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Abstract. This paper presents the latest progress of WrightEagle, the
champion of RoboCup 2D simulation league. We introduce a decision-
making framework, an extension of MAXQ-OP framework using multiple
heuristic functions and a reachable state checking method. The experi-
mental results show that our approach improves the quality of solutions
in complex situations.

1 Introduction

The most important characteristic of Robocup 2D simulation league is that the
soccer matches only run in computers, where there is only software without any
physical robots or other hardwares. Without physical layers, e.g., motion control
and image processing, Robocup 2D simulation teams can avoid hardware limita-
tions and focus on research topics such as high level decision-making, learning,
and multi-agent collaboration. Therefore, the Robocup 2D simulation compe-
tition becomes an important test bed of large-scale decision-making, machine
learning and multiagent system research. Each participating team will compete
with many other teams, which may be developed in different approaches. For in-
stance, at Robocup 2013, there were a total of 20 teams from 9 countries entering
the 2D simulation competition’.

Taking into account the scale of the 2D simulation competition, making good
decisions against so many different opponents is a very challenging task and
dealing with complex and varied situations is very difficult[3].

This paper introduces the RoboCup 2013 Soccer Simulation 2D League cham-
pion team, WrightEagle, that has won 4 champions and 5 runners-up in the past 9
years. Particularly, we introduce some latest innovations in WrightEagle2D Sim-
ulation Team. These innovations expand and implement MAXQ-OP framework
and focus on how to extend the search depth in the decision-making procedure
to deal with complex and diverse situations and improve the quality of solutions.

The remainder of this paper is organized as follows. Section 2 introduces some
background knowledge and motivations. Section 3 presents the decision-making

! The detailed competition results can be found at:
http://www.oliverobst.eu/research/gliders2013-simulation-league-
robocup-team-overview/robocup-2013
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framework we developed. Section 4 and Section 5 describe more details about the
decision-making framework including the reachable states checking method and
the evaluation system. Section 6 presents the experimental results. We discuss
some related work briefly in Section 7 and conclude the paper in Section 8.

2 Background

2.1 Robocup Soccer Simulation League 2D

In 2D simulation competition, each team is constructed of 12 agents, includ-
ing 11 players and an online coach. Then, all the agents separately connect to
the competition server which simulates the world including the dynamics and
kinematics of the players and ball. The information sent to each player in every
decision cycle by the server is highly uncertain and incomplete, which depends
on the field’s and the agent’s own situation. Then, after receiving information,
each agent has to send the actions back to server for execution in the simulated
world. The whole process takes no more than 100 milliseconds (ms) which is one
of the most difficult forces, so the agents must respond in a rapid way. In 2D
simulator, actions are abstract commands such as turning the body and neck
by a specified angle, dashing to a specified angle with a specified power, kicking
to a specified angle with a specified power or tackling in a specified angle. The
2D simulator does not model the motions of any real robot but an abstracted
player.

In Robocup 2D simulation league, we face up to two challenges. Firstly, the
search space is extremely large. The simulator simulates the whole continuous
2D space on the standard 65m x 105m soccer field. Moreover, the number of
agents greatly influences the decision-making efficiency. Since each player has
10 teammates, 11 opponents and a coach on both sides, to build the teammate
model and the opponent model is an extremely demanding job. All of the above
factors increase the difficulty of designing an effective search algorithm for this
problem. Secondly, the other challenge is the limited computation time in each
decision cycle. In every cycle, which is 100 ms, considering the network delay
and other necessary time cost, the agent has to make a decision within 70 ms.
Due to the above restrictions, it is a great challenge to extend the search depth
to a satisfactory level.

2.2 MAXQ Hierarchical Decomposition

The WrightEagle team is developed base on the Markov Decision Processes
(MDPs) framework [1] with the MAXQ hierarchical structure [2] and heuristic
approximate online planning techniques in the past years[3][4].

Generally, the MAXQ technique decomposes a given MDP into a set of sub-
MDPs arranged over a hierarchical structure. Each sub-MDP is treated as a
distinct subtask.

Given the hierarchical structure, a hierarchical policy m is defined as a set of
policies for each subtask 7 = {mg, 71, - , 7, }, where 7; is a mapping from active



116 H. Zhang and X. Chen

states to actions m; : S; — A;. The projected value function of policy w for a
subtask M; in state s, V7 (i, s), is defined as the expected value after following
policy 7 in a state s until the subtask M; terminates in one of its terminal states
in G;. Similarly, Q™ (i, s, a) is the expected value by firstly performing action M,
in state s, and then following policy 7 until the termination of M;. It is worth
nothing that V™ (a,s) = R(s, a) if M, is a primitive action (a € A).

Dietterich [2] has shown that the value function of policy 7 can be expressed
recursively as:

Q" (i,s,a) =V™(a,s)+ C"(i,s,a) (1)
where (5.1) .
x| R(s,i if M; is primitive
V(i s) = {Q”(i,s,w(s)) otherwise (2)

C™(i,s,a) is the completion function that estimates the cumulative reward re-
ceived with the execution of action M, before completing the subtask M;, as
defined below:

C™(i,s,a) =Y N P(s',Nls,a)V"(i, '), (3)

s',N

where P(s’, N|s,a) is the probability that subtask M, in s terminates in s" after
N steps.

3 The Decision-Making Framework

This section presents a decision-making framework that has been implemented
in WrightEagle 2D simulation team for for the macro action attack. This frame-
work implements and extends the MAXQ-OP framework. We introduce more
complete ideas of heuristic search and other techniques for transforming MAXQ-
OP framework to adapt to the needs of the 2D simulation league. In past years,
we have used MAXQ-OP framework to define a series of subtasks at different
levels[4], the decision-making framework is operating at the level of shoot, drib-
ble, and pass etc.

In order to maximally approximate the optimal Q™(4,s,a) values, we use a
heuristic method to choose the direction of extension of the Q™ (i, s, a).

Overall decision-making framework presented in Algorithm 1 is similar to the
best-first search. The search process forms a search tree starting from the initial
state and always extends the state which has the best evaluation. The framework
generates next level states from a certain state and pushes these states into an
ordered list sorted by evaluation. And we introduce the idea of anytime algorithm
into the decision-making framework and limited search depth to an acceptable
range.

In order to meet the time cost restrictions of Robocup 2D Simulation League
meanwhile making good decision results, the framework has following features
and components:

State and Action. The state in the framework records most of the informa-
tion from the field, such as the positions of all players and ball. Except field
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information, we add the transition probability from an initial state to the
current state. We will introduce more information of the transition probabil-
ity in Section 4. We use macro actions, defined in MAXQ-OP framework[4],
to get the successor states.

Evaluation System. In order to evaluate and choose an action, the MAXQ-OP
framework compute the optimal projected value function. And to meet the
needs of the Robocup 2D simulation league, we have to extend the MAXQ-
OP framework. Then, we develop the evaluation system to evaluate all the
actions and states generated by decision-making framework. More details
are introduced in Section 4.

Reachable States Checking. To achieve better search results in limited time,
we have to skip those unreachable states during the search process. We de-
veloped a reachable states checking method. We will presents more details
in Section 5.

Algorithm 1. Decision(s)

Input: A state, s.
Output: Evaluation of the state.

1: MaxFEva < —oc0

2: SearchNode < 0
3: Insert(SearchList,InitState)
4: while Empty(SearchList) = False and SearchNode < MaxSearchNode do
5: State < Top(SearchList)
6: Pop(SearchList);
7 SearchNode < SearchNode + 1
8: if GetDepth(State) > MaxSearchStep then
9: continue
10: else
11: for all Teammate do
12: BehaviorList < CalcAction(Teammate, State)
13: for all Behavior in BehaviorList do
14: NextState + GenerateNextState(Behavior)
15: NextEva < Evaluate(NextState)
16: MazEva <+ Maz(MazEva, NextEva)
17: Insert(SearchList,NextState)
18: SortByEvaluation(SearchList);
19: end for
20: end for
21: end if

22: end while
23: return MaxEva



118 H. Zhang and X. Chen

@

Fig. 1. Example of search process

4 The Evalution System

As we mentioned in Section 3, we hope that algorithm approximate the optimal
Q7 (i,s,a) value as soon as possible. We use heuristic method to choose the
direction of extension of Q™ (4, s, a). This heuristic method is natural to combine
with the sparse property of the reward function of Robocup 2D simulation league.

From the perspective of soccer, when scoring, the soccer team get a high
reward. Otherwise the reward is 0. The reward function has a sparse property
which has the effect that the forward search process often terminates without
any reward obtained. So we have to find an approach to help us to distinguish the
states with a high possibility of scoring from all states to accelerate the search
process and seize opportunities on the competition. An intuitive idea is using a
heuristic function as the reward function.

We developed a heuristic evaluation system for long-term search algorithm.
The input is a state and the output is the estimates of the possibility to score from
this state. The evaluation system is composed of simple and intuitive heuristic
functions such as the distance of the ball to the opponent’s goal.

After combining MAXQ hierarchical decomposition and heuristic reward, we
get a complete evaluation system as:

Qi,s,a) = V(a,s) + C(i, s,a) (4)
.y [ maz.Q(i,s,a) ifiis composite
C {R(s,i) otherwise (5)
and
Cliys,a) = Y ANT(s',Ns,a)V (i, s") (6)

s',N



The Decision-Making Framework of WrightEagle 119

[ H(s,i) ifsisa terminal state
R(s,1) = {0 otherwise

Figure 2 and Figure 3 are examples of this Evaluation System.

start = So R=0
a1,P1,Ch
S1 R=0
az,P,C2
S2 R=0

a3,Ps3,C3

S3

HeuristicReward = H(S3)

E3 = P1 * P2 * P3 * R(Sg) * ’y(cl+02+c3)
E(So, al) = max(El, EQ, Eg)

Fig. 2. An example of evaluation system. States Sp, S1,S2 are intermediate states and
state S3 is the terminal state.a1, az2,as are actions. Pi, P2, Ps are transition probabili-
ties. C' is the number of steps of corresponding macro actions.

When the search precess begins, starting from the initial state, the evaluation
system evaluates the initial state to get a heuristic reward, H(s). Then the
algorithm will extend this state to get the successor states. When a new state is
found, the algorithm replaces the predecessor state’s heuristic reward with the
actual reward, which equals to 0 most of the time, and the evaluation system
gives the new state a heuristic reward, H(s').

In the search process, the terminal state will continue to be extended to be-
come an intermediate state. This evaluation method not only depends on the
current state but also the sequence of states that preceded it. However, if add
a variable, the transition probability from the initial state to the state, into
the state, then the evaluation system would not depend on the specific search
history.

5 The Reachable States Checking

Through observation of the MAXQ-OP framework equation 8 and 2D simulation
league, most of the transition probability, P(s’, N|s, a), between states is 0. So we
only extend a small number of successor states in the decision-making process.
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start — Sp

a1,P1,Ch
S1
az,P,C
Sa
a3,P;,C3

S3

a4,P1,C4

Sy

Ey= Py % Py % Py % Py x R(Sy) % (C1+C2+C3+C0)
E(So, al) = max(El, EQ, Eg, E4)

Fig. 3. After extented state S3, the evaluation system replace the heuristic reward of
S3 with 0 and give the new state S4 a heuristic reward

And if we can greatly speed up the unreachable states detection speed, we can
deepen the search depth.

C7(i,s,a) = Y ANP(s',N|s,a)V7(i, '), (®)
s’ N
According to the transition function as given in [4], we simplify the state
reachable problem as from an initial position after certain cycles whether a player
is able to reach a particular position. So we developed a teammates control area
marking system to check whether the state is reachable to speed up our search
process.
In order to ensure the checking speed, we gave up the pursuit of absolute
accuracy:

— We simplify player motion model, in the simplified motion model and player
state, consider only dash, do not consider turn or other actions.

— We simplified player state, consider only distance, do not consider body angle
or other information.

— We divide the continuous soccer field into the discrete space.

In fact, if we compute the minimum number of cycles that players from an
initial state to reach another state, the result to use simplified state and motion
model is always the lower bound of the result to use full state and motion model.
It means if a state is unreachable in simplified state and motion model it must
be unreachable in the normal model. But the other way around is non truth, if
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a state is reachable in simplified state and motion model, it may be reachable or
unreachable in the normal model, such cases require a more precise computation.

As in the figure, Figure 4, we divided the field into a number of small areas.
Each area has a controller, and in the example, different colors represent different
controller. The longer idled player has a bigger control area. If a area is not being
controlled by any player, it is an unreachable state.

Fig. 4. Red lines mean the passes in history, black lines mean the considering passes.
Different colors represent different teammates’ control areas.

6 Experiments

In order to evaluate our framework, we use both time consumption and win rate
to analyse the performance.

In the aspect of time consumption, worst case is most important, because time
limitation is fixed. All we need to do is make sure the decision-making process
in the worst case can be finished in time limitation.

To ensure the increase of time consumption is caused by the increase of search
depth. We use tools?, included in WrightEagleBase, DynamicDebug and Time-
Test to finish this job. DynamicDebug allows us to reproduce the game scene
and TimeTest allows us to analyse time consumption of specific function.

Table 1 shows the time consumption of different search depth with same
DynamicDebug log files, which mean the same game and player role. Because of
the search speed up methods, for example the reachable states checking, time

2 Downloadable from http://ai.ustc.edu.cn/en/robocup/
2D/releases/WrightEagleBASE-4.0.0.tar.gz
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consumption increases linearly. However, in practice, after taking into account
other factors such as network communication delay and other behaviors, the max
acceptable search depth is 3. When search depth reaches 4, the players begin to
appear to miss the decision cycle.

Table 1. Time consumption

Search Depth 1 2 3 4
Sum Consumption (ms) 77.7 106.4 150.7 192.7
Max Consumption (ms) 14.3 26.2 39.7 54.9
Min Consumption (ms) 0.1 0.1 0.2 0.2

For each version, we tested the team in full games with Helios2012, the cham-
pion of Robocup 2012. We independently ran each version against the binary
code of Helios2012 officially released by Robocup 2012 for 150 games on the
same hardware and software environment.

Table 2. Winning Rate

Search Depth Winning Rate
58.0%
62.0%
68.7%
59.2%

=W N =

Table 2 shows the winning rates of different search depth of 150 games. The
result shows the team performance is increased when search depth increases.
However, in the case of search depth 4, the impact of computation timeout
caused the decrease of winning rate.

The search depth 1 performs a greedy strategy, the greedy strategy is not
bad in most of time. Players continue to play forward, and as long as we are
lucky enough, the ball will be eventually scored the goal. Of course, we cannot
be always lucky enough. In this situation, the players often ignore long-term
rewards. The player only holds the ball and waits for opponents to scramble.

Then, in the search depth of 2 and 3, this problem is more and more improved.
The players will avoid some of the obvious short-sighted behavior. For example,
if the direction of attack stuck on, and the whole team will make several passes,
thereby changing the direction of the attack. Otherwise in greedy strategy, the
player will hold the ball and the match will fall into deadlock.

7 Related Work

Some teams in the 2D league using search techniques make decisions. The He-
lios team [5,6] have developed a framework for online multiagent planning. The
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framework includes ActionGenerator and FieldEvaluator. The ActionGenerator
generates candidate action instances for a node in the search tree, a node from
the root node to leaf node is an action sequence.The FieldEvaluator evaluates
the value of the action-state pair instances that are generated by ActionGener-
ator. The value of an action sequence is the sum of the each state variables.
The WrightEagle team used an approach based on MAXQ-OP to automate
planning. It combines the benefits of a general hierarchical structure based on
MAXQ value function decomposition with the power of heuristic and approxi-
mate techniques. In this paper, we further develop this work. We created a new
decision-making framework based on the MAXQ-OP framework with heuristic
functions and other methods to accelerate the search process.

More teams in the 2D league[7,8] tried to improve performance with machine
learning (ML) techniques. The most preferred ML methods is Reinforcement
learning (RL), based on the general idea that an autonomously acting agent ob-
tains its behavior through repeated interaction with its environment on a trial
and error basis, by processing and integrating the experience the agent has gath-
ered into a value function that tells how much it may be worth entering some
state by taking some specific action. For example, team AT Humboldt [7], fo-
cusing on the task of learning to dribble, used a specialized version of Watkins
Q-learning algorithm and integrates it into a framework where a proper represen-
tation of the state and action spaces was learned using an evolutionary approach.
The opposite problem, i.e. the task of attacking and disturbing a dribbling op-
ponent player in order to scotch the opponent teams attack at an early stage
and to gain ball possession, has been targeted by the Brainstormers team. Using
a partial model of the soccer environment and utilizing a temporal difference RL
approach in conjunction with neural net-based value function approximation,
they learnt a behavior for the mentioned task which significantly boosted team
performance [8].

8 Conclusion

This paper introduces the champion of the RoboCup 2013 2D simulation league,
WrightEagle. We describe some recent efforts to deal with complex and diverse
situations and improve the quality of the solutions.

First, we developed a decision-making framework which transformed and ex-
tended the MAXQ-OP framework into Robocup simulation league 2D. The
decision-making framework combined the heuristic evaluation function and best-
first search algorithm. Second, we used the heuristic function to extend the defini-
tion of reward function of MAXQ-OP framework, and discussed the properties
and features of this method. Third, we introduced a reachable state checking
method to speed up the search process. And we stated if the checking result of
a state is unreachable, then it promised to be unreachable. Otherwise, it may or
may not be reachable.

Combined above methods, we successfully extended the search depth and got
better search results in limited decision-making time.
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