proofs of these
relations are provided in Appendix B. Considering equation (9), and knowing
that ks 12..15 have been chosen in their respective {2 set, one can choose values
for ko 12+r that belong to its {2 set such that k4 12+, also belongs to its own {2
set. For example, given k3 14 € {2 one can find two values kg 13 and k4 13 which
respectively belong to 21 and (25. There always exists several such choices that
we have tabulated though only one choice was sufficient in our implementation.
Choosing ko,12+» this way ensures that the sufficient conditions will be verified
even for the non-linear relations involved in the computation of K.

The process to generate the key candidates resumes as follow: choose arbi-
trary value for ki 1240, k2,124n and ks 1245 (n = 0,...,3) that belong to their
respective relevant (2 set, then choose values for ko 124, as explain above, and
terminate the valuation of K = Ky by using equations (10) to (12) succes-
sively. For each such key K we compute K’ by applying the bit transposition
7 to all its bytes. Our construction method ensures that k;.; = 7(k,;) — and so
HW(k;. ;) = HW(k,.;) — for all 7 =0,...,5.

Generating sufficiently many key candidates, one can expect to find one for
which the sufficient conditions propagate by chance over the non-linear relations
up to the end of the expansion.

After having found a first winning key pair — the one given in Sect. 2 — we
explored in its neighborhood and we surprisingly generated many other undistin-
guishable pairs much more easily that it was to find the first one. For example,
keeping the values of k1 13, k1,14, k2,12 and ko 13 involved in the first key pair,
we have been able to generate more than 23 millions of other undistinguishable
key pairs in a few days of computation. This tend to demonstrate that pairs
of keys having same Hamming weight signatures are far from being uniformly
distributed, but we have not studied this behavior in more detail.
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B Proofs of Equations (9) to (12)

B.1 Equation (9)
Proof.

ka124m = k4840 ® k31240

= k4440 D k31240 D k3,840

= k4,040 D k31240 D k3,840 D k3 44n

= S(k3,124(n+1) mod 4) D €4 ® k3 124n ® k3.84n ® k3490 ® k3,040
k3 194 (n+1) mod 4) B €4 B k3 a4n D k3,04n D k2,124
k3 194 (n+1) mod 4) B ¢4 & k2,124n ® k2441

/
k3,124 (n+1) mod 4) ® €3 D k11240 © k1,840

UJUJUJUJ

)
=5( )
=5( )
= S(k3,124 (n+1) mod 4) D €4 B kagin ® k2 aqn @ k1 124m
=5( )
=5( )

/
k3,124 (n+1) mod 4) @ ¢4 @ ko 124n

B.2 Equation (10)
Proof.

ks 124n = k3,840 @ k21240

= k3440 D k21240 D k2,84n

= k3,040 D k21240 © k2,840 B k2,441

= S(k2,124(n+1) mod 4) B €3 ® k2 124n B k2.84n ® k2,440 ® k2,040

= S(k2,124(n+1) mod 4) B €3 B ko ayn B k2,04n B k11240

= S(k2,124 (n+1) mod 4) ® ¢ ® k11240 B k144n
= S(k2,124(n+1) mod 1) D €3 B k1 84n ® k1 ayn ® ko124n
= S(k2,124(n+1) mod 4) P €3 B ko, 1240 D ko,84n

B.3 Equation (11)
Proof.
k3,124n = k3,84n ® F2,124n

= k3, 44n ® k2,124n D k2 84n
= k3,04n ®F2,124n D k2,840 ® k2 44n

= S(h3 194 (n41) mod 4) B 5 ® k2 1247 ® k2 84n ® k2440 © k2,040

= S(k2 124 (nt+1) mod 4) B €3 @ k2 124 n B k2,04n & k1,840

= S(k2, 124 (n+1) mod 4) D 5 ® k2 1240 D S| 124 (nt1) mod 4) ® 5 ® k1 84n ® k1,04n

= S(k2,124 (n+1) mod 4) ® €3 ® k21241 ® S(F1 124 (n4+1) mod 4) ® 2 ® k1,447 ® k1,04n @ k0,847

/ /
= S(k2 124 (n+1) mod 4) @ ¢3 ® k2,124 n ® S(k1 124 (n+1) mod 4) D €2 ® k0,84n @ k0,44n
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B.4 Equation (12)

Proof.

k2 124n = k2,84n D F1,124n

k2 a4n @ k1,124n © k1 84n
= k2,04n ® k11240 ®Fk1,84n D k1 a4n

S(k1 124 (n+1) mod 4) @2 ® k1 1210 S k1 84n ® k1 atn & k1 01n

= S(F1,124 (n+1) mod 4) ® 2 ® k11247 ® k1 04n @ ko 84n

S(F1,124 (n+1) mod 4) @ ch @ k11240 @ S8(kp, 124 (n+1) mod 4) @ ¢l ® ko,84n @ k0,04n
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