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Abstract. We study the classical problem of privacy amplification,
where two parties Alice and Bob share a weak secret X of min-entropy
k, and wish to agree on secret key R of length m over a public commu-
nication channel completely controlled by a computationally unbounded
attacker Eve.

Despite being extensively studied in the literature, the problem of de-
signing “optimal” efficient privacy amplification protocols is still open,
because there are several optimization goals. The first of them is (1)
minimizing the entropy loss L = k − m. Other important considera-
tions include (2) minimizing the number of communication rounds, (3)
maintaining security even after the secret key is used (this is called post-
application robustness), and (4) ensuring that the protocol P does not
leak some “useful information” about the source X (this is called source
privacy). Additionally, when dealing with a very long source X, as hap-
pens in the so-called Bounded Retrieval Model (BRM), extracting as
long a key as possible is no longer the goal. Instead, the goals are (5)
to touch as little of X as possible (for efficiency), and (6) to be able to
run the protocol many times on the same X, extracting multiple secure
keys.

Achieving goals (1)-(4) (or (2)-(6) in BRM) simultaneously has re-
mained open. In this work we improve upon the current state-of-the-art,
by designing a variety of new privacy amplification protocols, thereby
achieving the following goals for the first time:
– 4-round (resp. 2-round) source-private protocol with optimal entropy

loss L = O(λ), whenever k = Ω(λ2) (resp. k > n
2
(1 − α) for some

universal constant α > 0).
– 3-round post-application-robust protocols with optimal entropy loss

L = O(λ), whenever k = Ω(λ2) or k > n
2
(1 − α) (the latter is also

source-private).
– The first BRM protocol capable of extracting the optimal number

Θ(k/λ) of session keys, improving upon the previously best bound
Θ(k/λ2). (Additionally, our BRM protocol is post-application-
robust, takes 2 rounds, and can be made source-private by increasing
the number of rounds to 4.)
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1 Introduction

We study the classical problem of privacy amplification [3,22,2,23] (PA), in which
two parties, Alice and Bob, share a weak secret X (of length n bits and min-
entropy k < n) and wish to agree on a close-to-uniform secret key R of length m
bits. We consider the active-adversary case, in which the communication channel
between Alice and Bob can be not only observed, but also fully controlled, by a
computationally unbounded attacker Eve. The most natural quantity to optimize
here is the entropy loss L = k−m (for a given security level ε = 2−λ), but several
other parameters (described below) are important as well.

Aside from being clean and elegant, this problem arises in a number of ap-
plications, such as biometric authentication, leakage-resilient cryptography, and
quantum cryptography. Additionally, the mathematical tools used to solve this
problem (such as randomness extractors [24]) have found many other applica-
tions in other areas of cryptography and complexity theory. Not surprisingly, PA
has been extensively studied in the literature, as we survey below.

In the easier “passive adversary” setting (in which Eve can observe, but not
modify), PA can be solved by applying a (strong) randomness extractor [24],
which uses a uniformly random nonsecret seed S to extract nearly uniform se-
cret randomness from the weak secret X . A randomness extractor accomplishes
passive-adversary PA in one message: Alice sends the seed S to Bob, and both
parties compute the extracted key R = Ext(X ;S). Moreover, it is known that
the optimal entropy loss of randomness extractors is L = Θ(log (1/ε)) [25], and
this bound can be easily achieved (e.g. using the Leftover Hash Lemma [16]).

Active Eve Setting: Number of Rounds vs. Entropy Loss. The sit-
uation is more complex in the “active Eve” setting. Existing one-message so-
lutions [23,9] work for min-entropy k > n/2 and require large entropy loss
L > n − k. It was shown by [13,14] that k > n/2 is necessary, and that the
large entropy loss of n− k is likely necessary, as well. Thus, we turn to protocols
of two or more rounds.

Two rounds were shown to be sufficient by [14], who proved, nonconstruc-
tively, the existence of two-round PA protocols with optimal entropy loss
L = Θ(log (1/ε)) for any k. (This was done using a strengthening of extractors,
called non-malleable extractors, whose existence was shown in [14].) Construc-
tively, no such protocols are known, and all known constructive results sacrifice
either the number of rounds, or the entropy loss, or the minimum entropy re-
quirement. A protocol of [19, Theorem 1.9] (building on [27,17,6]) sacrifices the
number of rounds: it achieves L = O(log (1/ε)), but only in O(1+log (1/ε) /

√
k)

rounds. The protocol of [19, Theorem 1.6] (building on [14]) sacrifices the mini-
mum entropy requirement: it achieves L = O(log (1/ε)) in two rounds, but only
when k = Ω(log2(1/ε)). Protocols of [10,7,18,20] make an incomparable mini-
mum entropy requirement: they also achieve L = O(log (1/ε)) in two rounds,
but require that k > n/2 (with the exception of [20], who slightly relaxed it
to k > n

2 (1 − α) for some tiny but positive constant α). These protocols also
built the first constructive non-malleable extractors when k > n/2. The result of
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[19, Theorem 1.8] (building on [10,18]) further relaxes the entropy requirement
to k > δn for any constant δ > 0. It also achieves L = O(log (1/ε)) in two
rounds, but the constant hidden in the O-notation is g(δ) = 2(1/δ)

c

for some
astronomical (and not even exactly known) constant c.1 More generally, since
some of the protocols mentioned above hide relatively large (or, as in the last
example, even astronomical) constant factors, simpler protocols (such as [14] or
[17]) may outperform asymptotically optimal ones for many realistic settings of
parameters.

To summarize, the landscape of existing PA protocols is rather complex, even
if we consider only the tradeoff between the min-entropy, the entropy loss, and
the number of rounds. The situation becomes even more complex, if one adds ad-
ditional highly desirable properties: source privacy, post-application robustness,
and local computability. We consider those next.

Source Privacy. Intuitively, this property demands that the transcript of
the protocol (even together with the derived key R!) does not reveal any “use-
ful information” about the source X ; or, equivalently (as shown by [12]), that
the transcript does not reveal any information at all about the distribution of
X (beyond a lower bound k on its min-entropy). For the case of passive Eve,
source privacy was considered by Dodis and Smith [12], who showed that ran-
domness extractors are indeed source-private. For active Eve, the only work that
considered this notion is the elegant paper [4], which constructed a 4-round pri-
vate protocol with entropy loss L = O(log2(1/ε)). Thus, unlike for PA protocols
without source privacy,

(A) no source-private PA protocol is known which achieves either optimal en-
tropy loss L = O(log (1/ε)), or fewer than four rounds.

Post-Application Robustness. Informally, the basic authenticity notion of
PA protocols, called pre-application robustness by [9], simply states that Eve
cannot force Alice and Bob to agree on different keys RA �= RB. While easy to
define, this property is likely insufficient for most applications of PA protocols,
because in any two-party protocol, one party (say, Bob) has to finish before the
other party. In this case, Bob is not sure if Alice ever received his last message,
and must somehow decide to use his derived key RB. In doing so, he might leak
some partial information about RB (possibly all of it!), and Eve might now use
this partial (or full) information to modify the last message that Bob originally
sent to Alice. Motivated by these considerations, [9] defined a strong property
called post-application robustness, which (intuitively) requires that Eve cannot
modify Bob’s last message and cause Alice to output RA �= RB, even if given
Bob’s key RB.

The only protocols known to achieve post-application robustness are
in [9,14,10]. Of those, only the protocol of [10] achieves asymptotically optimally
entropy loss: for entropy k > δn, it achieves entropy loss O((1/δ)c log (1/ε)) in

1 The value c depends on some existential results in additive combinatorics. However,
it appears safe to conclude that it is astronomical, which translates into “triply
astronomical” g(δ) = 2(1/δ)

c

, even for δ = 0.49.
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O((1/δ)c) rounds for some astronomical constant c mentioned in Footnote 1.
Most protocols in [27,9,14,6,10,7,18,20,19] are proven only for pre-application
robustness (some works simply ignored the distinction). In particular,

(B) no post-application robust, constant-round protocol with optimal entropy loss
is known (with the exception of protocol of [10] using astronomical constants
mentioned above).

Local Computability and Reusability. Local computability is of interest
when the length and the min-entropy of the source X is much larger than the
desired number of extracted bits m. In such a case, it is desirable to compute the
output without having to read all of the source. This property is traditionally
associated with the Bounded Retrieval Model (BRM) [15,8], where the random
source X is made intentionally huge, so that X still has a lot of entropy k even
after the attacker (“virus”) managed to download a big fraction of X over time.
For historical reasons, we will also use the term “BRM”, but point out that
local computability seems natural in any scenario where k � m, and not just
the BRM application.

The right way to think about entropy loss in such a scenario is not via the
formula L = k − m, because entropy from X is not “lost”: much entropy re-
mains in X even after the protocol execution, because most of X is not even
accessed. In fact, the PA protocol may be run multiple times on the same X , to
obtain multiple keys, until the entropy of X is exhausted. Specifically focusing
on m = Θ(log (1/ε)) (so that the extracted key can be used to achieve ε se-
curity), “optimal” reusability means the ability to extract Θ(k/ log (1/ε)) keys
(assuming the entropy rate of X is constant).

In the passive adversary case, optimal reusability is achievable with locally
computable randomness extractors [21,28]. In the active adversary case, how-
ever, the story is again more complicated. The only prior work to consider local
computability in this setting is the work of [14]. Reusability has not been explic-
itly considered before, but it is easy to see that the locally computable protocol
of [14] allows the extraction of Θ(k/ log2(1/ε)) keys. Thus,

(C) no prior locally computable protocol achieves optimal reusability.

1.1 Our Results

In this work, we solve open problems (A), (B), and (C), by designing several new
techniques for building PA protocols. Many of our techniques are general trans-
formations that convert a given protocol P into a “better” protocol P ′. Given a
wide variety of incomparable existing PA protocols (surveyed above), this modu-
lar approach will often allow us to obtain several improved protocols in “one go”.

Two Methods of Adding Source Privacy. Our first method (Section 3.2)
maintains the number of rounds at 2, at the expense of using a strengthening of
non-malleable extractors [14] (which we call adaptive non-malleable extractors)
to derive a one-time pad to mask the “non-private” message which should be
sent in the second round. (Given that we already use non-malleable extractors
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however, we might as well combine our protocol with the non-private protocol
of [14] based on non-malleable extractors with similar parameters; this is what
we do to keep things simple.) Our second method (Section 3.3), inspired by the
specific protocol of [4], turns certain 2-round non-private protocols into 4-round
private protocols, using standard extractors and XOR-universal hash functions.
(The concrete protocol of [4] implicitly applied a very particular variant of our
transformation to the two-round protocol of [14], but we get improved results
using “newer” protocol [19].) In particular, either one of these transformations
will provide (with different tradeoffs) a positive answer to Open Question (A).
For completeness, we also observe (Section 3.1) that the 1-round PA protocols
of [9] are already source-private.

Pre- to Post-Application Robustness. We make a very simple trans-
formation which converts pre-application robust protocols to post-application
robust protocols, at the cost of one extra round, but with almost no increase in
the entropy loss. Although very simple, it immediately gives a variety of answers
to Open Question (B) (and can also be combined with our first transformation,
since it preserves source privacy).

Overall, by applying our transformations above to different protocols and in
various orders, we get several improvements to existing protocols, summarized
in Table 1 (which includes various solutions to Questions (A), (B), and more).

Table 1. Our improvement (also marked in RED) over prior PA protocols

Result Entropy Rounds Entropy Loss Source
Pre-app Post-app Privacy

[14] k = Ω(log (1/ε)) 2 Θ(log (1/ε)) Θ(log (1/ε)) NO

(non-expl.)

This work k = Ω(log (1/ε)) 2 Θ(log (1/ε)) Θ(log (1/ε)) YES

(non-expl.)

[9] k > n
2

1 n − k − Θ(log (1/ε)) n
2

+ Θ(log (1/ε)) YES2

[19] k = Ω(log2(1/ε)) 2 Θ(log (1/ε)) Θ(log2(1/ε)) NO

This work k = Ω(log2(1/ε)) 3 Θ(log (1/ε)) Θ(log (1/ε)) NO

[4] k = Ω(log2(1/ε)) 4 Θ(log2(1/ε)) Θ(log2(1/ε)) YES

This work k = Ω(log2(1/ε)) 4 Θ(log (1/ε)) Θ(log2(1/ε)) YES

This work k = Ω(log2(1/ε)) 5 Θ(log (1/ε)) Θ(log (1/ε)) YES

[20] k > n
2
(1 − α) 2 Θ(log(1/ε)) n

2
(1 − α) + Θ(log (1/ε)) NO

This work k > n
2
(1 − α) 2 Θ(log(1/ε)) n

2
(1 − α) + Θ(log (1/ε)) YES

This work k > n
2
(1 − α) 3 Θ(log(1/ε)) Θ(log (1/ε)) YES

Achieving Local Computability and Optimal Reusability. While only
the work of [14] explicitly considered local computability, it is reasonable to ask
if other existing protocols can be modified to be locally computable and reusable.
To achieve optimal reusability, we focus on protocols with optimal entropy loss,
because they have the property that the protocol transcript reduces the entropy
of X by O(log (1/ε)), leaving residual entropy of X high. They can be modified
to extract a short key of length Θ(log (1/ε)), which will give optimal reusability.

To achieve local computability, extractors used within a protocol can be re-
placed with locally computable extractors. Indeed, the protocol of [6] seems

2 We observe in this paper that this protocol is private.
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to amenable to such modification. However, it is not constant-round. Most
other constant-round protocols with optimal entropy loss [10,7,18,20] use non-
malleable extractors, and this approach fails, because no locally computable
(even non-constructive!) instantiations of non-malleable extractors are known.

However, we observe that the 2-round, optimal entropy loss protocol of [19,
Theorem 1.6] does not use non-malleable extractors. Moreover, by making all
extractors in that protocol locally computable, we get a locally computable,
2-round protocol. However, the security analysis of [19] uses a very delicate
and interdependent setting of various parameters for the security proof to go
through. Hence, it is not immediately clear if this intricate proof will go though
if one uses locally computable extractors. Instead, we will develop a different,
modular analysis underlying the key ideas of [19], which will give us a rigorous
2-round solution to open problem (C), as well as have other benefits we de-
scribe shortly. Specifically, we show a general transformation that turns certain
(post-application) secure 2-round protocols into 2-round protocols with optimal
entropy loss L = O(log (1/ε)) and residual min-entropy k′ = k − O(log (1/ε))
(Section 5). The transformation uses two-source extractor of [26] to compress
the second message of the protocol to only O(log (1/ε)) bits. By applying this
transformation to the original (non-BRM) protocol of [14], we get a protocol
very similar to the protocol of [19], but with a much more modular and easier-
to-follow security analysis. On the other hand, by using the locally computable
protocol of [14] instead (see Section 6), we get a 2-round locally computable pro-
tocol with optimal residual entropy (and, thus, reusability), solving open prob-
lem (C).3 Furthermore, we can add source privacy by using our 2-to-4-round
transformation mentioned earlier, which can be done via local computation as
well.

These results are summarized in Table 2.

Improving Entropy Loss of Post-Application Robust Protocols. As
another advantage of our modular approach, we note that the transformation
described in the previous paragraph is interesting not only in the context of
local computability. It also allows one to turn post-application robust 2-round
protocols with sub-optimal entropy loss L into 2-round pre-application robust
protocols with optimal entropy loss, which then (using our pre-application to
post-application transformation described above) can be turned into 3-round
post-application robust protocols with optimal entropy loss. Namely, we can ob-
tain optimal entropy loss at the expense of one extra round. (For the BRM
setting, no extra round is needed, as we only extract “short” keys of length
O(log (1/ε)).)

3 Interestingly, the main limitation of the non-BRM protocol of [19] — high min-
entropy requirement k = Ω((log (1/ε))2) — is not an issue in the BRM model. Thus,
we can view our result as finding a “practical application scenario” for the very
elegant communication reduction technique developed by [19].
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Table 2. Protocols in the Bounded Retrieval Model; each extracts Θ(log(1/ε)) bits
per key, is post-application robust, and requires k = Ω(log2(1/ε)). Entries in RED
mark our improvements.

Result Rounds Residual Min-entropy # Keys Extracted Source Privacy

[14] 2 k − Θ(log2(1/ε)) Θ(k/ log2(1/ε)) NO

This work 2 k − Θ(log(1/ε)) Θ(k/ log(1/ε)) NO

This work 4 k − Θ(log(1/ε)) Θ(k/ log(1/ε)) YES

2 Preliminaries

For a set S, we let US denote the uniform distribution over S. For an integer
m ∈ N, we let Um denote the uniform distribution over {0, 1}m, the bit-strings
of length m. For a distribution or random variable X we write x ← X to denote
the operation of sampling a random x according to X . For a set S, we write
s ← S as shorthand for s ← US .

Entropy and Statistical Distance. The min-entropy of a random variable

X is defined as H∞(X)
def
= − log(maxx Pr[X = x]). We say that X is an (n, k)-

source if X ∈ {0, 1}n and H∞(X) � k. For X ∈ {0, 1}n, we define the entropy
rate of X to be H∞(X)/n. We also define average (aka conditional) min-entropy
of a random variable X conditioned on another random variable Z as

H∞(X |Z)
def
= − log

(
Ez←Z

[
max

x
Pr[X = x|Z = z]

])

= − log
(
Ez←Z

[
2−H∞(X|Z=z)

])
,

where Ez←Z denotes the expected value over z ← Z.
The statistical distance between two random variables W and Z distributed over
some set S is

Δ(W,Z)
def
= max

T⊆S
(|W (T )− Z(T )|) = 1

2

∑
s∈S

|W (s)− Z(s)|.

Note that Δ(W,Z) = maxD(Pr[D(W ) = 1] − Pr[D(Z) = 1]), where D is a
probabilistic function. We say W is ε-close to Z, denoted W ≈ε Z, if Δ(W,Z) ≤
ε. We write Δ(W,Z|Y ) as shorthand for Δ((W,Y ), (Z, Y )).

We introduce some cryptographic primitives needed for our constructions.

Extractors. An extractor [24] can be used to extract uniform randomness out
of a weakly-random value which is only assumed to have sufficient min-entropy.
Our definition follows that of [11], which is defined in terms of conditional min-
entropy.

Definition 1 (Extractors). An efficient function Ext : {0, 1}n × {0, 1}d →
{0, 1}m is an (average-case, strong) (k, ε)-extractor, if for all X,Z such that X
is distributed over {0, 1}n and H∞(X |Z) ≥ k, we get

Δ( (Z, Y,Ext(X ;Y )) , (Z, Y, Um) ) � ε
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where Y ≡ Ud denotes the coins of Ext (called the seed). The value L = k −m
is called the entropy loss of Ext, and the value d is called the seed length of Ext.

Message Authentication Codes. One-time message authentication codes
(MACs) use a shared random key to authenticate a message in the information-
theoretic setting.

Definition 2 (One-time MACs). A function family {MACR : {0, 1}d →
{0, 1}v} is an ε-secure one-time MAC for messages of length d with tags of
length v if for any w ∈ {0, 1}d and any function (adversary) A : {0, 1}v →
{0, 1}d × {0, 1}v,

Pr
R
[MACR(W

′) = T ′ ∧W ′ �= w | (W ′, T ′) = A(MACR(w))] ≤ ε,

where R is the uniform distribution over the key space {0, 1}�.

XOR-universal hash functions. We recall the definition of XOR-universal-
hashing [5].

Definition 3 (ρ-XOR-Universal Hashing). A family H of (deterministic)
functions h : {0, 1}u → {0, 1}v is a called ρ-XOR-universal hash family, if for
any x1 �= x2 ∈ {0, 1}u and any a ∈ {0, 1}v we have Prh←H[h(x1) ⊕ h(x2) =
a] ≤ ρ. When ρ = 1/2v, we say that H is (perfectly) XOR-universal. The value
log |H| is called the seed length of H.

2.1 Privacy Amplification

We define a privacy amplification protocol (PA, PB), executed by two parties
Alice and Bob sharing a secret X ∈ {0, 1}n, in the presence of an active, compu-
tationally unbounded adversary Eve, who might have some partial information
E about X satisfying H∞(X |E) � k. Informally, this means that whenever a
party (Alice or Bob) does not reject, the key R output by this party is random
and statistically independent of Eve’s view. Moreover, if both parties do not re-
ject, they must output the same keys RA = RB with overwhelming probability.
The formal definition is given below.

Definition 4. An interactive protocol (PA, PB), executed by Alice and Bob on a
communication channel fully controlled by an active adversary Eve, is a (k,m, ε)-
privacy amplification protocol if it satisfies the following properties whenever
H∞(X |E) ≥ k:

1. Correctness. If Eve is passive, then Pr[RA = RB∧ RA �=⊥ ∧ RB �=⊥] = 1.

2. Robustness. We start by defining the notion of pre-application robustness,
which states that even if Eve is active, Pr[RA �= RB ∧ RA �=⊥ ∧ RB �=⊥] � ε.
The stronger notion of post-application robustness is defined similarly, except
Eve is additionally given the key RA the moment she completed the left exe-
cution (PA, PE), and the key RB the moment she completed the right execution
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(PE , PB). For example, if Eve completed the left execution before the right execu-
tion, she may try to use RA to force Bob to output a different key RB �∈ {RA,⊥},
and vice versa.

3. Extraction. Given a string r ∈ {0, 1}m ∪ {⊥}, let purify(r) be ⊥ if r =⊥,
and otherwise replace r �=⊥ by a fresh m-bit random string Um: purify(r) ← Um.
Letting E′ denote Eve’s view of the protocol, we require that

Δ(RA, purify(RA) | E′) ≤ ε and Δ(RB , purify(RB) | E′) ≤ ε

Namely, whenever a party does not reject, its key looks like a fresh random string
to Eve.

The quantity k − m is called the entropy loss and the quantity log(1/ε) is
called the security parameter of the protocol.

Source Privacy. Following Bouman and Fehr [4], we now add the source
privacy requirement for privacy amplification protocols. To define this property,
we let FullOutput(X,E) denote the tuple (E′, RA, RB), where Alice and Bob
share a secret X and output keys RA and RB, respectively, and Eve starts with
initial side information E and ends with final view E′ at the end of the protocol.

Definition 5 (Source Privacy). An interactive protocol (PA, PB), executed
by Alice and Bob on a communication channel fully controlled by an active ad-
versary Eve, is (k, ε)-private, if for any two distributions (X0, E) and (X1, E),
where H∞(X0|E) ≥ k and H∞(X1|E) � k, we have

Δ(FullOutput(X0, E),FullOutput(X1, E)) ≤ ε

Our definition is stronger than the definition of [4], who only required that
the final transcript E′ does not reveal any information about X .

3 New Private Protocols

3.1 One Round Private Protocol

Dodis et al [9] gave a construction of robust extractors using which they gave one-
round (k,m, ε)-secure privacy amplification protocols for k > n/2+O(log (1/ε)).
We argue the source privacy of their protocols in the full version[1], and thus
get the following result.

Theorem 1. For k > n/2, there is an explicit polynomial-time, one-round
(k, 2ε + 2−n/2)-private, (k,m, ε)-secure privacy amplification protocol with pre-
application robustness and entropy loss k − m = n − k + O(log (1/ε)). We
get post-application robustness at the cost of increasing the entropy loss to
n/2 +O(log (1/ε)).
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3.2 Two Round Private Protocol with Optimal Entropy Loss

In this section, we give a two round protocol that achieves optimal entropy
loss O(log (1/ε)) for pre-application robustness. For post-application robustness,
the entropy loss is about n/2, but we show how to improve it to O(log (1/ε))
in Section 4 at the cost of 1 additional round.

Alice: X Eve: E Bob: X

Sample random Y

Y −−−−−−−−−−−→ Y ′

Sample random W ′, S′ �= Y ′
K′ = anmExt(X;Y ′)
T ′ = MACK′ (W ′)
P ′ = anmExt1..�(X;S′)
C′ = T ′ ⊕ P ′
Set final RB = Ext(X;W ′)

(W,S, C) ←−−−−−−−−−−− (W ′, S′, C′)

If Y = S reject

K = anmExt(X;Y )

P = anmExt1..�(X;S)

If C ⊕ P �= MACK(W ) reject

Set final RA = Ext(X;W )

Protocol 1. New 2-round Source-Private Protocol for H∞(X |E) > n/2

Our Two Round Private Protocol. Our protocol (Protocol 1) makes the
protocol of [14] private, using the same idea as [4]: we apply a one-time pad P ′

to the tag sent by Bob in the second round, T ′, where the pad P ′ is derived from
X . We make use of an adaptive non-malleable extractor, where the adversary A
is allowed to see Y, Z, and additionally either anmExt(X ;Y ) or R ≡ Um before
producing the modified seed Y ′, and still anmExt(X ;Y ) should be statistically
close to R given anmExt(X ;Y ′), Y, Z.

Using this, our protocol achieves the following result.

Theorem 2. Let 2−n/4 < ε < 1/n, and ε′ = ε/7. Given a (τ, ε′)-adaptive non-
malleable extractor, for k > τ + Θ(log (1/ε)) and output length Θ(log (1/ε)),
there exists an explicit polynomial-time, two-round (k, ε)-private, (k,m, ε)-secure
privacy amplification protocol with pre-application robustness and entropy loss
O(log (1/ε)). Furthermore, we get post-application robustness with entropy loss
to τ +O(log (1/ε)).

We can instantiate the above result using our construction (resp. existential
proof) of adaptive non-malleable extractors to obtain the following results. The
details can be found in the full version [1].

Corollary 1. There exists a universal constant α > 0, such that for k > n/2(1−
α), there exists an explicit polynomial-time, two-round (k, ε)-private, (k,m, ε)-
secure privacy amplification protocol with pre-application robustness and entropy
loss O(log (1/ε)). We get post-application robustness at the cost of increasing the
entropy loss to n/2(1− α) +O(log (1/ε)).
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Corollary 2. For k = Ω(log (1/ε)), there exists a two-round (k, ε)-private,
(k,m, ε)-secure privacy amplification protocol with post-application robustness
and entropy loss k −m = O(log (1/ε)).

3.3 Privacy Using Extractors and XOR-Universal Hashing

In this section, we use a ρ-XOR universal hash function family to construct a
4-round protocol for private privacy amplification, given any 2 round privacy
amplification protocol of the form Protocol 2, where the string sent in the first
round is sampled independent of X . We note that all known 2 round protocols
in the literature are of this generic form.

Alice: X Eve: E Bob: X

Sample random Y Sample random W ′
Y −−−−−−−−−−−→ Y ′

K′ = f1(X,Y ′)
T ′ = f2(K

′,W ′)
Set final RB = g(X,W ′)

(W, T ) ←−−−−−−−−−−− (W ′, T ′)

K = f1(X,Y )

If T �= f2(K,W ) reject

Set final RA = g(X,W )

Protocol 2. A Generic 2-round Privacy Amplification Protocol

Let � = log (1/ε). Let H be a ε-XOR universal family of hash functions from
{0, 1}|T | to {0, 1}2�, and let Ext : {0, 1}n × {0, 1}d �→ {0, 1}2� be a (k − 2� −
2|K| − |RB |, ε) extractor. Using these, our protocol is depicted as Protocol 3.

Alice: X Eve: E Bob: X

Sample random Y, h Sample random W ′, S′
Y −−−−−−−−−−−→ Y ′

W,S ←−−−−−−−−−−− W ′, S′

h −−−−−−−−−−−→ h′

K′ = f1(X,Y ′)
T ′ = f2(K

′,W ′)
C′ = h′(T ′) ⊕ Ext(X;S′)
Set final RB = g(X,W ′)

C ←−−−−−−−−−−− C′

K = f1(X,Y )

T = f2(K,W )

If C �= h(T ) ⊕ Ext(X;S) reject

Set final RA = g(X,W )

Protocol 3. A Generic 4-round Private Privacy Amplification Protocol

Theorem 3. Let Protocol 2 be a 2-round (k− u,m, ε)-secure privacy amplifica-
tion protocol with pre- (resp. post-) application robustness for k − |T | − 2|K| −
|RB| � 2�. Then Protocol 3 is a 4-round (k,m,O(

√
ε))-secure (k,O(

√
ε))-private

privacy amplification protocol with pre- (resp. post-) application robustness.
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For a proof, refer to the full version. We apply this generic transforma-
tion to Li’s recent 2 round (k, ε)-secure privacy amplification protocol for
k = Ω(log2(1/ε)), that achieves entropy loss O(log (1/ε)) for pre-application
robustness, and O(log2(1/ε)) for post-application robustness [19]. We get the
following result.

Corollary 3. For k = Ω(log2(1/ε)), there exists an explicit polynomial-time,
4-round (k, ε)-private, (k,m, ε)-secure privacy amplification protocol with pre-
application robustness and entropy loss L = k − m = O(log (1/ε)). We get
post-application robustness with entropy loss O(log2(1/ε)).

In Section 4, we will see how to get a 5-round private privacy amplification
protocol with post-application robustness and entropy loss O(log (1/ε)).

4 From Pre-application to Post-application Robustness

In this section, we show a generic transformation from a t-round privacy ampli-
fication protocol P that achieves pre-application robustness to a (t + 1)-round
protocol P ′ that achieves post-application robustness. The transformation can
be described as follows.

Let � = log (1/ε). Without loss of generality, assume that the last message

in P was sent from Bob to Alice. Let R̃A, R̃B denote the first u bits of the
keys computed by Alice and Bob, respectively (Set R̃A = ⊥ if Alice rejects, and

R̃B = ⊥ if Bob rejects). We need a (k−O(�), ε)-extractor Ext : {0, 1}n×{0, 1}d →
{0, 1}m and an ε-secure one-time MAC for d-bit messages, whose key length is
u. Using these, the (t+ 1)-round protocol is depicted as Protocol 4.

Alice: X Eve: E Bob: X

· · ·
Protocol P

←−−−−−−−−−−−
Sample random S

T = MAC
˜RA

(S)

Set RA = Ext(X;S)

S, T −−−−−−−−−−−→ S′, T ′

If T ′ �= MAC
˜RB

(S′) reject

Set final RB = Ext(X;S′)

Protocol 4. (t+1)-round Privacy Amplification Protocol P ′ with post-application
robustness.

Theorem 4. If Protocol P is (k,m, ε)-secure privacy amplification protocol with
pre-application robustness and residual entropy k − O(log (1/ε)), then Protocol
P ′ is a (k,m−O(log (1/ε)), O(ε)) secure privacy amplification protocol with post-
application robustness. Additionally, if P is (k, ε) private, then P ′ is (k,O(ε))
private.
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For a proof of this theorem, refer to the full version [1].
Using this result, we can get optimal entropy loss for post-application robust-

ness for several protocols as described in the full version [1].

5 Increasing Residual Entropy

We now consider the task of preserving as much entropy as possible in the weak
source X , which is a natural goal and has implications in the Bounded Retrieval
Model (see section 6). Formally, the residual entropy of an interactive protocol
is minE′ (H∞(X |E′)) where E′ is the adversary’s view after the protocol. We
refer to H∞(X |E) − minE′ (H∞(X |E′)) as the loss in residual entropy. Our
main result is the following transformation achieving loss in residual entropy
O(log(1/ε), i.e. linear in the security parameter, which is optimal up to constant
factors.

Theorem 5. Assume that there is a 2-round (k,m, ε)-secure privacy amplifica-
tion protocol with post-application robustness in which the first message is inde-
pendent of the (n, k)-source X and we have logn = O(log(1/ε)), ε ≥ 2−m/C,
and k ≥ C log(1/ε) for sufficiently large C.

Then there is a 2-round (k′,m′, ε′)-secure privacy amplification protocol with
residual entropy ≥ k′ − O(log(1/ε′)) provided that k′ ≥ k + C′ log(1/ε) and
ε′ ≥ ε1/C

′
for sufficiently large C′, and m′ = k′−O(log(1/ε′)) for pre-application

robustness or m′ = k′ − k −O(log(1/ε′)) for post-application robustness.

To achieve the transformation of Theorem 5, we need the following notion of a
receipt protocol, which is essentially a 2-round message authentication protocol
in which the party who speaks first chooses the message. Such protocols can be
defined as follows.

Definition 6. A (k, �, ε)-receipt protocol (for messages of length d) is a function
Receipt : {0, 1}d×{0, 1}r×{0, 1}n → {0, 1}� that satisfies the following: for Y ≡
Ur, every μ ∈ {0, 1}d, every X such that H∞(X |E) ≥ k, and every μ′ �= μ, Y ′

chosen by an adversary given μ, Y,E,

H∞(Receipt(μ, Y,X) | Y, Receipt(μ′, Y ′, X)) ≥ log(1/ε).

The main ingredient in proving Theorem 5 is the following, the proof of which
is deferred to the full version [1].

Theorem 6. Assume that there exists a polynomial-time (k, �, ε)-receipt proto-
col for d-bit messages such that Alice communicates ≤ � bits and 2−C� ≤ ε ≤
1/(C�) for sufficiently large C.

Then for any r ≤ log(1/ε)/100, there exists a polynomial-time (k, r, 2−Ω(r))-
receipt protocol for d-bit messages where Alice communicates O(�) bits.

Finally, we obtain the following corollary by instantiating Theorem 5 using
the 2-round privacy amplification protocol with post-application robustness due
to Dodis and Wichs [14, Cor. 4].
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Corollary 4. For k = Ω(log2(1/ε)), there exists an explicit polynomial-time
2-round (k,m, ε)-secure privacy amplification protocol with post-application ro-
bustness that achieves m = Ω(log(1/ε)) and residual entropy k −O(log(1/ε)).

6 Applications to the Bounded Retrieval Model

In the Bounded Retrieval Model (BRM) [8,15], Alice and Bob share an (in-
tentionally) very large secret key X . The idea is that the size of X makes it
infeasible for an attacker Eve to learn the entire string, even if she has infil-
trated either Alice or Bob’s storage device, because of limits on the amount of
data that can be transmitted out of the device. Thus as in previous sections we
assume that Eve has some adversarially chosen side information E about X , but
that k := H∞(X |E) is not too small. Specifically here we think of k = αn for
some constant 0 < α < 1.

Since reading the entire string X would be prohibitively inefficient, any func-
tion used by Alice or Bob that takes X as input must only read a small number
of positions, i.e. it must be locally computable. Dodis and Wichs observe [14,
Sec. 5] that their privacy amplification protocol has the property that each func-
tion taking X as input is a standard extractor. These can be replaced with the
constructions of locally computable extractors due to Vadhan [28], and thus the
protocol works in the BRM.

One downside of the [14] protocol is that the second message (which de-
pends on X) has length Ω(log2(1/ε)), and thus the loss in residual entropy is
Ω(log2(1/ε)) = Ω(m2). It would be more desirable to have loss in residual en-
tropy O(m), as then Alice and Bob could derive a total of Ω(k/m) secret keys,
as opposed to only O(k/m2) keys.

Corollary 4 shows that the loss in residual entropy can be reduced to O(m).
This protocol remains locally computable and thus applicable to the BRM, be-
cause still every function that takes X as input is a standard extractor and
can be replaced by a locally computable extractor. In summary, we have the
following.

Theorem 7. For k = Ω(log2(1/ε)), there exists an explicit polynomial-time 2-
round (k,m = Ω(log(1/ε)), ε)-secure privacy amplification protocol in the BRM
with post-application robustness and residual entropy k − O(log(1/ε)), thus al-
lowing a total of Ω(k/m) keys to be derived.

By relaxing the number of rounds to four, we can obtain a BRM protocol that
additionally has source privacy by instead plugging the [14, Cor. 4] protocol into
the transformation of Theorem 3.

Theorem 8. For k = Ω(log2(1/ε)), there exists an explicit polynomial-time
4-round (k,m = Ω(log(1/ε)), ε)-secure (k, ε)-private privacy amplification pro-
tocol in the BRM with post-application robustness and residual entropy k −
O(log(1/ε)), thus allowing a total of Ω(k/m) keys to be derived.
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