
Specifying and Verifying Properties of Space�

Vincenzo Ciancia1, Diego Latella1, Michele Loreti2, and Mieke Massink1

1 Istituto di Scienza e Tecnologie dell’Informazione ‘A. Faedo’, CNR, Italy
2 Università di Firenze, Italy

Abstract. The interplay between process behaviour and spatial aspects
of computation has become more and more relevant in Computer Sci-
ence, especially in the field of collective adaptive systems, but also, more
generally, when dealing with systems distributed in physical space. Tra-
ditional verification techniques are well suited to analyse the temporal
evolution of programs; properties of space are typically not explicitly
taken into account. We propose a methodology to verify properties de-
pending upon physical space. We define an appropriate logic, stemming
from the tradition of topological interpretations of modal logics, dating
back to earlier logicians such as Tarski, where modalities describe neigh-
bourhood. We lift the topological definitions to a more general setting,
also encompassing discrete, graph-based structures. We further extend
the framework with a spatial until operator, and define an efficient model
checking procedure, implemented in a proof-of-concept tool.

1 Introduction

Much attention has been devoted in Computer Science to formal verification of
process behaviour. Several techniques, such as run-time monitoring and model-
checking, are based on a formal understanding of system requirements through
modal logics. Such logics typically have a temporal flavour, describing the flow of
events along time, and are interpreted in various kinds of transition structures.

Recently, aspects of computation related to the distribution of systems in
physical space have become more relevant. An example is provided by so called
collective adaptive systems1, typically composed of a large number of interact-
ing objects. Their global behaviour critically depends on interactions which are
often local in nature. Locality immediately poses issues of spatial distribution of
objects. Abstraction from spatial distribution may sometimes provide insights
in the system behaviour, but this is not always the case. For example, consider a
bike (or car) sharing system having several parking stations, and featuring twice
as many parking slots as there are vehicles in the system. Ignoring the spatial
dimension, on average, the probability to find completely full or empty parking
stations at an arbitrary station is very low; however, this kind of analysis may

� Research partially funded by EU ASCENS (nr. 257414), EU QUANTICOL (nr.
600708), IT MIUR CINA and PAR FAS 2007-2013 Regione Toscana TRACE-IT.

1 See e.g. the web site of the QUANTICOL project: http://www.quanticol.eu

J. Diaz et al.(Eds.): TCS 2014, LNCS 8705, pp. 222–235, 2014.
c© IFIP International Federation for Information Processing 2014

http://www.quanticol.eu

Specifying and Verifying Properties of Space 223

be misleading, as in practice some stations are much more popular than oth-
ers, often depending on nearby points of interest. This leads to quite different
probabilities to find stations completely full or empty, depending on the spatial
properties of the examined location. In such situations, it is important to be able
to predicate over spatial aspects, and eventually find methods to certify that a
given formal model of space satisfies specific requirements in this respect. In
Logics, there is quite an amount of literature focused on so called spatial logics,
that is, a spatial interpretation of modal logics. Dating back to early logicians
such as Tarski, modalities may be interpreted using the concept of neighbourhood
in a topological space. The field of spatial logics is well developed in terms of de-
scriptive languages and computability/complexity aspects. However, the frontier
of current research does not yet address verification problems, and in particular,
discrete models are still a relatively unexplored field.

In this paper, we extend the topological semantics of modal logics to clo-
sure spaces. As we shall discuss in the paper, this choice is motivated by the
need to use non-idempotent closure operators. A closure space (also called Čech
closure space or preclosure space in the literature), is a generalisation of a stan-
dard topological space, where idempotence of closure is not required. By this,
graphs and topological spaces are treated uniformly, letting the topological and
graph-theoretical notions of neighbourhood coincide. We also provide a spa-
tial interpretation of the until operator, which is fundamental in the classical
temporal setting, arriving at the definition of a logic which is able to describe
unbounded areas of space. Intuitively, the spatial until operator describes a situ-
ation in which it is not possible to “escape” an area of points satisfying a certain
property, unless by passing through at least one point that satisfies another
given formula. To formalise this intuition, we provide a characterising theorem
that relates infinite paths in a closure space and until formulas. We introduce a
model-checking procedure that is linear in the size of the considered space. A
prototype implementation of a spatial model-checker has been made available;
the tool is able to interpret spatial logics on digital images, providing graphical
understanding of the meaning of formulas, and an immediate form of counterex-
ample visualisation.2

Related work. We use the terminology spatial logics in the “topological” sense;
the reader should be warned that in Computer Science literature, spatial logics
typically describe situations in which modal operators are interpreted syntac-
tically, against the structure of agents in a process calculus (see [8,6] for some
classical examples). The object of discussion in this research line are operators
that quantify e.g., over the parallel sub-components of a system, or the hidden
resources of an agent. Furthermore, logics for graphs have been studied in the
context of databases and process calculi (see [7,15], and references), even though
the relationship with physical space is often not made explicit, if considered at
all. The influence of space on agents interaction is also considered in the litera-
ture on process calculi using named locations [11].

2 Due to lack of space all the proofs are omitted and can be found in [10].

224 V. Ciancia et al.

Variants of spatial logics have also been proposed for the symbolic representa-
tion of the contents of images, and, combined with temporal logics, for sequences
of images [12]. The approach is based on a discretisation of the space of the im-
ages in rectangular regions and the orthogonal projection of objects and regions
onto Cartesian coordinate axes such that their possible intersections can be anal-
ysed from different perspectives. It involves two spatial until operators defined
on such projections considering spatial shifts of regions along the positive, re-
spectively negative, direction of the coordinate axes and it is very different from
the topological spatial logic approach.

A successful attempt to bring topology and digital imaging together is repre-
sented by the field of digital topology [22,25]. In spite of its name, this area studies
digital images using models inspired by topological spaces, but neither general-
ising nor specialising these structures. Rather recently, closure spaces have been
proposed as an alternative foundation of digital imaging by various authors,
especially Smyth and Webster [23] and Galton [17]; we continue that research
line, enhancing it with a logical perspective. Kovalevsky [19] studied alternative
axioms for topological spaces in order to recover well-behaved notions of neigh-
bourhood. In the terminology of closure spaces, the outcome is that one may
impose closure operators on top of a topology, that do not coincide with topo-
logical closure. The idea of interpreting the until operator in a topological space
is briefly discussed in the work by Aiello and van Benthem [1,24]. We start from
their definition, discuss its limitations, and provide a more fine-grained operator,
which is interpreted in closure spaces, and has therefore also an interpretation
in topological spaces. In the specific setting of complex and collective adaptive
systems, techniques for efficient approximation have been developed in the form
of mean-field / fluid-flow analysis (see [5] for a tutorial introduction). Recently
(see e.g., [9]), the importance of spatial aspects has been recognised and stud-
ied in this context. In this work, we aim at paving the way for the inclusion of
spatial logics, and their verification procedures, in the framework of mean-field
and fluid-flow analysis of collective adaptive systems.

2 Closure Spaces

In this work, we use closure spaces to define basic concepts of space. Below, we
recall several definitions, most of which are explained in [17].

Definition 1. A closure space is a pair (X, C) where X is a set, and the closure
operator C : 2X → 2X assigns to each subset of X its closure, obeying to the
following laws, for all A,B ⊆ X:

1. C(∅) = ∅;
2. A ⊆ C(A);
3. C(A ∪B) = C(A) ∪ C(B).

As a matter of notation, in the following, for (X, C) a closure space, and A ⊆ X ,
we let A = X \A be the complement of A in X .

Specifying and Verifying Properties of Space 225

Definition 2. Let (X, C) be a closure space, for each A ⊆ X:

1. the interior I(A) of A is the set C(A);
2. A is a neighbourhood of x ∈ X if and only if x ∈ I(A);
3. A is closed if A = C(A) while it is open if A = I(A).

Lemma 1. Let (X, C) be a closure space, the following properties hold:

1. A ⊆ X is open if and only if A is closed;
2. closure and interior are monotone operators over the inclusion order, that

is: A ⊆ B =⇒ C(A) ⊆ C(B) and I(A) ⊆ I(B)
3. Finite intersections and arbitrary unions of open sets are open.

Closure spaces are a generalisation of topological spaces. The axioms defining
a closure space are also part of the definition of a Kuratowski closure space,
which is one of the possible alternative definitions of a topological space. More
precisely, a closure space is Kuratowski, therefore a topological space, whenever
closure is idempotent, that is, C(C(A)) = C(A). We omit the details for space
reasons (see e.g., [17] for more information).

Next, we introduce the topological notion of boundary, which also applies to
closure spaces, and two of its variants, namely the interior and closure boundary
(the latter is sometimes called frontier).

Definition 3. In a closure space (X, C), the boundary of A ⊆ X is defined
as B(A) = C(A) \ I(A). The interior boundary is B−(A) = A \ I(A), and the
closure boundary is B+(A) = C(A) \A.
Proposition 1. The following equations hold in a closure space:

B(A) = B+(A) ∪ B−(A) (1)

B+(A) ∩ B−(A) = ∅ (2)

B(A) = B(A) (3)

B+(A) = B−(A) (4)

B+(A) = B(A) ∩A (5)

B−(A) = B(A) ∩A (6)

B(A) = C(A) ∩ C(A) (7)

3 Quasi-Discrete Closure Spaces

In this section we see how a closure space may be derived starting from a binary
relation, that is, a graph. The following comes from [17].

Definition 4. Consider a set X and a relation R ⊆ X ×X. A closure operator
is obtained from R as CR(A) = A ∪ {x ∈ X | ∃a ∈ A.(a, x) ∈ R}.

226 V. Ciancia et al.

Remark 1. One could also change Definition 4 so that CR(A) = A ∪ {x ∈ X |
∃a ∈ A.(x, a) ∈ R}, which actually is the definition of [17]. This does not affect
the theory presented in the paper. Indeed, one obtains the same results by re-
placing R with R−1 in statements of theorems that explicitly use R, and are not
invariant under such change. By our choice, closure represents the “least possible
enlargement” of a set of nodes.

Proposition 2. The pair (X, CR) is a closure space.

Closure operators obtained by Definition 4 are not necessarily idempotent.
Lemma 11 in [17] provides a necessary and sufficient condition, that we rephrase
below. We let R= denote the reflexive closure of R (that is, the least relation
that includes R and is reflexive).

Lemma 2. CR is idempotent if and only if R= is transitive.

Note that, when R is transitive, so is R=, thus CR is idempotent. The vice-
versa is not true, e.g., when (x, y) ∈ R, (y, x) ∈ R, but (x, x) /∈ R.

Remark 2. In topology, open sets play a fundamental role. However, the situa-
tion is different in closure spaces derived from a relation R. For example, in the
case of a closure space derived from a connected symmetric relation, the only
open sets are the whole space, and the empty set.

Proposition 3. Given R ⊆ X ×X, in the space (X, CR), we have:

I(A) = {x ∈ A | ¬∃a ∈ A.(a, x) ∈ R} (8)

B−(A) = {x ∈ A | ∃a ∈ A.(a, x) ∈ R} (9)

B+(A) = {x ∈ A | ∃a ∈ A.(a, x) ∈ R} (10)

We note in passing that [16] provides an alternative definition of boundaries for
closure spaces obtained from Definition 4, and proves that it coincides with the
topological definition (our Definition 3). Closure spaces derived from a relation
can be characterised as quasi-discrete spaces (see also Lemma 9 of [17] and the
subsequent statements).

Definition 5. A closure space is quasi-discrete if and only if one of the follow-
ing equivalent conditions holds: i) each x ∈ X has a minimal neighbourhood3

Nx; ii) for each A ⊆ X, C(A) = ⋃
a∈A C({a}).

Theorem 1. (Theorem 1 in [17]) A closure space (X, C) is quasi-discrete if and
only if there is a relation R ⊆ X ×X such that C = CR.

3 A minimal neighbourhood of x is a set that is a neighbourhood of x (Definition 2 (2))
and is included in all other neighbourhoods of x.

Specifying and Verifying Properties of Space 227

Y Y R

Y Y R B B

R R B G G B

B G G B

B B

Fig. 1. A graph inducing a quasi-discrete closure space

Example 1. Every graph induces a quasi-discrete closure space. For instance, we
can consider the (undirected) graph depicted in Figure 1. Let R be the (symmet-
ric) binary relation induced by the graph edges, and let Y and G denote the set
of yellow and green nodes, respectively. The closure CR(Y) consists of all yellow
and red nodes, while the closure CR(G) contains all green and blue nodes. The
interior I(Y) of Y contains a single node, i.e. the one located at the bottom-left
in Figure 1. On the contrary, the interior I(G) of G is empty. Indeed, we have
that B(G) = C(G), while B−(G) = G and B+(G) consists of the blue nodes.

4 A Spatial Logic for Closure Spaces

In this section we present a spatial logic that can be used to express properties of
closure spaces. The logic features two spatial operators : a “one step” modality,
turning closure into a logical operator, and a binary until operator, which is
interpreted spatially. Before introducing the complete framework, we first discuss
the design of an until operator φUψ.

The spatial logical operator U is interpreted on points of a closure space. The
basic idea is that point x satisfies φUψ whenever it is included in an area A
satisfying φ, and there is “no way out” from A unless passing through an area
B that satisfies ψ. For instance, if we consider the model of Figure 1, yellow
nodes satisfy yellow U red while green nodes satisfy green U blue. To turn this
intuition into a mathematical definition, one should clarify the meaning of the
words area, included, passing, in the context of closure spaces.

In order to formally define our logic, and the until operator in particular, we
first need to introduce the notion of model, providing a context of evaluation
for the satisfaction relation, as in M, x |= φUψ. From now on, fix a (finite or
countable) set P of proposition letters.

Definition 6. A closure model is a pair M = ((X, C),V) consisting of a closure
space (X, C) and a valuation V : P → 2X , assigning to each proposition letter
the set of points where the proposition holds.

228 V. Ciancia et al.

When (X, C) is a topological space (that is, C is idempotent), we call M a
topological model, in line with [24], and [1], where the topological until operator
is presented. We recall it below.

Definition 7. The topological until operator UT is interpreted in a topological
model M as M, x |= φUTψ ⇐⇒ ∃A open .x ∈ A ∧ ∀y ∈ A.M, y |= φ ∧ ∀z ∈
B(A).M, z |= ψ.

The intuition behind this definition is that one seeks for an area A (which,
topologically speaking, could sensibly be an open set) where φ holds, and that
is completely surrounded by points where ψ holds. Unfortunately, Definition 7
cannot be translated directly to closure spaces, even if all the used topological
notions have a counterpart in the more general setting of closure spaces. Open
sets in closure spaces are often too coarse (see Remark 2). For this reason, we
can modify Definition 7 by not requiring A to be an open set. However, the
usage of B in Definition 7 is not satisfactory either. By Proposition 1 we have
B(A) = B+(A) ∪ B−(A), where B−(A) is included in A while B+(A) is in A.
For instance, when B is used in Definition 7, we have that the green nodes in
Figure 1 do not satisfy green UT blue. Indeed, as we remarked in Example 1,
the boundary of the set G of green nodes coincide with the closure of G that
contains both green and blue nodes.

A more satisfactory definition can be obtained by letting B+ play the same
role as B in Definition 7 and not requiring A to be an open set. We shall in fact
require that φ is satisfied by all the points of A, and that in B+(A), ψ holds.
This allows us to ensure that there are no “gaps” between the region satisfying
φ and that satisfying ψ.

4.1 Syntax and Semantics of SLCS

We can now define SLCS: a Spatial Logic for Closure Spaces. The logic features
boolean operators, a “one step” modality, turning closure into a logical operator,
and a spatially interpreted until operator. More precisely, as we shall see, the
SLCS formula φUψ requires φ to hold at least on one point. The operator is
similar to a weak until in temporal logics terminology, as there may be no point
satisfying ψ, if φ holds everywhere.

Definition 8. The syntax of SLCS is defined by the following grammar, where
p ranges over P :

Φ ::= p | � | ¬Φ | Φ ∧ Φ | ♦Φ | ΦUΦ

Here,
 denotes true, ¬ is negation, ∧ is conjunction, ♦ is the closure operator,
and U is the until operator. Closure (and interior, see Figure 2) operators come
from the tradition of topological spatial logics [24].

Specifying and Verifying Properties of Space 229

⊥ � ¬� φ ∨ ψ � ¬(¬φ ∧ ¬ψ) �φ � ¬(♦¬φ)
∂φ � (♦φ) ∧ (¬�φ) ∂−φ � φ ∧ (¬�φ) ∂+φ � (♦φ) ∧ (¬φ)
φRψ � ¬((¬ψ)U(¬φ)) Gφ � φU⊥ Fφ � ¬G(¬φ)

Fig. 2. SLCS derivable operators

Definition 9. Satisfaction M, x |= φ of formula φ at point x in model M =
((X, C),V) is defined, by induction on terms, as follows:

M, x |= p ⇐⇒ x ∈ V(p)
M, x |= � ⇐⇒ true
M, x |= ¬φ ⇐⇒ M, x 	|= φ
M, x |= φ ∧ ψ ⇐⇒ M, x |= φ and M, x |= ψ
M, x |= ♦φ ⇐⇒ x ∈ C({y ∈ X|M, y |= φ})
M, x |= φUψ ⇐⇒ ∃A ⊆ X.x ∈ A ∧ ∀y ∈ A.M, y |= φ∧

∧∀z ∈ B+(A).M, z |= ψ

In Figure 2, we present some derived operators. Besides standard logical con-
nectives, the logic can express the interior (�φ), the boundary (∂φ), the interior
boundary (∂−φ) and the closure boundary (∂+φ) of the set of points satisfying
formula φ. Moreover, by appropriately using the until operator, operators con-
cerning reachability (φRψ), global satisfaction (Gφ) and possible satisfaction
(Fφ) can be derived.

To clarify the expressive power of U and operators derived from it we provide
Theorem 2 and Theorem 3, giving a formal meaning to the idea of “way out” of
φ, and providing an interpretation of U in terms of paths.

Definition 10. A closure-continuous function f : (X1, C1) → (X2, C2) is a func-
tion f : X1 → X2 such that, for all A ⊆ X1, f(C1(A)) ⊆ C2(f(A)).
Definition 11. Consider a closure space (X, C), and the quasi-discrete space
(N, CSucc), where (n,m) ∈ Succ ⇐⇒ m = n+ 1. A (countable) path in (X, C)
is a closure-continuous function p : (N, CSucc) → (X, C). We call p a path from
x, and write p : x�∞, when p(0) = x. We write y ∈ p whenever there is l ∈ N

such that p(l) = y. We write p : x
A�
y
∞ when p is a path from x, and there is l

with p(l) = y and for all l′ ≤ l.p(l′) ∈ A.

Theorem 2. If M, x |= φUψ, then for each p : x�∞ and l, if M, p(l) |= ¬φ,
there is k ∈ {1, . . . , l} such that M, p(k) |= ψ.

Theorem 2 can be strengthened to a necessary and sufficient condition in the
case of models based on quasi-discrete spaces. First, we establish that paths in
a quasi-discrete space are also paths in its underlying graph.

Lemma 3. Given path p in a quasi-discrete space (X, CR), for all i ∈ N with
p(i) �= p(i + 1), we have (p(i), p(i + 1)) ∈ R, i.e., the image of p is a (graph
theoretical, infinite) path in the graph of R. Conversely, each path in the graph
of R uniquely determines a path in the sense of Definition 11.

230 V. Ciancia et al.

Function Sat(M, φ)
Input: Quasi-discrete closure model M = ((X, C),V), SLCS formula φ
Output: Set of points {x ∈ X | M, x |= φ}
Match φ

case � : return X
case p : return V(p)
case ¬ψ :

let P = Sat(M, ψ) in
return X \ P

case ψ ∧ ξ :
let P = Sat(M, ψ) in
let Q = Sat(M, ξ) in
return P ∩Q

case ♦ψ :
let P = Sat(M, ψ) in
return C(P)

case ψ Uξ : return CheckUntil (M,ψ, ξ)

Algorithm 1. Decision procedure for the model checking problem

Theorem 3. In a quasi-discrete closure model M, M, x |= φUψ if and only if
M, x |= φ, and for each path p : x � ∞ and l ∈ N, if M, p(l) |= ¬φ, there is

k ∈ {1, . . . , l} such that M, p(k) |= ψ.

Remark 3. Directly from Theorem 3 and from the definitions in Figure 2 we
have also that in a quasi-discrete closure model M:

1. M, x |= φRψ iff. there is p : x�∞ and k ∈ N such that M, p(k) |= ψ and

for each j ∈ {1, . . . , k} M, p(j) |= φ;
2. M, x |= Gφ iff. for each p : x�∞ and i ∈ N, M, p(i) |= φ;

3. M, x |= Fφ iff. there is p : x�∞ and i ∈ N such that M, p(i) |= φ.

Note that, a point x satisfies φRψ if and only if either ψ is satisfied by x
or there exists a sequence of points after x, all satisfying φ, leading to a point
satisfying both ψ and φ. In the second case, it is not required that x satisfies φ.

5 Model Checking SLCS Formulas

In this section we present a model checking algorithm for SLCS, which is
a variant of standard CTL model checking [3]. Function Sat, presented in
Algorithm 1, takes as input a finite quasi-discrete model M = ((X, CR),V) and
an SLCS formula φ, and returns the set of all points in X satisfying φ. The
function is inductively defined on the structure of φ and, following a bottom-up
approach, computes the resulting set via an appropriate combination of the re-
cursive invocations of Sat on the sub-formulas of φ. When φ is
, p, ¬ψ or ψ∧ξ,

Specifying and Verifying Properties of Space 231

Function CheckUntil (M,ψ, ξ)
let V = Sat(M, ψ) in
let Q = Sat(M, ξ) in
var T := B+(V ∪Q)
while T 	= ∅ do

T ′ := ∅
for x ∈ T do

N := pre(x)∩ V
V := V \N
T ′ := T ′ ∪ (N \Q)

T := T ′;
return V

Algorithm 2. Checking until formulas in a quasi-discrete closure space

definition of Sat(M, φ) is as expected. To compute the set of points satisfying
♦ψ, the closure operator C of the space is applied to the set of points satisfying
ψ.

When φ is of the form ψ Uξ, function Sat relies on the function CheckUntil

defined in Algorithm 2. This function takes as parameters a model M and two
SLCS formulas ψ and ξ and computes the set of points in M satisfying ψ Uξ by
removing from V = Sat(M, ψ) all the bad points. A point is bad if there exists
a path passing through it, that leads to a point satisfying ¬ψ without passing
through a point satisfying ξ. Let Q = Sat(M, ξ) be the set of points in M
satisfying ξ. To identify the bad points in V the function CheckUntil performs
a backward search from T = B+(V ∪Q). Note that any path exiting from V ∪Q has
to pass through points in T . Moreover, the latter only contains points that satisfy
neither ψ nor ξ. Until T is empty, function CheckUntil first picks an element x
in T and then removes from V the set of (bad) points N that can reach x in one
step. To compute the set N we use the function pre(x) = {y ∈ X | (y, x) ∈ R}.4
At the end of each iteration the set T is updated by considering the set of new
discovered bad points.

Lemma 4. Let X a finite set and R ⊆ X × X. For any finite quasi-discrete
model M = ((X, CR),V) and SLCS formula φ with k operators, Sat terminates
in O(k · (|X |+ |R|)) steps.

Theorem 4. For any finite quasi-discrete closure model M = ((X, C),V) and
SLCS formula φ, x ∈ Sat(M, φ) if and only if M, x |= φ.

6 A Model Checker for Spatial Logics

The algorithm described in Section 5 is available as a proof-of-concept tool5.
The tool, implemented using the functional language OCaml, contains a generic

4 Function pre can be pre-computed when the relation R is loaded from the input.
5 Web site: http://www.github.com/vincenzoml/slcs.

http://www.github.com/vincenzoml/slcs

232 V. Ciancia et al.

Fig. 3. A maze Fig. 4. Model checker output

Let reach(a,b) = !((!b) U (!a));

Let reachThrough(a,b) = a & reach((a|b),b);

Let toExit = reachThrough(["white"],["green"]);

Let fromStartToExit = toExit & reachThrough(["white"],["blue"]);

Let startCanExit = reachThrough(["blue"],fromStartToExit);

Paint "yellow" toExit;

Paint "orange" fromStartToExit;

Paint "red" startCanExit;

Fig. 5. Input to the model checker

implementation of a global model-checker using closure spaces, parametrised by
the type of models.

An example of the tool usage is to approximately identify regions of interest
on a digital picture (e.g., a map, or a medical image), using spatial formulas. In
this case, digital pictures are treated as quasi-discrete models in the plane Z×Z.
The language of propositions is extended to simple formulas dealing with colour
ranges, in order to cope with images where there are different shades of certain
colours.

In Figure 3 we show a digital picture of a maze. The green area is the exit.
The blue areas are start points. The input of the tool is shown in Figure 5, where
the Paint command is used to invoke the global model checker and colour points
satisfying a given formula. Three formulas, making use of the until operator, are
used to identify interesting areas. The output of the tool is in Figure 4. The
colour red denotes start points from which the exit can be reached. Orange and
yellow indicate the two regions through which the exit can be reached, including
and excluding a start point, respectively.

Specifying and Verifying Properties of Space 233

Fig. 6. Input: the map of a town Fig. 7. Output of the tool

In Figure 6 we show a digital image6 depicting a portion of the map of Pisa,
featuring a red circle which denotes a train station. Streets of different impor-
tance are painted with different colors in the map. The model checker is used to
identify the area surrounding the station which is delimited by main streets, and
the delimiting main streets. The output of the tool is shown in Figure 7, where
the station area is coloured in orange, the surrounding main streets are red, and
other main streets are in green. We omit the source code of the model checking
session for space reasons (see the source code of the tool). As a mere hint on how
practical it is to use a model checker for image analysis, the execution time on
our test image, consisting of about 250000 pixels, is in the order of ten seconds
on a standard laptop equipped with a 2Ghz processor.

7 Conclusions and Future Work

In this paper, we have presented a methodology to verify properties that depend
upon space. We have defined an appropriate logic, stemming from the tradition of
topological interpretations of modal logics, dating back to earlier logicians such
as Tarski, where modalities describe neighbourhood. The topological definitions
have been lifted to a more general setting, also encompassing discrete, graph-
based structures. The proposed framework has been extended with a spatial
variant of the until operator, and we have also defined an efficient model checking
procedure, which is implemented in a proof-of-concept tool.

As future work, we first of all plan to merge the results presented in this
paper with temporal reasoning. This integration can be done in more than one
way. It is not difficult to consider “snapshot” models consisting of a temporal
model (e.g., a Kripke frame) where each state is in turn a closure model, and
atomic formulas of the temporal fragment are replaced by spatial formulas. The
various possible combinations of temporal and spatial operators, in linear and
branching time, are examined for the case of topological models and basic modal

6 c©OpenStreetMap contributors – http://www.openstreetmap.org/copyright.

http://www.openstreetmap.org/copyright

234 V. Ciancia et al.

formulas in [18]. Snapshot models may be susceptible to state-space explosion
problems as spatial formulas could need to be recomputed at every state. On
the other hand, one might be able to exploit the fact that changes of space over
time are incremental and local in nature. Promising ideas are presented both
in [17], where principles of “continuous change” are proposed in the setting of
closure spaces, and in [20] where spatio-temporal models are generated by locally-
scoped update functions, in order to describe dynamic systems. In the setting
of collective adaptive systems, it will be certainly needed to extend the basic
framework we presented with metric aspects (e.g., distance-bounded variants of
the until operator), and probabilistic aspects, using atomic formulas that are
probability distributions. A thorough investigation of these issues will be the
object of future research.

A challenge in spatial and spatio-temporal reasoning is posed by recursive
spatial formulas, a la μ-calculus, especially on infinite structures with relatively
straightforward generating functions (think of fractals, or fluid flow analysis of
continuous structures). Such infinite structures could be described by topologi-
cally enhanced variants of ω-automata. Classes of automata exist living in spe-
cific topological structures; an example is given by nominal automata (see e.g.,
[4,14,21]), that can be defined using presheaf toposes [13]. This standpoint could
be enhanced with notions of neighbourhood coming from closure spaces, with
the aim of developing a unifying theory of languages and automata describing
space, graphs, and process calculi with resources.

References

1. Aiello, M.: Spatial Reasoning: Theory and Practice. PhD thesis, Institute of Logic,
Language and Computation, University of Amsterdam (2002)

2. Aiello, M., Pratt-Hartmann, I., van Benthem, J. (eds.): Handbook of Spatial Logics.
Springer (2007)

3. Baier, C., Katoen, J.P.: Principles of model checking. MIT Press (2008)
4. Bojanczyk, M., Klin, B., Lasota, S.: Automata with group actions. In: LICS,

pp. 355–364. IEEE Computer Society Press (2011)
5. Bortolussi, L., Hillston, J., Latella, D., Massink, M.: Continuous approximation of

collective system behaviour: A tutorial. Perform. Eval. 70(5), 317–349 (2013)
6. Caires, L., Cardelli, L.: A spatial logic for concurrency (part I). Information and

Computation 186(2), 194–235 (2003)
7. Cardelli, L., Gardner, P., Ghelli, G.: A spatial logic for querying graphs. In:

Widmayer, P., Triguero, F., Morales, R., Hennessy, M., Eidenbenz, S., Conejo,
R. (eds.) ICALP 2002. LNCS, vol. 2380, pp. 597–610. Springer, Heidelberg (2002)

8. Cardelli, L., Gordon, A.D.: Anytime, anywhere: Modal logics for mobile ambients.
In: POPL, pp. 365–377. ACM (2000)

9. Chaintreau, A., Le Boudec, J., Ristanovic, N.: The age of gossip: Spatial mean field
regime. In: SIGMETRICS, pp. 109–120. ACM, New York (2009)

10. Ciancia, V., Latella, D., Loreti, M., Massink, M.: Specifying and verifying proper-
ties of space - extended version. CoRR, abs/1406.6393 (2014)

11. De Nicola, R., Ferrari, G.L., Pugliese, R.: Klaim: A kernel language for agents
interaction and mobility. IEEE Trans. Software Eng. 24(5), 315–330 (1998)

Specifying and Verifying Properties of Space 235

12. Del Bimbo, A., Vicario, E., Zingoni, D.: Symbolic description and visual querying of
image sequences using spatio-temporal logic. IEEE Trans. Knowl. Data Eng. 7(4),
609–622 (1995)

13. Fiore, M.P., Staton, S.: Comparing operational models of name-passing process
calculi. Information and Computation 204(4), 524–560 (2006)

14. Gabbay, M.J., Ciancia, V.: Freshness and name-restriction in sets of traces with
names. In: Hofmann, M. (ed.) FOSSACS 2011. LNCS, vol. 6604, pp. 365–380.
Springer, Heidelberg (2011)

15. Gadducci, F., Lluch Lafuente, A.: Graphical encoding of a spatial logic for the
π-calculus. In: Mossakowski, T., Montanari, U., Haveraaen, M. (eds.) CALCO 2007.
LNCS, vol. 4624, pp. 209–225. Springer, Heidelberg (2007)

16. Galton, A.: The mereotopology of discrete space. In: Freksa, C., Mark, D.M. (eds.)
COSIT 1999. LNCS, vol. 1661, pp. 251–266. Springer, Heidelberg (1999)

17. Galton, A.: A generalized topological view of motion in discrete space. Theoretical
Computer Science 305(1-3), 111 (2003)

18. Kontchakov, R., Kurucz, A., Wolter, F., Zakharyaschev, M.: Spatial logic + tem-
poral logic =? In: Aiello, et al. (eds.) [2], pp. 497–564

19. Kovalevsky, V.A.: Geometry of Locally Finite Spaces: Computer Agreeable Topol-
ogy and Algorithms for Computer Imagery. House Dr. Baerbel Kovalevski (2008)

20. Kremer, P., Mints, G.: Dynamic topological logic. In: Aiello, et al. (eds.) [2],
pp. 565–606

21. Kurz, A., Suzuki, T., Tuosto, E.: On nominal regular languages with binders.
In: Birkedal, L. (ed.) FOSSACS 2012. LNCS, vol. 7213, pp. 255–269. Springer,
Heidelberg (2012)

22. Rosenfeld, A.: Digital topology. The American Mathematical Monthly 86(8),
621–630 (1979)

23. Smyth, M.B., Webster, J.: Discrete spatial models. In: Aiello, et al. (eds.) [2],
pp. 713–798

24. van Benthem, J., Bezhanishvili, G.: Modal logics of space. In: Handbook of Spatial
Logics, pp. 217–298 (2007)

25. Yung Kong, T., Rosenfeld, A.: Digital topology: Introduction and survey. Computer
Vision, Graphics, and Image Processing 48(3), 357–393 (1989)

	Specifying and Verifying Properties of Space
	1 Introduction
	2 Closure Spaces
	3 Quasi-Discrete Closure Spaces
	4 A Spatial Logic for Closure Spaces
	4.1 Syntax and Semantics of

	5 Model Checking
	6 A Model Checker for Spatial Logics
	7 Conclusions and Future Work
	References

