
Visualizing and Debugging Complex

Multi-Agent Soccer Scenes in Real Time

Justin Stoecker and Ubbo Visser

Department of Computer Science,
University of Miami, Coral Gables FL

{justin,visser}@cs.miami.edu

Abstract. The RoboCup Soccer environment is one of the most diffi-
cult scenarios for autonomous agents. With the potential for so many
things to go wrong, debugging and analyzing agents’ behaviors becomes
a significant task. We propose RoboViz, an open-source program for inte-
grating agent-driven visualizations into a real-time, 3D rendered environ-
ment; the scene becomes a shared, interactive whiteboard for all agents,
and the user can moderate by filtering drawings they are interested in.
Visualization is an effective tool for tracking down errant behaviors and
explaining algorithms. RoboViz is embraced by the RoboCup Soccer
Simulation 3D sub-league as the de facto monitor application, and the
latest revision makes it useful for other leagues as well. We are currently
testing RoboViz in the Standard Platform League (SPL).

1 Introduction

A significant challenge in developing a robotic agent is debugging and evalu-
ating its behavior. The RoboCup Soccer scenario is one of the most difficult
environments for intelligent agents, and presents several hurdles: an uncertain
and dynamic world, multiple competitive and cooperative agents, physics, and
the need for high-level strategy. With such a challenging environment, it is in-
evitable that teams developing soccer agents for RoboCup will stumble over
bugs and struggle with solutions. As might be expected, teams competing in
the various RoboCup leagues develop their own specialized tools, in isolation,
to optimize and debug agent code. However, there is generally a lack of tools
that are truly beneficial to all teams participating in a league. In this paper, we
focus on the development and debugging issues shared by teams in the RoboCup
Soccer Simulation 3D sub-league; however, the same issues are relevant to other
RoboCup Soccer sub-leagues.

There are several challenges to overcome when interpreting robot behaviors,
such as localization or task planning, and simple approaches are often inadequate
in diagnosing problems. The real-time nature of the environment is the most no-
table complication: agents generally process input and act within milliseconds, so
outputting values on a console provides an incomprehensible amount of informa-
tion. Logging this information and parsing it later has two serious drawbacks: the
data can fill volumes very quickly, and it can be difficult to synchronize one agent’s

S. Behnke et al. (Eds.): RoboCup 2013, LNAI 8371, pp. 640–647, 2014.
c© Springer-Verlag Berlin Heidelberg 2014



Visualizing and Debugging Complex Multi-Agent Soccer Scenes 641

view of the world with an external ground truth. Because of the dynamic environ-
ment, inspecting a single agent using an interactive debugger, such as the GNU
Debugger, can be disruptive to a simulation or game and change the outcome.

Our answer to these problems is to visually integrate agent state and behavior
information into a 3D representation of the environment. The design of these
visualizations is delegated to individual agents; the soccer scene becomes a shared
whiteboard for all agents, and the user can moderate by filtering drawings they
are interested in. The primary contribution we present is a software program,
called RoboViz, which enables real-time visualization that is accessible through a
simple drawing protocol. RoboViz is also an implementation of the SimSpark [2]
soccer simulation monitor, and it provides additional functionality not previously
available. We expand on our recent work in [10] by redesigning the software to
be usable in environments outside 3D simulation.

In the next section, we cover some of the previous work that has been done
with regard to debugging or visualization in the RoboCup Soccer scenario. In
section 3, we describe our visualization approach. We comment on how RoboViz
has affected the 3D simulation sub-league in section 4, and we end with some
ideas for future progression and applicability to other leagues and areas.

2 Related Work

Several teams competing in the simulation leagues of RoboCup develop their own
tools specific to their team’s agent architecture. For the most part, these tools
are described in team description papers. The 2D simulation team Mainz Rolling
Brains developed a debug and visualization tool called FUNSSEL [1]. FUNSSEL
acts as a layer between the server and agents to intercept and process communi-
cation. The primary features of this software include filtering data, agent train-
ing, and graphic overlays for the 2D field in a secondary monitor. Other examples
of tools for the 2D league can be found, for example, in the Portuguese team
FC Portugal [9] and many other team description papers not mentioned here for
brevity. For the 3D simulation league, the team Virtual Werder 3D utilized an
evaluation tool [5] to analyze agent performance. The program also supported
basic drawings in a simplified 2D monitor; however, all analysis and visualization
was done on server and agent generated logs.

There have been few attempts at providing useful analysis and debugging tools
for the community. The logfile player and analyzer [8] provided improvements
to the log-playing capabilities of the 3D monitor; for example, it allows agents
to record behaviors as simple drawings displayed in the 3D scene when the log
is replayed. Additional features of this program included some basic filtering of
logfile data and an improved graphical user interface.

Simulators for multi-agent systems often include some manner of visualiza-
tion. Usually, these visualizations are for modeling the robots and environment.
However, a few simulators do provide additional functionality. In Webots [7], for
example, user code can initiate the drawing of primitives to further model the
robot components. Breve [4] is another simulation program that supports the



642 J. Stoecker and U. Visser

modeling and simulation of large multi-agent environments. Breve also exposes
simple drawing routines to add shapes to the scene. Yet another simulator that
has been used in the SPL would be SimRobot [6].

Tools mentioned in team description papers are, unfortunately, not well doc-
umented, obsolete, or unsuitable for general use as they may be tightly bound
to a particular agent framework. Simulators such as Webots and Breve, while
providing more advanced visualization capabilities, are unwieldy or impossible
to integrate into the SimSpark simulation; additionally, the drawing routines
exposed by these simulators are secondary and not integrated with the interface
in a meaningful way.

3 Approach

We frame our technical solution to visualizing agent state and behavior by using
the RoboCup Soccer Simulation 3D sub-league as an example. Other environ-
ments, such as the Standard Platform League, are less complicated to work with:
there is no server component to interface with. Games in the RoboCup Soccer
Simulation 3D sub-league consists of three components: (1) the simulation server,
implemented by rcssserver3d, orchestrates the simulation by computing physics,
enforcing rules, and managing the update cycle; (2) agents connect to the simula-
tion server to receive perceptors (sensor input and game state changes) and send
effectors (desired joint changes); (3) a monitor, implemented by rcssmonitor3d,
communicates with the simulation server to receive a scene graph for rendering,
and allows a user to referee the game. The simulation server, monitor, and each
agent runs as an individual processes that communicate using TCP and UDP
sockets.

simulation server

agent

agent

agent

roboviz

. . .
user

scene
graph

referee
commands

control

perceptors

drawings effectors

Fig. 1. Interaction between the components of a simulation-3D game, with RoboViz
replacing the default monitor. Each component runs as a separate process, with com-
munication handled by either TCP or UDP sockets. The dotted arrows between agents
and RoboViz indicate the optional visualization commands.



Visualizing and Debugging Complex Multi-Agent Soccer Scenes 643

RoboViz is our implementation of an advanced monitor, and it effectively
replaces the default implementation provided by rcssmonitor3d. The simulation
server communicates the environment in scene graph and game state objects;
these objects are sent to any monitor connected to the server when a change
occurs. The scene graph stores only the information necessary to render the
environment: geometric primitives, model names, transform matrices, lights, and
so forth. The game state contains information about the time, scores, team
names, rules, play mode, and field dimensions. It is up to the monitor to decide
how to parse this information and display it to a user. The monitor can also
send messages to the simulation server, which is useful for referee purposes.

In the physical sub-leagues, there is (clearly) no server to provide a scene
graph. The 3D scene must be rendered by a module in RoboViz that is spe-
cific to the environment. For example, a Standard Platform League module is
implemented that draws a field, field lines, and goals according to the dimen-
sions outlined in the rules. These modules require much less effort to implement
because there is no network communication or parsing required; these scenes
contain mostly static geometry, and the agents can visualize themselves using
the drawing protocol which is discussed next.

Efficiently rendering a scene is a non-trivial task, and RoboViz provides mod-
ernized graphics in comparison to rcssmonitor3d ; however, the rest of this paper
will focus on the agent-driven visualization capabilities of RoboViz. A protocol
is provided that allows external processes to submit 3D drawings, in real time,
that are integrated directly into soccer scene. Figure 2 shows an example where
agents on the blue team are drawing circles, lines, and points that represent
believed orientations, path-planning, localization particles, and so forth.

Fig. 2. This rendered scene highlights some of the graphics and visualization capabil-
ities of RoboViz. The robots, field, ball, and goals are constructed entirely from the
simulation server’s scene graph message. Colored drawings, like the circles and lines,
are shapes submitted directly from individual agents in the RoboCup Simulation 3D
sub-league.



644 J. Stoecker and U. Visser

3.1 Drawing Protocol

A simple network protocol enables clients, such as agents, to draw shapes in
RoboViz. This visualization interface is intentionally low level, and it provides
great flexibility and is easy to integrate into existing agent architectures. Clients
interact with RoboViz by issuing commands. An example of a command is draw
line. Commands are serialized into bytes1, and each command has a unique
format so it can be tightly packed in a buffer. When a client is ready to submit
drawings, it can fire off a UDP packet to RoboViz that contains one or more
commands. We chose UDP primarily because we expect for RoboViz and agents
to be run on the same host or LAN, where packet loss is highly uncommon.
UDP simplifies the connections between RoboViz and agents, which may crash
unexpectedly, and makes it easier for teams to add drawing functionality to their
agents.

To make the visualization interface flexible, all drawing is accomplished by
working with a small set of shapes: circles, points, lines, spheres, and convex
polygons. More complex shapes can be constructed from these primitives. In
addition to geometric shapes, strings can be rendered by RoboViz. We refer to
both geometric shapes and text drawings as draw commands. Draw commands
includes properties such as position, color, and scaling, and they also contain a
name.

The name assigned to a drawing is very important, because all drawings with
the same name will be grouped into a shape set within RoboViz. Grouping shapes
into sets is useful so drawings can be filtered inside RoboViz. For example, each
robot may have its own set of shapes, so the user can choose to render only that
particular agent’s shapes and hide everything else. A robot may also have sets
based on behaviors or algorithms. How the shape names are chosen is entirely up
to the agent programmer; however, we recommend a hierarchical naming pattern,
as the shapes are stored as a tree in RoboViz. Each shape set is a node in the
tree. For instance, a shape set name such as RoboCanes.1.PathPlanning could
be used to indicate all shapes belonging to the first agent on the RoboCanes
team that pertain to path planning; this shape set is the child of RoboCanes.1,
which is the child of RoboCanes. The advantage of this convention is that the
user can filter rendered drawings very easily.

3.2 Rendering Control

Let’s say an agent wants to draw a circle to represent its current location. This
position changes constantly, so a new circle is drawn every cycle. Very quickly,
the scene is flooded with circles because none of the old ones have been removed.
The drawing protocol has another command, swap buffers, that will clear out
all of the existing shapes whose names begin with a given string. For example,
the shape sets RoboCanes.1.PathPlanning and RoboCanes.1.Localization would

1 For detailed command formats refer to the documentation:
https://sites.google.com/site/umroboviz/drawing-api/draw-commands

https://sites.google.com/site/umroboviz/drawing-api/draw-commands


Visualizing and Debugging Complex Multi-Agent Soccer Scenes 645

both be cleared by issuing a swap buffer with RoboCanes.1 as the argument.
This allows the programmer to avoid lots of extra commands if they organize
their shape sets in a hierarchical fashion.

The command is called swap buffers instead of clear or reset because it ad-
dresses another problem. During rendering, it’s not possible for RoboViz to
iterate over a set of shapes while new shapes are being added: the rendering
and network communication of RoboViz are handled by separate threads. Each
shape set has two buffers: a front and back buffer. When a client sends a draw
command, RoboViz parses the shape and adds it to the back buffer. These shapes
will not be visible until the client sends a swap command, at which point the
back and front buffers exchange roles. This behavior enables asynchronous read-
ing and writing of shapes. In other words, the front buffer always contains a
set’s shapes which may be rendered in RoboViz. The swap buffers command is
synchronized inside of RoboViz, and will block while shapes are being rendered.

It is important to note that as soon as RoboViz executes a buffer swap, the
shape set’s new back buffer is cleared of all shapes. If multiple agents try to
swap the buffers of the same shape set, flickering will occur in RoboViz. For this
reason it is expected that agents will submit drawings relevant to their own state
or behavior within their own shape sets, but this is not strictly required. A team
may, for instance, designate a captain that sends drawings relevant to the team
as a whole. We did not wish to impose a set of rules on how drawings should be
assigned to RoboViz, so there is nothing to prevent agents from sending drawings
identified by names other than their own.

3.3 Implementation

RoboViz was programmed in Java to mitigate cross-platform issues and reduce
the number of libraries needed: the Java runtime environment provides solu-
tions for networking, threading, windowing, and GUI development. This makes
RoboViz especially easy to deploy on any platform, and the source code can
be compiled on any Linux, Windows, or OS X system that has Java and re-
cent graphics drivers. Rendering is done entirely with OpenGL through the Java
Bindings for OpenGL (JOGL) library [3]. We have made RoboViz open source
under the Apache 2.0 License.

4 Results

RoboViz is particularly useful for visualizing belief states and high-level strate-
gies. We have seen drawings for localization routines, path planning, decision-
making, and behavior modeling. Figure 3 shows visualizations from robots in
the Simulation 3D and SPL environments.

RoboViz has been adopted as a monitor for the RoboCup Soccer Simulation
3D sub-league since it was announced: the source code was released in February
2011, and its first public use in competition was at the 2011 RoboCup Ger-
man Open held in Magdeburg, Germany. This was followed by official use at



646 J. Stoecker and U. Visser

(a) (b) (c)

Fig. 3. In (a), a Sim3D agent’s search tree is visualized to show path planning from
the blue circle (current state) to the yellow circle (desired state). The chosen path
is highlighted in blue, with other options in white, and the pink circle is the first
destination to reach without collision. In (b), a NAO robot kicks a ball towards the
goal; this scene is visualized in RoboViz in (c): the red and blue dots indicate the robot
part centers and orientations; the red vectors are the robot’s orientation; and the blue
circles indicate the path.

RoboCup 2011 in Istanbul, Turkey and RoboCup 2012 in Mexico City, Mexico.
The visualization feature of RoboViz has been popular with many teams in the
3D simulation sub-league. In particular, we would like to note that many of
the teams in the RoboCup 2012 semi-finals used RoboViz during development.
We have also seen agent frameworks released that explicitly provide support for
RoboViz [11].

Outside of RoboCup, we have seen RoboViz incorporated into courses in
multi-agent systems at the University of Miami and the University of Texas
at Austin2. RoboViz has also been used at the University of Miami as a demon-
stration tool to promote awareness of the RoboCup events and attract students
to computer science.

5 Conclusion and Future Work

Our initial goal with RoboViz was to present a tool that was accessible and
useful to the entire simulation 3D sub-league. We believe this has been clearly
demonstrated over the past two years: several teams make use of the visualization
capabilities, and RoboViz is used at the major competitions as the monitor. As
a bonus, RoboViz has been used for education purposes outside of RoboCup.

Moving forward, we would like to see RoboViz used in other RoboCup soccer
leagues, such as the Standard Platform League. It would be especially interesting
to see teams that write cross-league agents that can reuse the same tools. While
the primary release of RoboViz3 is still focused on the Simulation 3D sub-league,
a branch4 is under development that makes the tool usable for many other

2 http://www.cs.utexas.edu/~todd/cs344m/
3 http://sourceforge.net/projects/rcroboviz/
4 https://github.com/jstoecker/roboviz

http://www.cs.utexas.edu/~todd/cs344m/
http://sourceforge.net/projects/rcroboviz/
https://github.com/jstoecker/roboviz


Visualizing and Debugging Complex Multi-Agent Soccer Scenes 647

environments; our team, RoboCanes, is using this for use with our NAO robots.
We expect this branch to become the primary version as it is polished for use
in RoboCup 2013. Adding support for heterogeneous robot types would also be
useful for 3D simulation.

Acknowledgments. The authors would like to thank Klaus Dorer of mag-
maOffenburg5 and Drew Noakes for contributing to the source code of RoboViz.
Thanks to Andreas Seekircher for the images used in figure 3.

References

1. Arnold, A., Flentge, F., Schneider, C., Schwandtner, G., Uthmann, T., Wache,
M.: Team Description Mainz Rolling Brains 2001. In: Birk, A., Coradeschi, S.,
Tadokoro, S. (eds.) RoboCup 2001. LNCS (LNAI), vol. 2377, pp. 531–534. Springer,
Heidelberg (2002)

2. Bödecker, J., Dorer, K., Rollmann, M., Xu, Y., Xue, F.: SimSpark User’s Manual
(June 2008)

3. Java Bindings for OpenGL (JOGL), http://www.jogamp.org
4. Klein, J., Spector, L.: 3D Multi-Agent Simulations in the breve Simulation Environ-

ment. In: Komosinski, M., Adamatzky, A. (eds.) Artificial Life Models in Software,
pp. 79–106. Springer, London (2009)

5. Lattner, A.D., Rachuy, C., Stahlbock, A., Warden, T., Visser, U.: Virtual Werder
3D Team Documentation 2006. Technical Report 36, TZI, Universität Bremen
(August 2006)

6. Laue, T., Röfer, T.: Simrobot-development and applications. In: The Universe of
RoboCup Simulators-Implementations, Challenges and Strategies for Collabora-
tion. Workshop Proceedings of the International Conference on Simulation, Mod-
eling and Programming for Autonomous Robots (SIMPAR 2008). LNCS (LNAI).
Springer, Heidelberg, Citeseer (2008)

7. Michel, O.: Webots: Professional Mobile Robot Simulation. Journal of Advanced
Robotics Systems 1(1), 39–42 (2004)

8. Planthaber, S., Visser, U.: Logfile Player and Analyzer for RoboCup 3D Simulation.
In: Lakemeyer, G., Sklar, E., Sorrenti, D.G., Takahashi, T. (eds.) RoboCup 2006.
LNCS (LNAI), vol. 4434, pp. 426–433. Springer, Heidelberg (2007)

9. Reis, L.P., Lau, N.: FC Portugal Team Description: RoboCup 2000 Simulation
League Champion. In: Stone, P., Balch, T., Kraetzschmar, G. (eds.) RoboCup
2000. LNCS (LNAI), vol. 2019, pp. 29–40. Springer, Heidelberg (2001)

10. Stoecker, J., Visser, U.: RoboViz: Programmable Visualization for Simulated Soc-
cer. In: Röfer, T., Mayer, N.M., Savage, J., Saranlı, U. (eds.) RoboCup 2011. LNCS,
vol. 7416, pp. 282–293. Springer, Heidelberg (2012)

11. TinMan. C-Sharp framework for 3D simulation league,
http://code.google.com/p/tin-man/

5 http://robocup.fh-offenburg.de/html/index.htm

http://www.jogamp.org
http://code.google.com/p/tin-man/
http://robocup.fh-offenburg.de/html/index.htm

	Visualizing and Debugging ComplexMulti-Agent Soccer Scenes in Real Time
	1 Introduction
	2 Related Work
	3 Approach
	3.1 Drawing Protocol
	3.2 Rendering Control
	3.3 Implementation

	4 Results
	5 Conclusion and Future Work
	References




