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Abstract. Graphs are often used to model risk management in various systems.
Particularly, Caskurlu et al. in [6] have considered a system which essentially
represents a tripartite graph. The goal in this model is to reduce the risk in the
system below a predefined risk threshold level. It can be shown that the main
goal in this risk management system can be formulated as a Partial Vertex Cover
problem on bipartite graphs. It is well-known that the vertex cover problem is in
P on bipartite graphs; however, the computational complexity of the partial vertex
cover problem on bipartite graphs is open. In this paper, we show that the partial
vertex cover problem is NP-hard on bipartite graphs. Then, we show that the
budgeted maximum coverage problem (a problem related to partial vertex cover
problem) admits an g—approximation algorithm in the class of bipartite graphs,
which matches the integrality gap of a natural LP relaxation.

Keywords: Bipartite graph, vertex cover problem, partial vertex cover problem,
budgeted maximum coverage problem.

1 Introduction

Covering problems arise often in practice. A mobile phone service provider should en-
sure that its base stations cover the signals transmitted from the phones of its customers.
A chain market such as Walmart should ensure that it has a store close to its customers.
The applications of the covering problems are not limited to corporations to sell a ser-
vice to customers. The Air Force on a no-fly zone mission or border patrol officers
trying to secure borders are to solve some form of a covering problem.
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In many real life situations the corporations or the government is constrained in
the resources it can allocate for the covering mission. The constraints may be hard
constraints such as a government agency to operate within its approved budget, or profit
dictated soft constraints such as a mobile phone service provider may decide not to
cover a rural area since the revenues will not match the covering costs. Therefore, the
goal in many real life situation can be cast as covering the domain as much as possible
for a given fixed amount of resources to be allocated.

There is merit in studying partial covering problems both due to their wide applica-
bility in a large range of applications and their theoretical importance as being natural
generalizations of classical covering problems. In this paper, we study the partial vertex
cover (PVC) problem and the related budgeted maximum coverage problem on bipar-
tite graphs. Though it is well-known that the vertex cover problem is polynomial-time
solvable on bipartite graphs, the computational complexity of partial vertex cover when
restricted to bipartite graphs (PVCB) remained open. In parallel to this, let us note that
approximation algorithms for this problem are known, with the best approximation al-
gorithm in the literature offering an approximation ratio of (§ +¢€) [19].

The contributions of this paper are as follows:

(i) The partial vertex cover and budgeted maximum coverage problems are NP-hard
on bipartite graphs.

(i) The (weighted) budgeted maximum coverage problem on bipartite graphs admits
an S-approximation algorithm, matching the integrality gap of the natural linear
programming relaxation.

The rest of this paper is organized as follows: Section 2 presents a formal definition
of the main problems that are considered in the paper. We present a concrete application
to motivate the PVCB problem in Section 3. The related work is presented in Section
4. The computational complexity of the PVCB problem is established in Section 5. In
Section 6, we present an g-approximation algorithm for the budgeted maximum cover-
age problem on bipartite graphs; note that this problem is computationally identical to
the PVCB problem. We conclude and point out several research directions in Section 7.

2 Statement of Problems

If G = (V, E) is a graph, and u is a vertex, e is an edge of G, respectively, then we will
say that u covers e in G, if u is incident to e, that is, u is one of the end-vertices of e.
For a set V! C V, let Ey denote the set of edges of G that are covered by vertices of
V.

In the classical vertex cover (VC) problem, we are given an undirected graph G =
(V, E), where V is the vertex set with |V| = n, E is the edge set with |E| = m. The
goal is to find a minimum cardinality subset V/ C V, such that By = E.

In this paper we will consider the partial vertex cover (PVC) problem restricted to
bipartite graphs.

Definition 1. Given an integer t, and an undirected bipartite graph G = (V, E). The
PVCB problem is defined as finding a minimum cardinality subset S C V such that
|Es| > t.
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It is trivial to observe that the PVC problem is a generalization of the VC problem.
We will also consider the budgeted maximum coverage problem, and the following its
extension.

Definition 2. Given an integer k, and undirected bipartite graph G = (V, E,w), and
w : E — Z denoting a weighting function from the set of edges to the set of posi-
tive integers. The EBMCB problem is defined as finding a subset S C 'V with |S| < k

maximizing Ze:eE Es w(e)

Definition 3. Given an integer k, and undirected bipartite graph G = (V, E) with V
denoting the set of vertices, E denoting the set of edges. The BUCB problem is defined
as finding a subset S C 'V with |S| < k maximizing the number of covered edges.

The PVC and the BMC problems are equivalent from the perspective of exact solu-
tion. This follows from the observation that one can simply swap the budget constraint
with objective and reverse the optimization direction. On the other hand, let us observe
that the two problems are likely to be different from the perspective of approximate
solution. The BMC problem for sets (not necessarily for graphs) admits a (1 — i)—
approximation algorithm [15], where e = 2.718...., and it is known that there exists a
constant v > 0, such that Set Cover problem admits no v - logn approximation [8],
under the assumption that NP has no quasi-polynomial time algorithms.

3 Motivation

The number of attacks faced by an ordinary device that has an access to Internet remains
quite high, which means that it is unreasonable to expect a manual response to an attack.
A good example of a system for which an automated response is needed are devices that
have an operating system. One of the approaches to handle the situation, is to dynami-
cally control the device’s vulnerability to threats and limit undesirable consequences as
much as possible.

In order to protect a system, one needs to minimize the risk it faces. It is reasonable to
assume that the risk depends on three factors, which are threats and their probabilities
of occurrence, the existing weaknesses of the system, and the consequences that the
system experiences after a successful attack.

While threats are not under the control of the device, the other two can be handled by
it. Here it is implicitly assumed that the device can be protected by decreasing its func-
tionality. This implies that our main goal is becoming to minimize the tension between
functionality and security. In great contrast with the approach of statically configuring a
system, one can dynamically monitor the risk level, and allow users to have maximum
functionality where the level of risk is assumed to be on a predefined level.

In [6], the risk of a computational system is modeled as a flow between the first and
last partitions in a tripartite graph, where the vertices of the three partitions represent
threats to the system, vulnerabilities of the system, and the assets of the system as shown
in Figure 1.

In the risk management model given in [6], the goal is to reduce the risk in the system
(flow between the first and last partitions) below a predefined risk threshold level by
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Fig. 1. Risk in a computational system can be modeled in terms of its constituent components.
The threats, weaknesses (corresponding to specific vulnerabilities), and assets form three disjoint
sets, named as 7', V, and A respectively. An edge between vertices represents a contribution to
the system risk. The system’s risk is the total flow between the first and third sets.

either restricting the permissions of the users, or encapsulating the system assets. These
two strategies correspond to deleting minimum number of vertices from the second
and the third partitions of the tripartite graph so that the flow between the first and the
third partitions are reduced below the predefined threshold level. The equivalence of
this risk management system and the partial vertex cover problem on bipartite graphs is
established in [6].

From the point of view of risk management the important instances of the problem
correspond to the cases when the graph modeling the system has a bounded degree, or
has a relatively predictable structure (such as being a tree). This paper focuses on the
problem when the graphs are arbitrary bipartite graphs.

4 Related Work

The vertex cover (VC) problem is one of the classical NP-complete problems listed
by Karp [13]. There are several polynomial-time approximation algorithms for the VC
problem within a factor of 2, and the best-known approximation algorithm for the VC

problem has an approximation factor of (2 -6 ( \/l;g n)) [12]. The VC problem is

known to be APX-complete [21]. Moreover, it cannot be approximated to within a
factor of 1.3606 unless P = NP [7], and not within any constant factor smaller than 2,
unless the unique games conjecture is false [14].

Since the PVC problem subsumes the VC problem for ¢ = m, all the hardness results
given above for the VC problem directly apply to the PVC problem. The PVC problem
and the partial variants of similar graph problems have been extensively studied for more
than a decade [4], [18], [16], [17], [3]. Particularly, there are an O(n - logn + m)-time
2-approximation algorithm [20], that is based on the method of primal-dual, a combina-
torial 2-approximation algorithm [3], and some (2—o(1))-approximation algorithms [2],
[51, [9], [11]. Let us also note that in [19] for each € > 0 an approximation algorithm with
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performance ratio (§ + €) for WPVCB is presented. Moreover, a i—approximation al-
gorithm for the weighted budgeted maximum coverage problem is general graphs given
in [1].

Although the VC problem and the PVC problem have almost matching approxi-
mation ratios and inapproximability results, the PVC problem is in some sense more
difficult than the VC problem. For instance, the PVC problem is W[1]-complete while
the VC problem is fixed parameter tractable [10].

5 Computational Complexity of the PVCB Problem

In this section we prove Theorem 1, which shows that the PVCB problem is NP-hard.
This also establishes the hardness of the weighted versions of the PVCB and the BMCB
problems.

Theorem 1. The PVCB problem is NP-hard.

Proof. We will prove Theorem 1 by giving a Karp reduction from the CLIQUE
problem. Recall that in the CLIQUE problem, we are given an undirected graph
G’ = (V’, E'), and an integer k, and the goal is to find whether there exists a complete
subgraph of G’ with k vertices. Assume we are given an arbitrary undirected graph
G’ = (V' E'), where n/ and m’ denote |V’| and | E’| respectively, and an integer k. We
construct a corresponding bipartite graph G = (V4 U Va, E) as explained below.

For every vertex v; € V', G has a corresponding vertex v; € V;. For every edge
e’ € E', there is a corresponding edge block in G. The term edge block refers to two
vertices and an edge in between. So, for each edge ¢/ € E’, G has two corresponding
vertices e; € V5 and eo € V4 and the edge (eq, e2). In order to capture the incidence
matrix of G', for each edge e’ = (v, v}) of G’, G has 2 additional edges (v;, e1) and
(vj, e1). Let n and m denote the number of vertices and edges of G, respectively. Notice
that the bipartite graph G has n’ + 2 - m’ vertices and 3 - m edges. More precisely, we
haven =n'+2-m/, and m = 3 - m’. We use the term left vertex of an edge block for
the vertex of the edge block that belongs to V5. The other vertex of the edge block that
belongs to V7, is referred to as the right vertex of the edge block throughout the paper.

In Figure 2, we are given a simple undirected graph G’ on the left that consists of 2
vertices v} and v}, and an edge ¢/ = (v}, v) in between. The figure has the correspond-
ing bipartite graph G on the right. The vertices v; and vs of G correspond to 2 vertices
of G’. The 2 vertices e; and ey of G and the edge e in between is the corresponding
edge block of the edge e’ of G'. The 2 edges (v1,e1) and (v2,e1) of G capture the
incidence matrix of G’.

We will prove Theorem 1 by showing that solving the CLIQUE problem on G’ re-
duces to solving the PVCB problem on G with ¢t = m — k -(/;—1) . In the rest of the paper,
without loss of generality, we will assume that m’ > k'(kz_l) ,and k£ > 5. Notice that
these assumptions do not violate the soundness of the proof since the CLIQUE problem
is still NP-hard after these assumptions on the input. We precisely will show the fol-
lowing: there is a complete subgraph of k vertices on G’ if and only if there is a subset

of k+m' — k'(kgl) vertices V"' of G such that the number of edges that are covered

. k- (k—1)
by V" is atleastm — " .
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An undirected graph G’ and corresponding bipartite graph G
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Fig. 2. Construction of the corresponding bipartite graph G for a given undirected graph G’

Without loss of generality we can assume that V' does not contain the right vertex
of any of the edge blocks of G, since the right vertex of an edge block is incident to
only one edge and that edge can be covered by the left vertex of the edge block as
well. Therefore, without loss of generality, we can assume that all the vertices of V"
are the vertices that correspond to the vertices of G’, or the left vertices of the edge
blocks. Since the number of edges that are to be covered by V" is at least m — k'(kz_l)

s

the number of edges that are not covered by V"' is at most k'(k;l) . Therefore, V" has
to contain the left vertices of at least m’ — k'(kz_l) edge blocks. We will complete the
proof of Theorem 1 by proving Lemma 1, which maps the yes instances of the CLIQUE
problem to the yes instances of the PVCB problem, and Lemma 2, which maps the no

instances of the CLIQUE problem to the no instances of the PVCB problem.

Lemma 1. [f there exists a complete subgraph of k vertices on G', then there exists a
subset V" of vertices of G such that |V"| = k +m' — k'(k;l), and V" covers at least

m— k'(k;l) edges of G.

Proof. Assume that G’ has a complete subgraph of k vertices and let V' be composed
of the following k + m' — k -(/;—1) vertices of G. For every vertex of the complete
subgraph of G, let the corresponding vertex of G be in V", Notice that there are exactly
k such vertices. The complete subgraph of this k& vertices has k -(/;—1) edges in G.

k-(k—1)
2

Therefore, there are m’ — edges of G’ that are not in the complete subgraph

of k vertices in G’. For each of these m’' — k'(k;l) edges of G, let the left vertex of
the corresponding edge block in G be contained in V”. Notice that there are exactly

f— k'(k;l) such vertices in V" So, |V"| =k +m/ — k'(k;l)
k-(k—1)
2

m as desired.

All we need to prove is that V'’ covers at least m — edges of G. Let us first
consider the edges of G that capture the incidence relation of the edges of G'. Recall
that for every edge e’ = (v;, v};) of G, there are 2 edges in G to capture the incidence
relation of e/, namely (v;, e1) and (vj, e2). So, in total there are 2 - m/ such edges in G.

The k- (k— 1) edges of G that capture the incidence relation of the k'(k;l) edges of the

complete subgraph of G’ are covered by the k vertices of V" that correspond to the k
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vertices of G’. The remaining 2-m' — k- (k — 1) edges of G, that capture the incidence
relation of the m’ — k'(k;l) edges of G’ that are not part of the complete subgraph, are

covered by the left vertices of the m/ — * -(/;—1) edge blocks in V", Therefore, all 2 - m/
edges of G that capture the incidence relation of the m’ edges of G’ are covered by V.
Recall that there are m’ additional edges in G. These edges are the edges of the m’

edge blocks. The left vertices of the m’ — k'(k;l) edge blocks that are contained in V"
k'(’;_l) edges of G that

k- (k—1)
cover m' — "
edges as stated by Lemma 1. g

of those edges. Therefore, there are only

k-(k—1
are not covered by V”. So, V" covers m — ( 5 )

Lemma 2. If G’ does not have a complete subgraph of k vertices, then no subset V"
. _ k- (k—1) k-(k—1)

of vertices of G such that [V"| = k +m' — ™, 5

of G.

Proof. Assume G’ does not have a complete subgraph of k vertices. For the purpose

of contradiction, assume that there is a subset V" of vertices of G such that |V"| =

covers at least m — edges

k+m' — k'(k;l) ,and V" covers at least m — k'(k;l) edges of G.
Since V'’ covers at least m — k'(k;l) edges of G and m’ > k'(k;l), V' covers at
least m’ — k'(g_l) edges of the edge blocks. Therefore, V"’ contains the left vertices of

at least m’ — k'(k;l) edge blocks. Since |V | = k+m' — k'(k;l) , V" contains at most
k vertices of G that correspond to the vertices of G'.
First consider the case where V" contains exactly k vertices of G that correspond to
- k'(k'z_l) left vertices of edge blocks. Since there are
k-(k—1)
2

the vertices of G’, and exactly m’

only m’ — k'(k;l) left vertices of edge blocks, V" does not cover
k-(k—1)
2

edges of the

edge blocks. Since V" covers at least m — in total, V" covers all the edges of
G that capture the incidence relation of all the edges of G’. Since G’ does not have a
complete subgraph of k vertices, the k vertices of GG that correspond to the vertices of

G’ cover both of the edges that capture the incidence relation of k'(k;l) — o edges of

G’ forsome 1 < a < k'(k;l). Since V" covers all 2 - m’ edges of G that capture the
incidence relation of the edges of G’, V"’ contains the left vertices of all the edge blocks
of G that correspond to the m’ — k '(k’;l) + « edges of G'. This is a contradiction since

we assumed that V"’ contains exactly m — k'(k;l) left vertices of edge blocks.
Therefore, V" contains exactly k — [ vertices of G that correspond to some k — !
vertices of G’, and exactly m’ — k'(k'z_l) + [ left vertices of edge blocks for some
0 < [ < k. Recall that the incidence relation of each edge of G’ is captured by 2 edges
in G. Notice that the subgraph formed by this k& — [ vertices of G’ contains at most

(k _l)'(f ~I=1 edges of G'. Therefore, the corresponding k —  vertices of V" cover both

(

of the incidence edges of at most (k=D)- 2}67171) edges of G’. In other words, at least one

(kfl)'gk*l*l) edges of G’ is not covered the k — [ vertices of G

k- (k—1)
2

incidence edge of m’ —
that correspond to some k — [ vertices of V. Since we already have — l edges
of edge blocks left uncovered, the left vertices of the edge blocks in V' has to cover
an incidence edge for at least m’ — (k_l)'(f_l_l) — [ edges of G'. This is not possible
since the left vertex of each edge block in G covers the corresponding incidence edges
of exactly one edge of G’, and m’ — (k_l)'(f_l_l) —I>m' - k'(g_l) +lfork>5. O
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6 An g-Approximation Algorithm for the EBMCB Problem

The edge-weighted budgeted maximum coverage problem in general graphs is known
to be NP-hard, and the result from the previous section shows that this the case for
bipartite graphs as well. Thus a natural question is the approximability of the problem.
Ageev and Sviridenko [1] give a Z—approximation for general graphs via the pipage
rounding technique. We present an S-approximation for bipartite graphs and show that
this matches the integrality gap of the LP-relaxation. We note that our techniques can
also be extended to general graphs to give an alternate LP-based Z-approximation.

We employ the following linear programming relaxation for the problem on a bipar-
tite graph G = (V = Vi, U Vg, E), where V7, and Vj are the independent sets. For a
set S CV,welet S, =SNVyand Sg = SN Vi.

ecell
Ty + Ty = Zyy, foralluv € E (1)
Z Ty < k ()
uev
0<x, <1, foralluecV 3)
ze <1, foralle € E “

where we assume that w(e) > 0 for all e € E. This assumption allows us to omit
the usual non negativity constraint on each z.. This omission will slightly simplify our
analysis and presentation.

Our results exploit the structure of extreme points of the above polyhedron. Consider
a feasible solution (z, z) for the above linear program. We say an edge wv is slack (with
respect to (z, z)) if,

(i) Ty + Ty > Zyo, OF
(i) zyo < 1.

If an edge is not slack, we call it zight. The following lemma shows that extreme points
are well-structured. For an extreme point (#, 2),let V = {u € V' | 0 < 2, < 1} be the
set of vertices with fractional & value, and let G = (V, E') be the graph induced by V.

Lemma 3. The tight edges induce a single connected component in G, spanning all its
vertices.

Proof. Suppose, for the moment, that there is a vertex set J C V such that all edges
e € E with exactly one endpoint in J are slack. Note that every edge uv € E with
exactly one endpoint in V is slack. To see this, suppose Z,, € {0,1} and Z,, € (0,1); if
2, = 0, condition (ii) is satisfied, and otherwise condition (i) is satisfied since z,, < 1.
Thus we actually have that any edge in F with exactly one endpoint in J is slack.

Now we will show that we may perturb the  values for vertices in J such that all
constraints, except possibly (2), remain satisfied. We will add a value € # 0 to &,, for
each vertex u € Jr,, and we will subtract € from each z value for vertices in Jg. This
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modified solution continues to satisfy (1) for each edge with both endpoints in J. We
observed above that edges in E with exactly one endpoint in J are slack.

Suppose we have such a slack edge uv with w € Jand v ¢ J. Let 6 € {e,—¢}
represent the perturbation added to z,,. If uv satisfies (i), then (1) is satisfied for uv by
selecting ¢ of small enough magnitude so that § < &, + &, — 2., where the right-hand
side is positive as desired. If uv satisfies (ii), then we add 0 to z,, as well. This ensures
that (1) is satisfied for uv, and we may select € of small enough magnitude to satisfy (4);
this does not affect the feasibility of any other constraint, even those for other edges.

In addition to the above constraints on the selection of €, we may select € of small
enough magnitude to satisfy (3), since vertices in J have fractional & value. Let the
components of the vector € € RV *¥ correspond to the perturbation described above.
We have indeed shown that (£, £) + € is feasible for all constraints except possibly (2);
however, we have also shown that we may select ¢ so that (&, 2) — e is feasible for these
constraints as well. These two solutions average to (, 2), and since ¢ # 0 they are
distinct. In fact if we have |.J| = |Jr|, then observe that both of these solutions satisfy
(2) as well and are feasible, contradicting the assumption that (Z, ) is an extreme point.

To finish the proof, suppose we have two disjoint vertex sets S, 7" C V akin to J from
above; specifically, any edge in E with exactly one endpoint in some .S or 7T is slack.
We may independently select g 7 0 and e ## 0 for S and T', respectively, so that the
only potentially violated constraint is (2). From above, we may assume |Sy,| # |Sg|
and |Tr| # |Tr|. Thus, in order to satisfy (2), we need only choose €5 and 7 so that:

es - (IScl = ISrl) +er - (ITL] = [Tr[) =0 ,

which can be done so that g and er have arbitrarily small magnitude as required.
Thus (&, 2) is a convex combination of the feasible solutions (£, 2) + (eg + er) —a
contradiction.

If the tight edges induced more than one connected component in G (possibly one
with just an isolated vertex), then two of these components could play the role of S and
T above, which cannot exist. O

We will use this lemma to show the structure of fractional entries in an extreme point
solution (&, £). As above let V' correspond to the vertices with fractional & value. Let
Vb and V; correspond to vertices with 2 value 0 and 1, respectively.

Theorem 2. The fractional entries of & take one of two values, o or 1 — a, for some
a € (0,1). Moreover, o R
min{|V|, [Ve[} +[Vi[ < k .

Proof. By the above lemma, there is a tree consisting of tight edges spanning the ver-
ticesin V. By the definition of a tight edge uv, we have that &, + 2, = 2, and Z,,, = 1.
Select a root r for this tree and suppose Z,, = «. Now the first claim of the theorem
follows, since it is apparent that vertices with odd distance to  must have  value 1 — «
and those with even distance to  have value a.

Suppose that the vertices in V1, have value «. Then the budget constraint, (2) be-
comes: R R R

a- Vil +(1—a)-[Val + V| <k,

from which the second claim follows. O
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One consequence of Theorem 2 is that Vl together with the smaller of VL and VR
is a feasible solution. Now, let us compose two feasible solutions that will help us in
designing the approximation algorithm. Let A be the set of edges between V7, and V.
Let By, be the set of edges with one endpoint in VL and one endpoint in Vo, and let By
be defined analogously. Note that we will always select the vertices in Vi and ignore
the edges with at least one endpoint in V1 below. For the sake of exposition, suppose
|Vi| < |Vg| and that each vertex in V7, has 2 value « (hence those in Vi have value
1—a).

1. Selectf/L and augment this by greedily selecting an additional k — |VL\ vertices
from Vx with largest coverage. This solution has coverage at least w(A)+w(Br )+

k—|Vi|
VR w(Br)-

2. Greedily select k vertices from Vg with largest coverage. This solution has cover-
age at least

k .
V] (w(A) + w(BR)).

The above are derived by applying the following lemma. For a vertex v € V let
w(v) = X c5(,) wle), where 6(v) denotes the set of edges of G, that are incident to v.
As with edge sets, foraset S C V,letw(S) =, g w(u).

Lemma 4. Let S C V be an independent set of vertices. The t vertices in S with largest
w(S)

coverage have a collective coverage of at least t - 18]

Proof. Let T C S be the ¢ vertices in .S with largest coverage. Suppose, for the sake
of contradiction, that w(T') < t - w‘gs“) Then some vertex in 7" has coverage less than

w‘gs“) Therefore by choice of T, every vertex in S — 1" has coverage less than w‘gs“)

This implies that w(S) = w(T)+w(S—T) < t- w‘gs“) +(|S|—1)- Uig‘sl) =w(S). O

Applying the lemma with S = Vi and t = k— |V| and t = k yield the bounds from
(1) and (2), respectlvely As in the proof of Theorem 2, the budget constraint (2) from
the LP (ignoring V}) yields k > o - |V | + (1 — ) - |[Vz|. Substituting this bound for
k into the above coverage bounds yield the following lower bounds on the respective
coverage obtained by our two solutions:

1. Wy =w(A) +w(Br)+ (1 —a) - 8- w(Bgr), and
2. Wo=01-a-8) (w(h) +w(Bgr)),

where 8 =1 — ““;Ll‘ . Note that we may assume that € (0,1). If 8 = 0 then |V | =
R

|VR| < k, and the set with better coverage is optimal. If 3 = 1 then V. = 0, hence
By, = . Since our extreme point solution # is not integral, we have o € (0, 1), hence
the edge set A = () as well. The coverage of Solution (2) in this case is (1 — ) - (w(A)+
w(Br)) = w(A) + aw(Br) + (1 — a) -w(Br) > OPT.

We have shown that we can achieve a coverage of max{W;, W>}. All we need is to
show that the left-side of the inequality given below, an upper bound on the performance
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of our algorithm, is at most g. In order to prove this, consider a nonlinear program that
seeks to maximize the ratio,

w+a-wp+ (1 —a) wg OPT
max{ Wy, Wy} ~ max{W;, Wa} °

The program has variables w, wy,, and wg which correspond to values for w(A),
w(By), and w(Bgr) respectively. Similarly there is a variable m corresponding to
max{Wi, Wa}.

p:maxw+a~wL+(1fa)~wR
m

wHw,+(1—a) - f-wr<m
I-—a-p) (w+wg) <m
w,wr,wr >0

a,B€(0,1) .

The program finds a worst-case setting of the parameters for our algorithm, and the

optimal value p is an upper bound on the worst-case performance of our algorithm. We

simplify the program a bit by lettingz = *,y = "', and z = “".

p=max(z+a-y+(1—a)-z2)
z4+y+(1l—a)-5-2<1
(l—a-f) (x+2)<1
z,y,z >0
a,p€(0,1) .

For any fixed values of o and 3, we consider the above program as a linear program,
whose target function depends on « and S: p = p(«, 3). Now, in order to simplify our
analysis, we drop the non-negativity constraints on x and z, obtaining an upper bound

on p(ax, B).

pla,f) <max(z+a-y+ (1 —a) - 2)
r+y+(l—a)-f-2<1
l-a-pB)z+(1-a-B)-2<1
y=>0.

Note that the above LP is feasible and bounded for o, f € (0, 1), since the first con-
straint implies an upper bound of % on the objective function. Hence, we may assume
without loss of generality that we seek an extreme-point solution, in which case all three
constraints must be tight since we have three variables. Thus y = 0, and we may solve
the following linear system to obtain = and z in terms of « and 3:

r+(1—a)-B-z2=1
l-a-B)-z+(1-a-B)-z=1.
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Taking into account these values, the objective function becomes,
flaf)=r+a-y+(1-a) 2
=1-a)- (z+2)+a-z
() l-(1-a)-fl+a-(1-H)
(A—a-B)-L-0-a)8
Thus we obtain an upper bound on our worst-case approximation ratio by maximizing

this quantity with respect to « and :

= < .
p aggum m_mﬁﬁuﬂmm

Maximizing f(«, §) is equivalent to maximizing
I a(l-a)8-(1-5)
fle, B) G*Q)U*U*a)m+a( -B)
Maximizing g(«, 8) is equivalent to minimizing
1 1 1
= = + .
gle,f) 1-8 a-(1-a)p

In minimizing h(q, ) for any fixed value of 8 € (0, 1), we see that o = and
some elementary calculus yields that h(}, 8) i 1s m1n1nnzed over § € (0,1) at B
Evaluating f at these worst-case values of a=, Land g = y1elds p < 9

g(aaﬁ) =1-

Remark 1. Tt is natural to wonder whether the g—approximation factor in the above
algorithm can be improved. It turns out that the integrality gap of the linear program
[22] that we considered is g. It is an indication that using this linear program alone, one
cannot improve the approximation factor. In order to see this, consider the tree from
figure 3, and let the vertex budget £ = 2. Observe that in this tree with two vertices
one can cover four edges. However, the linear program corresponding to this tree has a
fractional solution (&, £) whose cost is g. In order to construct such a solution, for each
vertex u let ,, = ;, if u is not a leaf, and is zero, otherwise. For each edge ¢ let Z, = %,
if e is incident to a leaf, and is one, otherwise It is not hard to see that this fractional
solution is a feasible solution, and its cost 1s , which implies that the integrality gap of

our linear program is § = g.
2

Fig. 3. An example showing that the integrality gap is g
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Conclusion

In this paper, we studied the partial vertex cover, the budgeted maximum coverage
problems and their weighted analogues on bipartite graphs. We proved that the PVCB
problem is NP-hard. Then we presented an g—approximation algorithm for the EBMCB
problem, which is computationally identical to the PVCB problem.

From our perspective, the following lines of research appear promising:

— Determining whether the PVCB problem is APX-hard or not.
— Obtaining an a-approximation algorithm for the PVCB problem where o < é.
— Considering the main problems in the class of bounded-degree graphs.
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