
Higher-Order Languages: Bisimulation
and Coinductive Equivalences

(Extended Abstract)

Davide Sangiorgi(B)

Università di Bologna and INRIA, Bologna, Italy
sangiorgi@gmail.com

1 Summary

Higher-order languages have been widely studied in functional programming,
following the λ-calculus. In a higher-order calculus, variables may be instantiated
with terms of the language. When multiple occurrences of the variable exist, this
mechanism results in the possibility of copying the terms of the language.

Equivalence proof of computer programs is an important but challenging
problem. Equivalence between two programs means that the programs should
behave “in the same manner” under any context [Mor68]. Finding effective meth-
ods for equivalence proofs is particularly challenging in higher-order languages:
pure functional languages like the λ-calculus, and richer languages including non-
functional features such as non-determinism, information hiding mechanisms
(e.g., generative names, store, data abstraction), concurrency, and so on.

Bisimulation [Par81a,Par81b,Mil89,San09,San12] has emerged as a very
powerful operational method for proving equivalence of programs in various kinds
of languages, due to the associated co-inductive proof method. Further, a number
of enhancements of the bisimulation method have been studied, usually called up-
to techniques. To be useful, the behavioral relation resulting from bisimulation—
bisimilarity—should be a congruence. Bisimulation has been transplanted onto
higher-order languages by Abramsky [Abr90]. This version of bisimulation, called
applicative bisimulations, and variants of it, have received considerable atten-
tion [Gor93,GR96,Pit97,San98,Las98]. In short, two functions P and Q are
applicatively bisimilar when their applications P (M) and Q(M) are applica-
tively bisimilar for any argument M .

Applicative bisimulations have some serious limitations. For instance, they
are unsound under the presence of generative names [JR99] or data abstrac-
tion [SP05] because they apply bisimilar functions to an identical argument.
Secondly, congruence proofs of applicative bisimulations are notoriously hard.
Such proofs usually rely on Howe’s method [How96]. The method appears how-
ever rather subtle and fragile, for instance under the presence of generative
names [JR99], non-determinism [How96], or concurrency (e.g., [FHJ98]). Also,
the method is very syntactical and lacks good intuition about when and why
it works. Related to the problems with congruence are also the difficulties of

c© IFIP International Federation for Information Processing 2014
M.M. Bonsangue (Ed.): CMCS 2014, LNCS 8446, pp. 3–9, 2014.
DOI: 10.1007/978-3-662-44124-4 1



4 D. Sangiorgi

applicative bisimulations with “up-to context” techniques (the usefulness of these
techniques in higher-order languages and its problems with applicative bisimula-
tions have been extensively studied by Lassen [Las98]; see also [San98,KW06]).

Congruence proofs for bisimulations usually exploit the bisimulation method
itself to establish that the closure of the bisimilarity under contexts is again a
bisimulation. To see why, intuitively, this proof does not work for applicative
bisimulation, consider a pair of bisimilar functions P1, Q1 and another pair of
bisimilar terms P2, Q2. In an application context they yield the terms P1P2 and
Q1Q2 which, if bisimilarity is a congruence, should be bisimilar. However the
argument for the functions P1 and Q1 are bisimilar, but not necessarily identical:
hence we are unable to apply the bisimulation hypothesis on the functions.

Proposals for improving applicative bisimilarity include environmental bisim-
ulations [SKS11,KLS11,PS12] and logical bisimulations [SKS07]. A key idea of
environmental bisimulations is to make a clear distinction between the tested
terms and the environment. An element of an environmental bisimulation has,
in addition to the tested terms, a further component, the environment, which
expresses the observer’s current knowledge. (In languages richer than pure λ-
calculi, there may be other components, for instance to keep track of generated
names.) The bisimulation requirements for higher-order inputs and outputs nat-
urally follow. For instance, in higher-order outputs, the values emitted by the
tested terms are published to the environment, and are added to it, as part of
the updated current knowledge. In contrast, when the tested terms perform a
higher-order input (e.g., in λ-calculi the tested terms are functions that require
an argument), the arguments supplied are terms that the observer can build
using the current knowledge; that is, terms obtained by composing the values
currently in the environment using the operators of the calculus.

A possible drawback of environmental bisimulations over, say, applicative
bisimulations, is that the set of arguments to related functions that have to
be considered in the bisimulation clause is larger (since it also includes non-
identical arguments). As a remedy to this is offered by up-to techniques (in
particular techniques involving up-to contexts), which are easier to establish for
environmental bisimulations than for applicative bisimulations, and which allow
us to considerably enhance the bisimulation proof method.

The difference between environmental bisimulations and logical bisimulations
is that the latter does not make use of an explicit environment: the environment
is implicitly taken to be the set of pairs forming the bisimulation. This simplifies
the definition, but has the drawback of making the functional of bisimulation
non-monotone. In λ-calculi one usually is able to show that the functional has
nevertheless a greatest fixed-point which coincides with contextual equivalence.
But in richer languages this does not appear to be possible.

For bisimulation and coinductive techniques, a non-trivial extension of higher-
order languages concern probabilities. Probabilistic models are more and more
pervasive. Not only they are a formidable tool when dealing with uncertainty
and incomplete information, but they sometimes are a necessity rather than an
alternative, like in computational cryptography (where, e.g., secure public key



Higher-Order Languages: Bisimulation and Coinductive Equivalences 5

encryption schemes need to be probabilistic [GM84]). A nice way to deal compu-
tationally with probabilistic models is to allow probabilistic choice as a primitive
when designing algorithms, this way switching from usual, deterministic compu-
tation to a new paradigm, called probabilistic computation. Examples of appli-
cation areas in which probabilistic computation has proved to be useful include
natural language processing [MS99], robotics [Thr02], computer vision [CRM03],
and machine learning [Pea88].

This new form of computation, of course, needs to be available to program-
mers to be accessible. And indeed, various programming languages have been
introduced in the last years, spanning from abstract ones [JP89,RP02,PPT08]
to more concrete ones [Pfe01,Goo13], being inspired by various programming
paradigms like imperative, functional or even object oriented. A quite common
scheme consists in endowing any deterministic language with one or more prim-
itives for probabilistic choice, like binary probabilistic choice or primitives for
distributions.

One class of languages which cope well with probabilistic computation are
functional languages. Indeed, viewing algorithms as functions allows a smooth
integration of distributions into the playground, itself nicely reflected at the level
of types through monads [GAB+13,RP02]. As a matter of fact, many exist-
ing probabilistic programming languages [Pfe01,Goo13] are designed around the
λ-calculus or one of its incarnations, like Scheme. All these allows to write higher-
order functions (programs can take functions as inputs and produce them as
outputs).

Bisimulation and context equivalence in a probabilistic λ-calculus have been
considered in [ALS14], where a technique is proposed for proving congruence of
probabilistic applicative bisimilarity. While the technique follows Howe’s method,
some of the technicalities are quite different, relying on non-trivial “disentan-
gling” properties for sets of real numbers, these properties themselves proved
by tools from linear algebra. The bisimulation is proved to be sound for contex-
tual equivalence. Completeness, however, fails: applicative bisimilarity is strictly
finer. A subtle aspect is also the late vs. early formulation of bisimilarity; with a
choice operator the two versions are semantically different; the congruence proof
of bisimilarity crucially relies on the late style.

Context equivalence and bisimilarity, however, coincidence on pure λ-terms.
The resulting equality is that induced by Levy-Longo trees (LLT), generally
accepted as the finest extensional equivalence on pure λ-terms under a lazy
regime. The proof follows Böhm-out techniques along the lines of [San94,SW01].
The result is in sharp contrast with what happens under a nondeterministic
interpretation of choice (or in the absence of choice), where context equivalence
is coarser than LLT equality.

A coinductive characterisation of context equivalence on the whole
probabilistic language is possible via an extension in which weighted formal
sums — terms akin to distributions — may appear in redex position. Thinking
of distributions as sets of terms, the construction reminds us of the reduction of
nondeterministic to deterministic automata. The technical details are however



6 D. Sangiorgi

quite different, because we are in a higher-order language and therefore — once
more — we are faced with the congruence problem for bisimulation, and because
formal sums may contain an infinite number of terms. The proof of congruence of
bisimulation in this extended language uses the technique of logical bisimulation,
therefore allowing bisimilar functions to be tested with bisimilar (rather than
identical) arguments (more precisely, the arguments should be in the context
closure of the bisimulation). In the probabilistic setting, however, the ordinary
logical bisimulation game has to be modified substantially. For instance, formal
sums represent possible evolutions of running terms, hence they should appear
in redex position only (allowing them anywhere would complicate matters con-
siderably). The obligation of redex position for certain terms is in contrast with
the basic schema of logical bisimulation, in which related terms can be used as
arguments to bisimilar functions and can therefore end up in arbitrary positions.
This problem is solved by moving to coupled logical bisimulations, where a bisim-
ulation is formed by a pair of relations, one on ordinary terms, the other on terms
extended with formal sums. The bisimulation game is played on both relations,
but only the first relation is used to assemble input arguments for functions.

In higher-order languages coinductive equivalences and techniques appear
to be more fundamental than in first-order languages. Evidence of this are the
above-mentioned results of correspondence between forms of bisimilarity and
contextual equivalence in various λ-calculi. Contextual equivalence is a ‘may ’
of form of testing that, in first-order languages (e.g., CCS) is quite different
from bisimilarity or even simulation equivalence. Indeed, in general, higher-
order languages have a stronger discriminating power than first-order languages
[BSV14]. For instance, if we use higher-order languages to test first-order lan-
guages, using (may-like) contextual equivalence, then the equivalences induced
is often finer than the equivalences induced by first-order languages (usually
trace equivalence); moreover, the natural definition of the former equivalences is
coinductive, whereas that for the latter equivalences is inductive. In distributed
higher-order languages, a construct that may strongly enhance the discrimi-
nating power is passivation [SS03,GH05a,LSS09a,LSS09b,LSS11,LPSS11,PS12,
KH13]. Passivation offers the capability of capturing the content of a certain
location into a variable, possibly copying it, and then restarting the execution in
different contexts. The same discriminating power can also be obtained in call-
by-value λ-calculi (that is, without concurrency or nondeterminism) extended
with a location-like construct akin to a store of imperative λ-calculi, and oper-
ators for reading the content of this location, overriding it, and, if the location
contains a process, for consuming such process (i.e., performing observations
on the process actions). When the tested first-order processes are probabilistic,
the difference in discriminating power between first-order and higher-order lan-
guages increases further: in higher-order languages equipped with passivation,
or in a call-by-value λ-calculus, bisimilarity may be recovered [BSV14].



Higher-Order Languages: Bisimulation and Coinductive Equivalences 7

References

[Abr90] Abramsky, S.: The lazy lambda calculus. In: Turner, D.A. (ed.) Research
Topics in Functional Programming, pp. 65–117. Addison-Wesley, Reading
(1990)

[ALS14] Alberti, M., Lago, U.D., Sangiorgi, D.: On coinductive equivalences
for higher-order probabilistic functional programs. In: Proceedings of
POPL’14. ACM (2014)

[BSV14] Bernardo, M., Sangiorgi, D., Vignudelli, V.: On the discriminating power
of passivation and higher-order interaction, Submitted (2014)

[CRM03] Comaniciu, D., Ramesh, V., Meer, P.: Kernel-based object tracking. IEEE
Trans. Pattern Anal. Mach. Intell. 25(5), 564–577 (2003)

[FHJ98] Ferreira, W., Hennessy, M., Jeffrey, A.: A theory of weak bisimulation for
core CML. J. Funct. Program. 8(5), 447–491 (1998)

[GAB+13] Gordon, A.D., Aizatulin, M., Borgström, J., Claret, G., Graepel, T., Nori,
A.V., Rajamani, S.K., Russo, C.V.: A model-learner pattern for bayesian
reasoning. In: POPL, pp. 403–416 (2013)

[GH05a] Godskesen, ChJ, Hildebrandt, T.: Extending Howe’s method to early
bisimulations for typed mobile embedded resources with local names. In:
Sarukkai, S., Sen, S. (eds.) FSTTCS 2005. LNCS, vol. 3821, pp. 140–151.
Springer, Heidelberg (2005)

[GM84] Goldwasser, S., Micali, S.: Probabilistic encryption. J. Comput. Syst. Sci.
28(2), 270–299 (1984)

[Goo13] Goodman, N.D.: The principles and practice of probabilistic programming.
In: POPL, pp. 399–402 (2013)

[Gor93] Gordon, A.D.: Functional programming and input/output. Ph.D. thesis,
University of Cambridge (1993)

[GR96] Gordon, A.D., Rees, G.D.: Bisimilarity for a first-order calculus of objects
with subtyping. In: Proceedings of the 23rd ACM SIGPLAN-SIGACT Sym-
posium on Principles of Programming Languages, pp. 386–395 (1996)

[How96] Howe, D.J.: Proving congruence of bisimulation in functional programming
languages. Inf. Comput. 124(2), 103–112 (1996)

[JP89] Jones, C., Plotkin, G.D.: A probabilistic powerdomain of evaluations. In:
LICS, pp. 186–195 (1989)

[JR99] Jeffrey, A., Rathke, J.: Towards a theory of bisimulation for local names. In:
14th Annual IEEE Symposium on Logic in Computer Science, pp. 56–66
(1999)

[KH13] Koutavas, V., Hennessy, M.: Symbolic bisimulation for a higher-order dis-
tributed language with passivation. In: D’Argenio, P.R., Melgratti, H. (eds.)
CONCUR 2013 – Concurrency Theory. LNCS, vol. 8052, pp. 167–181.
Springer, Heidelberg (2013)

[KLS11] Koutavas, V., Levy, P.B., Sumii, E.: From applicative to environmental
bisimulation. Electr. Notes Theor. Comput. Sci. 276, 215–235 (2011)

[KW06] Koutavas, V., Wand, M.: Small bisimulations for reasoning about higher-
order imperative programs. In: Proceedings of the 33rd ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, pp. 141–
152 (2006)

[Las98] Lassen, S.B.: Relational reasoning about functions and nondeterminism.
Ph.D. thesis, Department of Computer Science, University of Aarhus (1998)



8 D. Sangiorgi

[LPSS11] Lanese, I., Pérez, J.A., Sangiorgi, D., Schmitt, A.: On the expressiveness
and decidability of higher-order process calculi. Inf. Comput. 209(2), 198–
226 (2011)

[LSS09a] Lenglet, S., Schmitt, A., Stefani, J.-B.: Howe’s method for calculi with
passivation. In: Bravetti, M., Zavattaro, G. (eds.) CONCUR 2009. LNCS,
vol. 5710, pp. 448–462. Springer, Heidelberg (2009)

[LSS09b] Lenglet, S., Schmitt, A., Stefani, J.-B.: Normal bisimulations in calculi with
passivation. In: de Alfaro, L. (ed.) FOSSACS 2009. LNCS, vol. 5504, pp.
257–271. Springer, Heidelberg (2009)

[LSS11] Lenglet, S., Schmitt, A., Stefani, J.-B.: Characterizing contextual equiva-
lence in calculi with passivation. Inf. Comput. 209(11), 1390–1433 (2011)

[Mil89] Milner, R.: Communication and Concurrency. Prentice Hall, Upper Saddle
River (1989)

[Mor68] Morris, J.H. Jr.: Lambda-calculus models of programming languages. Ph.D.
thesis, Massachusetts Institute of Technology (1968)

[MS99] Manning, C.D., Schütze, H.: Foundations of Statistical Natural Language
Processing, vol. 999. MIT Press, Cambridge (1999)

[Par81a] Park, D.: A new equivalence notion for communicating systems. In: Maurer,
G. (ed.) Bulletin EATCS, vol. 14, pp. 78–80 (1981). Abstract of the talk
presented at the Second Workshop on the Semantics of Programming Lan-
guages, Bad Honnef, 16–20 March 1981. Abstracts collected in the Bulletin
by B. Mayoh

[Par81b] Park, D.: Concurrency and automata on infinite sequences. In: Deussen, P.
(ed.) Theoretical Computer Science. LNCS, vol. 104, pp. 167–183. Springer,
Heidelberg (1981)

[Pea88] Pearl, J.: Probabilistic Reasoning in Intelligent Systems: Networks of Plau-
sible Inference. Morgan Kaufmann, San Mateo (1988)

[Pfe01] Pfeffer, A.: IBAL: a probabilistic rational programming language. In:
IJCAI, pp. 733–740. Morgan Kaufmann (2001)

[Pit97] Pitts, A.: Operationally-based theories of program equivalence. In: Pitts,
A.M., Dybjer, P. (eds.) Semantics and Logics of Computation, pp. 241–298.
Publications of the Newton Institute/Cambridge University Press, Cam-
bridge (1997)

[PPT08] Park, S., Pfenning, F., Thrun, S.: A probabilistic language based on sam-
pling functions. ACM Trans. Program. Lang. Syst. 31(1), 1–46 (2008)

[PS12] Piérard, A., Sumii, E.: A higher-order distributed calculus with name cre-
ation. In: LICS, pp. 531–540. IEEE (2012)

[RP02] Ramsey, N., Pfeffer, A.: Stochastic lambda calculus and monads of proba-
bility distributions. In: POPL, pp. 154–165 (2002)

[San94] Sangiorgi, D.: The lazy lambda calculus in a concurrency scenario. Inf.
Comp. 111(1), 120–153 (1994)

[San98] Sands, D.: Improvement theory and its applications. In: Gordon, A.D.,
Pitts, A.M. (eds.) Higher Order Operational Techniques in Semantics, pp.
275–306. Publications of the Newton Institute/Cambridge University Press,
Cambridge (1998)

[San09] Sangiorgi, D.: On the origins of bisimulation and coinduction. ACM Trans.
Program. Lang. Syst. 31(4), 15:1–15:41 (2009)

[San12] Sangiorgi, D.: Introduction to Bisimulation and Coinduction. Cambridge
University Press, Cambridge (2012)



Higher-Order Languages: Bisimulation and Coinductive Equivalences 9

[SKS07] Sangiorgi, D., Kobayashi, N., Sumii, E.: Logical bisimulations and func-
tional languages. In: Arbab, F., Sirjani, M. (eds.) FSEN 2007. LNCS, vol.
4767, pp. 364–379. Springer, Heidelberg (2007)

[SKS11] Sangiorgi, D., Kobayashi, N., Sumii, E.: Environmental bisimulations for
higher-order languages. ACM Trans. Program. Lang. Syst. 33(1), 5 (2011)

[SP05] Sumii, E., Pierce, B.C.: A bisimulation for type abstraction and recursion.
In: Proceedings of the 32nd ACM SIGPLAN-SIGACT Symposium on Prin-
ciples of Programming Languages, pp. 63–74 (2005)

[SS03] Schmitt, A., Stefani, J.-B.: The m-calculus: a higher-order distributed
process calculus. In: Proceedings POPL’03, pp. 50–61. ACM (2003)

[SW01] Sangiorgi, D., Walker, D.: The Pi-Calculus - A Theory of Mobile Processes.
Cambridge University Press, Cambridge (2001)

[Thr02] Thrun, S.: Robotic Mapping: A survey, pp. 1–35. Exploring Artificial Intel-
ligence in the New Millennium, Schefferville (2002)


	Higher-Order Languages: Bisimulation and Coinductive Equivalences (Extended Abstract)
	1 Summary
	References


