
Collaboratively Solving the Traveling Salesman Problem
with Limited Disclosure

Yuan Hong1, Jaideep Vaidya2, Haibing Lu3, and Lingyu Wang4

1 SUNY-Albany
hong@albany.edu
2 Rutgers University

jsvaidya@business.rutgers.edu
3 Santa Clara University

hlu@scu.edu
4 Concordia University
wang@concordia.ca

Abstract. With increasing resource constraints, optimization is necessary to
make the best use of scarce resources. Given the ubiquitous connectivity and
availability of information, collaborative optimization problems can be formu-
lated by different parties to jointly optimize their operations. However, this cannot
usually be done without restraint since privacy/security concerns often inhibit the
complete sharing of proprietary information. The field of privacy-preserving op-
timization studies how collaborative optimization can be performed with limited
disclosure. In this paper, we develop privacy-preserving solutions for collabora-
tively solving the traveling salesman problem (TSP), a fundamental combinato-
rial optimization problem with applications in diverse fields such as planning,
logistics and production. We propose a secure and efficient protocol for multiple
participants to formulate and solve such a problem without sharing any private
information. We formally prove the protocol security under the rigorous defini-
tion of secure multiparty computation (SMC), and demonstrate its effectiveness
with experimental results using real data.

Keywords: Privacy, Secure Multiparty Computation, Optimization.

1 Introduction

Collaboration amongst different parties occurs frequently in the modern business world.
Given the increasing resource constraints, it makes sense for different companies to
jointly optimize their operations in delivering, production planning, scheduling, inven-
tory control, etc. Indeed, joint optimization has led to significant savings when success-
fully carried out. However, such collaboration is normally the exception, rather than the
rule. The reason for this is the high degree of trust required, wherein proprietary data
has to be shared with an external party which can then carry out the optimization. To
deal with this, privacy-preserving solutions have been developed to enable collaborative
optimization for several specific problems [1–5]. In this paper, we focus on the traveling
salesman problem (TSP). TSP is a fundamental optimization problem, and can be used

V. Atluri and G. Pernul (Eds.): DBSec 2014, LNCS 8566, pp. 179–194, 2014.
c© IFIP International Federation for Information Processing 2014



180 Y. Hong et al.

in many applications such as logistics, planning, and production. We first show how a
simple two-party collaborative TSP can be formulated [1]:

Example 1. There are two shipping companies, denoted Alice and Bob, which offer
delivery services among seven cities, City 1, . . . , 7. Figure 1 shows the city connectivity
and corresponding delivery cost for both companies.

A client EC wants to decide which shipping company to employ in order to ship their
goods to a list of cities (e.g., 1, 2, 3, 5, and 6) with the lowest overall cost. However, EC

is reluctant to let either Alice or Bob know its list of cities before signing the contract,
and Alice and Bob also do not want to share all their delivery cost information with Ec

or other parties. How can EC make this decision under such privacy concerns?
The prior solution [1] is to let EC securely solve “Two” two-party TSPs with Alice

and Bob “respectively”, and then choose the lower cost obtained from Alice and Bob.

1 2

34

5

6

7

1 2 3 4 5 6 7

1 6 4 5 2 7 8

2 2 6 5 6 8

3 8 3 5 7

4 4 9 1

5 2 3

6 5

7

(a) Alice’s Service Network and Cost

1 2

34

5

6

7

1 2 3 4 5 6 7

1 6 8 5 6 11 6

2 4 3 2 4 9

3 4 4 5 8

4 2 8 4

5 1 3

6 7

7

(b) Bob’s Service Network and Cost

Fig. 1. Two-party Collaboration in [1]

While this enables EC to choose the lowest cost provider, it does not enable the
lowest cost overall, since it forces one company to be used to do all of the shipments.
In this paper, we tackle the privacy concerns in a multiparty TSP (rather than two-
party TSP [1]) in which the global minimum cost can be further reduced from all the
participants, detailed as below.

Cost Reduction. Assume that the optimal solutions derived for EC from Alice and Bob
in Figure 1 are 1) “Alice : 1 → 5 → 6 → 2 → 3 → 1” with total cost 2+2+6+2+4=16,
and 2) “Bob : 1 → 5 → 6 → 2 → 3 → 1” with total cost 6+1+4+4+8=23. Per
the work in [1], EC then employs Alice to deliver their goods to the destinations due
to 16 < 23. However, Bob indeed offers cheaper shipping rates among some cities,
e.g., 5 → 6 → 2. If EC can employ both shipping companies to deliver goods, even
though on the same route “1 → 5 → 6 → 2 → 3 → 1”, the global cost could be
2 + 1 + 4 + 2 + 4 = 13 < 16 < 23. As more shipping companies participate in the
collaboration, significant cost saving can be realized.

Practicability and Availability. In reality, many companies need to make decisions
for the delivery of considerable number of cities. From the economic perspective, they
normally do not always contract with only one shipping company for all of their destina-
tions. Then, the two-party TSP in [1] clearly cannot meet the practical cost-minimizing
demand of EC . Besides this, such TSP has many other drawbacks. Specifically, if nei-
ther Alice nor Bob is able to complete the delivery for EC by their own: e.g., Alice



Collaboratively Solving the TSP with Limited Disclosure 181

1 2
1 2 3 4 5 6 7

1 L L L L L L
2 2 6 5 6 8

34 3 8 3 5 7

4 4 9 1

5 2 35

6

7
5 2 3

6 5

7

6

(a) Alice’s Service Network and Cost

1 2
1 2 3 4 5 6 7

1 L 8 L 6 11 6

2 4 L 2 4 9
34 3 L 4 5 8

4 L L L

5 1 L5

6

7
5 1 L
6 7

7

6

(b) Bob’s Service Network and Cost

Fig. 2. Limited Shipping Service Network (“L” means unavailable service)

cannot deliver any shipping to City 1 while Bob cannot deliver shipping between City
1 and 2 (Figure 2), then the model in [1] cannot provide a solution.

To address the above limitations, we formulate and securely solve a novel cost-
reducible collaborative TSP, which enables the client to find the global minimum cost
from one or more shipping companies, and enables the shipping companies not to lose
their clients for their service limitation. Indeed, securely solving a fundamental opti-
mization problem like TSP gives great insights to all its the applications with limited
information disclosure. With similar settings, our problem formulation and solver can
be equally applicable to the proprietary information protection in many other real-world
applications such as arranging school bus routes for one or more outsourced companies
to pickup the children, scheduling service calls at cable firms, and manufacturing circuit
board by drilling holes with machines from different entities [6]. Therefore, the main
contributions of this paper are summarized as below:

– We propose a new efficient secure communication protocol to solve the novel cost-
reducible collaborative TSP under semi-honest adversarial model – all parties fol-
low the protocol but they are curious to derive private information from each other.

– We give end-to-end security proof for our secure communication protocol under
the rigorous definition of Secure Multiparty Computation (SMC) [7, 8], whereas
only the security of some building blocks was proven in the two-party TSP [1].

– We demonstrate the effectiveness of our approach with experiments on real data.

The remainder of this paper is organized as follows. We first briefly review the related
literature in Section 2. Then we define the problem in Section 3, and present the secure
communication protocol in Section 4. We give security and cost analysis in Section 5.
Section 6 demonstrates the experimental results. Finally, we conclude this paper and
discuss the future work in Section 7.

2 Related Work

We briefly review some of the relevant work on privacy-preserving collaborative (viz.
distributed) optimization. Li and Atallah [9] addressed the collaborative linear program-
ming problem between two parties where the objective function and constraints can be
arbitrarily partitioned, and proposed a secure simplex method for such problem based
on homomorphic encryption and scrambled circuit evaluation. Vaidya [10] proposed



182 Y. Hong et al.

a secure revised simplex approach with homomorphic encryption and secure compar-
ison, which is more efficient than Li and Atallah’s approach [9]. Catrina and Hoogh
[11] presented a solution to solve distributed linear programs based on secret sharing.
The protocols utilized a variant of the simplex algorithm and secure computation with
fixed-point rational numbers, optimized for such application.

Apart from a direct cryptographic protocol, another typical approach is to transform
the original problem into a different space, solve it in that transformed space, and then
reconstruct the solution. Du [12] and Vaidya [13] transformed the linear programming
problem by multiplying a monomial matrix to both the constraint matrix and the ob-
jective function, assuming that one party holds the objective function while the other
party holds the constraints. Bednarz et al. [14, 15] pointed out a potential attack to
the above transformation approach, which has been resolved in [3, 16]. In addition,
Mangasarian presented two transformation approaches for horizontally partitioned lin-
ear programs [17] and vertically partitioned linear programs [18] respectively. Li et al.
[19] extended the transformation approach [17] for horizontally partitioned linear pro-
grams with equality constraints to inequality constraints. Hong and Vaidya identified a
potential inference attack to Mangasarian and Li’s transformation based approach, and
revised the transformation with significantly enhanced security guarantee in [20].

There has also been work on creating privacy-preserving solutions for collaborative
combinatorial optimization problems (especially those that are NP-hard). Hong et al.
[4] presented a privacy-preserving approach for the well known graph coloring prob-
lem. The solution is based on tabu search. The work most relevant to our problem is that
of Sakuma et al [1] who proposed a genetic algorithm for securely solving two-party
distributed traveling salesman problem (TSP). They consider the case that one party
holds the cost vector/matrix while the other party holds the tour vector/matrix. The TSP
that is completely partitioned among multiple parties has been discussed but not solved
in [1]. In this paper, we consider a cost-reducible collaborative TSP amongst multiple
(more than two) parties, and securely solve it with simulated annealing based protocol,
which facilitates us to formally prove the security for the approach. Our approach falls
under the framework of secure multiparty computation [7, 8, 21, 22], wherein any func-
tion can be securely computed without revealing anything to each party except its input,
output, and anything that can be derived from them.

3 Problem Formulation

3.1 TSP and Simulated Annealing

TSP is a NP-hard optimization problem that is defined as follows[23]: given a set of
cities and the distances between every pair of cities, finding the shortest route that visits
all the cities exactly once and returns to the original city (minimizing overall distance).
Note that in a more general sense, distance between cities can be replaced with cost.

Simulated annealing is a generic probabilistic meta-heuristic that is widely used to
solve this NP-hard problem when the input is large [23]. Simulated annealing was in-
spired from thermodynamics, based on the behavior of metals cooling and annealing
[24]. The basic idea behind simulated annealing is to move from one state (solution)
to another state (a neighboring solution), until a good enough solution is found, or the



Collaboratively Solving the TSP with Limited Disclosure 183

given computation budget has been exhausted. Note that the move is probabilistic in
that we may move to a worse solution or choose to stay in the same state even if a better
solution has been found some of the times. In TSP, given the traveling route, denoted as
x, the objective function of simulated annealing is to minimize f(x) and the algorithm
iteratively moves from solutions to their neighboring solution. At each stage, the prob-
ability of making a transition from a solution to the neighboring solution is based on an
acceptance probability function for two solutions and a sensitivity parameter “Temper-
ature” T . The algorithm is briefly summarized as below:

1. initialize a solution x by randomly selecting a traveling route.
2. randomly pick a neighboring solution x′ of x by 2-Opt neighborhood [25], swap-

ping the visited order of two cities. For example, if x =“1→ 3 → 2 → 4”, then
x =“1 → 3 → 4 → 2” is its neighboring solution.

3. decide whether to move to the new solution with the probability computed from
f(x), f(x′) and the sensitivity parameter T . If yes, update the current solution.

4. repeat step 2,3 until achieving the iteration threshold or a satisfactory solution.

3.2 Cost-Reducible Collaborative TSP

In a TSP, G = (V,E) is a complete undirected graph where V and E represent the
set of cities and (cost) weighted edges respectively. Cost-reducible collaborative TSP
involving k shipping companies and one client, where all involved shipping companies
successively “Relay” the goods for client EC on the overall route for further cutting the
cost. Then, we define it as k-Relaying Traveling Salesman Problem (k-RTSP).

Definition 1 (k-RTSP). Assume n cities, and k shipping companies P1, . . . , Pk that
hold k different cost matrices/vectors y1, . . . , yk, and a client EC who needs to visit a
subset of cities once (finally returning to the original city, as in a Hamiltonian Cycle).
Then, k-RTSP is defined as: find the optimal traveling route and minimum total cost
for EC ’s cities, where every segment of the traveling route is served by the shipping
company quoting the cheapest rate among all k shipping companies.

k-RTSP’s optimal traveling route is jointly computed by k shipping companies and
the client. If k = 1, k-RTSP turns into a two-party TSP [1] since no relay is required.

Vectors in k-RTSP. Intuitively k shipping companies’ cost vectors can be written as:

Table 1. k Shipping Companies’ Cost Vectors

y1 = (y1
(1,2), . . . , y

1
(1,n), y

1
(2,3), . . . , y

1
(2,n), . . . , y

1
(n−1,n))

...
yk = (yk

(1,2), . . . , y
k
(1,n), y

k
(2,3), . . . , y

k
(2,n), . . . , y

k
(n−1,n))

As shown in Figure 2, if one shipping company does not serve delivery between two
cities, e.g., P1 does not deliver between City 1 and 2, we let y1(1,2) be a sufficiently large



184 Y. Hong et al.

number L. Similarly, client’s traveling route vector can be expressed as a boolean vector
x = (x(1,2), . . . , x(1,n), x(2,3), . . . , x(2,n), . . . , x(n−1,n)) where x(i,j) = 1 means eij is
included in EC ’s traveling route;otherwise 0.

Note that the length of vectors x and y1, . . . , yk is the total number of city pairs
d = n(n− 1)/2. For simplicity of notations, we use j = 1, . . . , d to indicate the index
of n(n− 1)/2 elements in each of the k + 1 vectors.

Cost Function and Solution. In k-RTSP, every x(i,j) = 1 in x (eij is included in the
route) is assigned to a shipping company with cheapest cost (we denote this process as
“Route Assignment”). Then x can be drilled down to k boolean vectors for k different
shipping companies, for example as below:

Table 2. Route Assignment for Traveling Route Vector

x = (0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0)

Alice x1 = (0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)
Bob x2 = (0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0)

Carol x3 = (0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)

Denoting xij ∈ {0, 1} (i = 1, . . . , k and j = 1, . . . , d) as whether shipping com-
pany Pi delivers goods for the jth corresponding pair of cities or not, the length-d
vector x is then drilled down to k length-d vectors x1, . . . , xk in route assignment.
Thus, {x1, . . . , xk} is the solution of k-RTSP, which is finer-grained than x. More-
over, the cost function of k-RTSP can be derived as f(x1, . . . , xk) =

∑k
i=1 xi · yi =∑k

i=1(
∑d

j=1 xijyij).

4 Privacy-Preserving Algorithm

Simulated annealing is an efficient meta-heuristic for conventional TSP, thus we build
the secure solver for k-RTSP by securing the simulated annealing algorithm. First, we
consider the extension of the algorithm to solve k-RTSP (no security), all the parties
repeat the following procedures until they find a near-optimal solution:

Client EC proposes a solution x = {x1, . . . , xk} and its neighboring solution x′ =
{x′

1, . . . , x
′
k} to all the shipping companies P1, . . . , Pk, then P1, . . . , Pk jointly com-

pute the energy of two solutions f(x1, . . . , xk) and f(x′
1, . . . , x

′
k), and finally compute

the probability of moving from x to x′:

Prob = min{1, exp(−f(x′
1, . . . , x

′
k)− f(x1, . . . , xk)

T
)} (1)

If x′ outperforms x, solution will move from x to x′ with Prob = 1; if x′ is worse
than x, there still exists a probability to move from x to x′ (to avoid local optimum).

More importantly, all parties should jointly compute the result without revealing any
private information in every iteration. To achieve this, we present a secure communica-
tion protocol to solve k-RTSP without private information disclosure.



Collaboratively Solving the TSP with Limited Disclosure 185

4.1 Building Blocks

Simulated annealing iteratively computes the energy of various pairs of neighboring
solutions and decides whether to move or not. Thus, the secure communication pro-
tocol based on it also repeatedly calls some secure functions, which are considered as
Building Blocks of the protocol. We briefly describe them below:

Secure Scalar Product. The cost function of k-RTSP is given as f(x1, . . . , xk) =
∑k

i=1 xi · yi where client EC holds the traveling route vectors x1, . . . , xk and shipping
companiesP1, . . . , Pk hold y1, . . . , yk respectively. Thus, we implement a secure scalar
product protocol based on Paillier’s Homomorphic Cryptosystem [26] to securely com-
pute the function (Algorithm 1). Notice that every party only holds a random number –
the sum of the random numbers is the scalar product which is also unknown to everyone
besides the private inputs.

Algorithm 1. Secure Scalar Product
Input: Traveling route vector x = {x1, . . . , xk}, cost vectors y1, . . . , yk
Output: f(x1, . . . , xk) =

∑k
i=1 xi · yi co-held by all k + 1 parties

1. Client EC creates a public/private key pair (pk, sk), and encrypts x1, . . . , xk to
Encpk(x1), . . . , Encpk(xk) with its pk

2. EC sends Encpk(x1), . . . , Encpk(xk) and pk to all k shipping companies P1, . . . , Pk

3. for each party Pi, i = 1, . . . , k do
4. Pi generates a random integer ri, encrypts it with the public key pk, computes the en-

crypted scalar product as: Encpk(xi)
yi ∗ Encpk(ri) = Encpk(xi · yi + ri) , and sends

it back to EC

5. EC decrypts Encpk(xi · yi + ri) with its private key sk and obtains a random share si =
xi · yi + ri
{Finally, EC privately holds random numbers ∀i ∈ [1, k], si = xi·yi+ri, and ∀i ∈ [1, k], Pi

privately holds random numbers −ri. The sum of all the shares f(x1, . . . , xk) =
∑k

i=1 xi·yi
is unknown to all parties.}

Secure Comparison. In simulated annealing, given temperature T , Equation 1 is used
to determine if solution x = {x1, . . . , xk} should be moved to x′ = {x′

1, . . . , x
′
k} or

not. In every iteration, min{1, exp(− f(x′
1,...,x

′
k)−f(x1,...,xk)

T )} should be compared with

a random number η ∈ [0, 1) [27]: if min{1, exp(− f(x′
1,...,x

′
k)−f(x1,...,xk)

T )} > η, then
move x = {x1, . . . , xk} to x′ = {x′

1, . . . , x
′
k}; otherwise, not.

We employ FairplayMP [28] to securely compare the outputs of two functions, thus
we need to compare: f(x1, . . . , xk) − f(x′

1, . . . , x
′
k) and T log η, where the inputs for

f(x1, . . . , xk) and f(x′
1, . . . , x

′
k) are the random shares held by all k + 1 parties (gen-

erated from Algorithm 1).
Note that, if f(x1, . . . , xk) − f(x′

1, . . . , x
′
k) > T log η, client EC moves x =

{x1, . . . , xk} to x′ = {x′
1, . . . , x

′
k} regardless of whether x′ is better than x or not;

else, the move does not occur. Note that if the temperature T is lowered, simulated an-
nealing algorithm only accepts moving from x to a worse solution x′ with closer energy
f(x′

1, . . . , x
′
k) and f(x1, . . . , xk). This guarantees the accuracy of the meta-heuristic.



186 Y. Hong et al.

In secure comparison, similarly, each party cannot learn any input from each other,
and only client EC knows the comparison result “>” or “≤”.

4.2 Two-Level Secure Simulated Annealing (TSSA)

Different from the traditional TSP, k-RTSP has two categories of neighboring solutions
since up to k possible costs are available for every pair of cities in G. First, like the well-
known TSP, we can find the 2-Opt [25] neighboring solution x′ by permuting the visited
order of two cities, e.g., x = 1 → 2 → 3 and x′ = 1 → 3 → 2. Second, for every
solution, e.g., x = 1 → 2 → 3, each route segment (1 → 2 and 2 → 3) can be poten-
tially assigned to Alice, Bob or Carol in “Route Assignment”. Then, x = 1 → 2 → 3
(with a particular route assignment) should have 32 − 1 = 8 neighboring solutions by
choosing different combinations of shipping companies, reflected in {x1, . . . , xk}. Ide-
ally, if y1, . . . , yk are known to client EC , EC can simply select the shipping company
with the lowest cost on each segment of the route. However, in secure k-RTSP model,
such information is masked and absolutely unknown to EC . Therefore, we have to run
meta-heuristics again to find the optimal route assignment for every solution (traveling
route) generated in neighboring route search.

In summary, while securely running the protocol, a top-level simulated annealing is
called to search traveling route vector x. For every new solution x, bottom-level simu-
lated annealing will be executed to search the neighborhoods in “Route Assignment”.
As soon as a near-optimal solution of “Route Assignment” for x is found, x and its
optimal route assignment will be updated as the current solution. After that, top-level
simulated annealing continues to repeatedly traverse x’s neighboring traveling route
vectors. Therefore, we denote this two level meta-heuristic based protocol as Two-level
Secure Simulated Annealing (TSSA).

4.3 Secure Communication Protocol

Our secure communication protocol (TSSA shown in Algorithm 2) ensures that any
party cannot learn any private information from each other. More specifically, at Line
1, the protocol is initialized; the loop for top-level simulated annealing is executed be-
tween Line 2-22; at Line 3-5, EC drills down current solution (x, derived from top-level
simulated annealing) and initializes the bottom-level simulated annealing, whose loop
executes between Line 6-13; in the bottom-level loop, current solution (bottom level)
is updated at Line 10-11, and the bottom-level cooling is implemented at Line 13; At
Line 19-20 in the top-level loop, current solution for TSSA is updated, and the top-level
cooling is implemented at Line 22. TSSA algorithm searches the optimal traveling route
vector where the embedded bottom-level simulated annealing is called to search the op-
timal route assignment for every solution. For any traveling route x and its neighboring
solution x′ obtained in the top-level simulated annealing, their corresponding optimal
route assignments are found by separate bottom-level simulated annealing respectively.
Thus, the current best route (with its optimal route assignment) moves toward the op-
timal traveling route (with the optimal route assignment) of k-RTSP. Here, it is worth
noting that:



Collaboratively Solving the TSP with Limited Disclosure 187

Algorithm 2. Two-level Secure Simulated Annealing
Input: Client EC’s initial traveling route x; Shipping companies cost vectors y1, . . . , yk; Initial

temperature T1, T2; Cooling coefficient ρ1, ρ2; η ∈ [0, 1)
Output: Near-optimal route best{x} and the route assignment best{x1, . . . , xk}

1. iter1 ← 0; best{x} ← x; best{x1, . . . , xk} ← {x1, . . . , xk}
{Top-level simulated annealing searches the optimal route with optimal route assignment}

2. while iter1 < max iter1 do
3. iter2 ← 0

{Bottom-level simulated annealing for the optimal route assignment of best{x}}
4. EC drills down best{x} with a random route assignment: {x1, . . . , xk}
5. best1{x1, . . . , xk} ← {x1, . . . , xk}
6. while iter2 < max iter2 and route assigned(best{x}) = 0 do
7. EC gets best1{x1, . . . , xk}’s random neighboring route assignment: {x′

1, . . . , x
′
k}

8. Call Algorithm 1 twice to securely compute f(x1, . . . , xk) =
∑k

i=1 xi · yi and
f(x′

1, . . . , x
′
k) =

∑k
i=1 x

′
i · yi among all k + 1 parties

9. Call secure comparison (FairplayMP [28]) to compare f(x1, . . . , xk)− f(x′
1, . . . , x

′
k)

and T2 log η among all k + 1 parties
10. if f(x1, . . . , xk)− f(x′

1, . . . , x
′
k) > T2 log η then

11. best1{x1, . . . , xk} ← {x′
1, . . . , x

′
k}

12. iter2 ++
13. T2 ← ρ2T2 (cooling down after several iterations)
14. route assigned(best{x}) = 1
15. EC gets a random neighboring route of best{x}: x′

{Bottom-level simulated annealing for the optimal route assignment of x′}
16. All k + 1 parties repeat Step 3-15 to obtain the near-optimal route assignment for x′:

best2{x1, . . . , xk} and route assigned(x′) = 1
17. Call Algorithm 1 twice to securely compute f(best1{x1, . . . , xk}) and

f(best2{x1, . . . , xk}) among all k + 1 parties
18. Call secure comparison (FairplayMP [28]) to compare f(best1{x1, . . . , xk}) -

f(best2{x1, . . . , xk}) and T1 log η among all k + 1 parties
19. if f(best1{x1, . . . , xk})− f(best2{x1, . . . , xk}) > T1 log η then
20. EC updates: best{x} ← x′; route assigned(best{x}) = 1; best{x1, . . . , xk} ←

best2{x1, . . . , xk}
21. iter1 ++
22. T1 ← ρ1T1 (cooling down after several iterations)
23. Return best{x} and best{x1, . . . , xk}

– To compute the energy of any solution, all parties securely compute the scalar prod-
uct using Algorithm 1, and each party holds a share of the result. To determine
whether move or not, all parties implement FairplayMP [28] to securely compare
the functions with their input shares. Finally, only client EC knows the comparison
result and whether move or not.

– For top and bottom-level simulated annealing, we use different sensitivity
parameters: initial temperature T1 and T2, cooling coefficient ρ1, ρ2 (note that the
temperature will be lowered after several iterations). We also setup different maxi-
mum number of iterations for top and bottom-level simulated annealing respectively
max iter1 and max iter2.



188 Y. Hong et al.

– In order to improve efficiency, we define an indicator route assigned(x) ∈ {0, 1}
to avoid running the route assignment for every route x twice in the protocol – as a
neighboring solution and the current solution respectively. If the optimal route as-
signment for x has been found in previous iterations, we let route assigned(x) =
1; Otherwise, 0. At Line 6, we examine the status of route assigned(x) before
going to the bottom-level simulated annealing.

– At Line 23, EC learns only the near-optimal route best{x} and its near-optimal
route assignment best{x1, . . . , xk} (as the output of the protocol). We do not allow
EC to learn the total optimal cost during executing the protocol (before all parties
contracting) because of some potential malicious inference attack slightly going be-
yond the semi-honest model: if the minimum cost is revealed to EC , then EC can
use any two cities as the input to get the minimum cost (viz. the cost between two
known cities, which is the corresponding shipping company’s proprietary informa-
tion). More severely, the minimum cost of every pair of cities and the corresponding
shipping company might be inferred by EC by repeating such malicious attack for
multiple times. Although the SMC/protocol security is not violated in the above
attacking scenario under semi-honest adversarial model, we still unreveal the total
optimal cost for mitigating such risk.

5 Security and Cost Analysis

A formal security proof can be provided under the framework of Secure Multiparty
Computation (SMC). Under the framework of SMC, a secure protocol reveals nothing
in semi-honest model if all the messages received by every party can be simulated in
polynomial time by knowing only the input and output of the SMC protocol [7, 8].

Theorem 1. TSSA protocol reveals only the near-optimal traveling route best{x} and
the route assignment best{x1, . . . , xk} to client EC in semi-honest model.

Proof. We first look at the steps that do not need communication between different par-
ties in the protocol. Notice that all the candidate solutions are proposed by EC in TSSA,
then most of the steps are locally implemented by EC , e.g., finding the neighboring so-
lution (either the traveling route or the route assignment), updating the current solution
based on the comparison, and reducing the temperature in simulated annealing. These
steps can be simulated by simply executing those steps.

In addition, we must simulate each party’s view (all the received messages in the
protocol) that requires communication in polynomial time. More specifically, client EC

and k shipping companies P1, . . . , Pk iteratively communicate with each other in Se-
cure Scalar Product (Algorithm 1) and Secure Comparison. We now examine the mes-
sages received by each party.

Client EC ’s view: First, while calling the secure scalar product computation every
time, EC receives k encrypted random shares. k random shares are the actual messages
received by EC in those steps. W.l.o.g., EC gets si = xi ·yi+ri from shipping company
Pi. All the random shares generated in all iterations can be simulated by generating a
random from the uniform probability distribution over F , assuming that si is scaled to



Collaboratively Solving the TSP with Limited Disclosure 189

fixed precision over a closed field, enabling such a selection. Thus, Prob[si = t] =
Prob[ri = t− si] =

1
F , and all the shares can be simulated in polynomial time.

Second, EC receives a series of comparison results from FairplayMP [28]. To sim-
ulate the sequence of comparison results (“>” or “≤”), the inverse step of the simu-
lated annealing can be utilized. Specifically, EC starts from the near-optimal traveling
route, and then finds the given neighboring solutions in sequence by running TSSA in-
versely (note that temperature increase can be imposed to tune the sensitivity of the
moving probability in the inverse optimization). While comparing f(x′

1, . . . , x
′
k) −

f(x1, . . . , xk) and T2 log η in the bottom-level simulated annealing, if the result is “>”,
the simulator outputs an “1”, otherwise “0”. Now we discuss how to simulate them in
polynomial time.

Recall that all the searched solutions are known to EC in sequence, but the energy of
any state (which is the sum of the local random shares) is unknown to EC since EC does
not know the cost vectors from every shipping company. Fortunately, since EC knows
its final traveling route best{x}, we can use the same simulator in [10] to simulate a cost
function in polynomial time. Then, the energy of two compared states (solutions) can be
polynomially simulated as well simply because both solutions are regarded as the input
for EC (EC proposes the candidate solutions). Consequently, we can simulate “1” or
“0” for two reasons: 1) the probability of generating each of them is deterministic with
Equation 1, and 2) another parameter η is uniformly distributed in [0, 1). Therefore, a
sequence of such comparison results in EC ’s view can be simulated in polynomial time.
Similarly, the sequence of comparison results for top-level simulated annealing can be
simulated with the same polynomial machine.

In summary, applying the Composition Theorem [8], client EC learns only the near-
optimal traveling route best{x} and the route assignment best{x1, . . . , xk}.

Shipping Company ∀i ∈ [1, k], Pi’s View: In the protocol, every shipping company
only receives the random shares in secure scalar product computation and EC ’s public
key pk. As analyzed above, the random shares can be simulated in polynomial time
using the same machine as EC ’s random share. Therefore, applying the Composition
Theorem [8], every shipping company only learns the public key pk in the protocol.
This completes the proof.

Besides the protocol security guaranteed by the SMC theory, it would be useful if we
can simultaneously resolve the inferences from the messages received before and after
the move. Coincidentally, simulated annealing provides excellent mechanism to nat-
urally mitigate such inference attack. Specifically, unlike many other meta-heuristics,
simulated annealing runs probabilistically and allows moving from the current solu-
tion to a worse neighboring solution. Due to the above uncertainty and the unrevealed
overall cost in any solution, it is difficult for EC to infer any private information, e.g.,
which solution outperforms its neighboring solution. Thus, the inference attack (which
actually does not compromise the SMC protocol security) could be mitigated.

Cost Analysis: Given a k-RTSP with n cities, the maximum number of iterations of
the top and bottom level simulated annealing is given as max iter1 and max iter2
respectively. For simplicity of notation, we denote them as O(m). We now discuss the
communication and computation cost required in the TSSA protocol.



190 Y. Hong et al.

Communication Cost. In TSSA protocol, only secure scalar product computation and
secure comparison request multiparty communication. First, while calling the secure
scalar product computation, it needs one round communication between EC and each
shipping company. Then, the communication cost of total secure scalar product com-
putation is O(2m2 ∗ k ∗ n(n − 1)/2) = O(m2n2k) messages of bit communication.
Second, the number of communication messages in every secure comparison is equal
to the number of computing parties [29]. Then, the communication cost of total secure
comparison is O(m(2m+1)k) = O(m2k) messages of bit communication. Moreover,
public key pk is delivered from EC to all k shipping companies (every party can use the
same public key in all iterations, thus pk can be considered as offline cost). Therefore,
the communication complexity of the protocol is O(m2n2k).

Computation Cost. First, EC locally finds the neighboring solution, moves the solution
and updates the temperature in both top and bottom-level simulated annealing. The
computation cost of the above process is ignorable compared to cryptographic work.
Second, if we estimate the runtime for a single secure scalar product computation and a
single secure comparison as ts and tc respectively, the total computation cost based on
cryptography can be written as (2m2 ∗ k) ∗ ts +m(2m+1) ∗ k ∗ tc ≈ 2m2k(ts + tc).

6 Experimental Validation

We first present the experimental setting and then discuss the results.

Datasets. We conduct experiments on four real datasets collected from National Im-
agery and Mapping Agency [6]. Each dataset is derived from a country (Canada, Japan,
Italy and China), where the cost of travel between cities is the Euclidean distance com-
puted from the coordinates. We randomly select six sets of cities from each of the four
datasets with the size (number of cities n) 200, 400, 600, 800, 1000 and 1200. This
matches the experimental setup in [1], which makes it comparable for the two-party
case. Note that we repeat every experiment 10 times by changing the initial city in ev-
ery test, and average all the results returned from all 10 experiments running on each of
the 4 different datasets.

Problem Setup. To formulate k-RTSP, we need to set the costs for the k parties. To do
this, we generate k − 1 noise values by sampling from the gaussian distribution with
mean 0 and an appropriate variance (1/3 of the cost). Then, we obtain k different costs
for every pair of cities (the original plus the k − 1 noise added values) and randomly
assign them to the k different parties, where k is selected as 2, 4, 6, 8, 10 and 12.

Meta-heuristics Setup. We initialize the temperature for two-level simulated annealing
and the cooling parameters as T1 = 1000, ρ1 = 50% and T2 = 1000, ρ2 = 20%. If no
better solution can be found in 50 iterations, we apply cooling. If no better solution can
be found in 20 times cooling, we terminate the meta-heuristics (note that the termination
criteria can be alternatively established as a maximum threshold for the total number of
iterations).

Cost Estimation of Large Scale Input. For small and medium scale input, we can
directly capture the computation cost. Since our protocol iteratively utilizes the cryp-
tographic building blocks, we can estimate the computation cost for large scale input.



Collaboratively Solving the TSP with Limited Disclosure 191

200 400 600 800 1000 1200

10
3

10
4

10
5

10
6

Number of Cities n

R
un

ti
m

e 
(S

ec
)

 

 

PPLS
TSSA
PPGA

(a) Two-party (512-bit Key)

200 400 600 800 1000 1200
10

4

10
5

10
6

10
7

10
8

Number of Cities n

R
un

ti
m

e 
(S

ec
)

 

 

PPLS
TSSA
PPGA

(b) Two-party (1024-bit Key)

2 4 6 8 10 12
0

0.5

1

1.5

2

2.5

3
x 10

6

Number of Parties k

R
un

ti
m

e 
(S

ec
)

 

 

512−bit
1024−bit

(c) Varying k (n=600)

200 400 600 800 1000 1200
0

0.5

1

1.5

2

2.5
x 10

7

Number of Cities n

R
un

ti
m

e 
(S

ec
)

 

 

512−bit
1024−bit

(d) Varying n (k=6)

Fig. 3. Computation Cost Evaluation

The runtime can be obtained through multiplying the cost of running a unit building
block by the overall required count. We do this for the tests with runtime more than 104

seconds (approx. 3 hours).

6.1 Computation Cost Comparison (Two-party)

Under the same experimental setup for the two party TSP, we compare the computation
cost of our two-level secure simulated annealing (TSSA) with Sakuma and Kobayashi’s
two algorithms – Privacy-preserving local search (PPLS) and Privacy-preserving ge-
netic algorithm (PPGA) [1]. Since only two parties are involved, the bottom-level sim-
ulated annealing would not be triggered in TSSA.

We set the key length in Paillier’s Homomorphic cryptosystem [26] as 512 bits and
1024 bits, and the size of the circuit (number of gates) in FairplayMP [28] as 512 (a
benchmark setup). Figure 3(a) and 3(b) show the runtime of TSSA, PPLS and PPGA
for the key length of 512 bits and 1024 bits respectively. As expected, the computation
cost of TSSA lie between that of PPLS and PPGA. This is consistent with the fact
that 2-Opt local search performs efficiently yet produce the worst result [28, 30]. More
specifically, when the number of cities n increases from 200 to 1200, with 512-bit key,
TSSA consumes approximately 1.5 hour – 20 hours; with 1024-bit key, TSSA spends
approximately 20 hours – 5 days. The computation cost increases polynomially in both
scenarios.



192 Y. Hong et al.

6.2 Results of k-RTSP

In the multiparty case, we evaluate the performance of solving k-RTSP with TSSA in
two facts: the efficiency of the solver and the quality of k-RTSP’s optimal solution.
Efficiency can be reflected as the computation cost (viz. runtime) of the algorithm.
Figure 3(c) and 3(d) demonstrate the scalability of our TSSA algorithm. The runtime
grows polynomially as the number of shipping companies k or the number of cities
n increases. Since TSSA is provably secure for all k + 1 parties, the most expensive
runtime shown in the figure (1200 cities, key length of 1024-bit, k = 6) is still tolerable
(around 10 days).

On the other hand, we define two measures to evaluate the quality of k-RTSP’s opti-
mal solutions: “Cost Reduction Ratio” = 1 − c

cmax
and “Heuristic Error” = c

cmin
− 1.

Given a specific traveling route to visit all cities, cmax denotes the maximum possible
cost (the highest cost is chosen between every pair of consecutively visited cities on
the route), c is the optimal solution derived from TSSA algorithm and cmin denotes the
minimum possible cost (the lowest cost is chosen between every pair of consecutively
visited cities on the route).

Table 3. Quality of Near-optimal Solutions

(a) Cost Reduction Ratio

Inputs k = 2 k = 4 k = 6 k = 8 k = 10

n = 200 0.272 0.256 0.245 0.23 0.211
n = 400 0.301 0.292 0.285 0.269 0.241
n = 600 0.324 0.318 0.312 0.303 0.293
n = 800 0.339 0.335 0.328 0.32 0.317
n = 1000 0.352 0.344 0.339 0.336 0.332
n = 1200 0.361 0.353 0.348 0.344 0.339

(b) Heuristic Error

Inputs k = 2 k = 4 k = 6 k = 8 k = 10

n = 200 0.025 0.032 0.041 0.063 0.075
n = 400 0.038 0.047 0.054 0.073 0.084
n = 600 0.052 0.066 0.085 0.094 0.111
n = 800 0.081 0.085 0.116 0.128 0.137
n = 1000 0.127 0.142 0.154 0.164 0.183
n = 1200 0.161 0.171 0.18 0.192 0.199

TSSA protocol gives good results for k-RTSP if CostReRatio is high and Error
is low. To validate this on large-scale inputs, we simplify TSSA by running it without
cryptographic work, which does not distort the returned near-optimal solutions. Table
3 present the “Cost Reduction Ratio” and “Heuristic Error”, where k = 2, . . . , 10 and
n = 200, . . . , 1200. First, the cost reduction ratio increases with the increase of the
problem size. This fact is true because, when the client needs to visit more cities, the
maximum possible cost becomes extremely high, then great saving can be realized.
With the growth of k, maximum possible cost would be slightly higher for the same
k-RTSP, however the heuristic cannot always find the route assignment for every pair
of cities. Then, cost reduction ratio decreases as k goes large. Second, the heuristic
error represents the difference between the near-optimal solution obtained by TSSA
and the minimum possible cost. The data in Table 3(b) implies that the error grows
while enlarging either k or n. This is the nature of heuristics.

Finally, cost reduction ratio between 0.211 and 0.361 shows a considerable saving in
delivery, and the heuristic error (which primarily reflects the error produced in bottom-
level simulated annealing) between 0.25 and 0.199 shows the effectiveness of our TSSA
meta-heuristic algorithm.



Collaboratively Solving the TSP with Limited Disclosure 193

7 Conclusion and Future Work

In this paper, we formulate and study the privacy issues in the cost-reducible collab-
orative TSP where the global cost can be further reduced by allowing multiple com-
panies to collaboratively provide a shared solution. We then proposed an effective
privacy-preserving approach (TSSA protocol) to securely derive the near-optimal so-
lution within a reasonable time. We formally proved the security of the TSSA protocol
and validated the efficiency as well as the quality of the optimal solution with real
data. In the future, we will further mitigate the inference attack in addition to the SMC
protocol security by proposing schemes that require multiple parties to jointly propose
neighboring solutions (like [4]), and also improve the efficiency of the communication
protocol by either developing secure solvers based on the recent cryptographic tools
(e.g., Sharemind [31], PICCO [32]) or incorporating problem transformation into the
algorithm without compromising security. We also intend to generalize the simulated
annealing based communication protocol to solve more NP-hard problems with limited
information disclosure.

References

1. Sakuma, J., Kobayashi, S.: A genetic algorithm for privacy preserving combinatorial opti-
mization. In: GECCO, pp. 1372–1379 (2007)

2. Clifton, C., Iyer, A., Cho, R., Jiang, W., Kantarcioglu, M., Vaidya, J.: An approach to iden-
tifying beneficial collaboration securely in decentralized logistics systems. Management &
Service Operations Management 10(1) (2008)

3. Hong, Y., Vaidya, J., Lu, H.: Secure and efficient distributed linear programming. Journal of
Computer Security 20(5), 583–634 (2012)

4. Hong, Y., Vaidya, J., Lu, H., Shafiq, B.: Privacy-preserving tabu search for distributed graph
coloring. In: SocialCom/PASSAT, pp. 951–958 (2011)

5. Hong, Y., Vaidya, J., Wang, S.: A survey of privacy-aware supply chain collaboration: From
theory to applications. Journal of Information Systems (to appear, 2014)

6. http://www.math.uwaterloo.ca/tsp/
7. Yao, A.C.: How to generate and exchange secrets. In: Proceedings of the 27th IEEE Sym-

posium on Foundations of Computer Science, pp. 162–167. IEEE Computer Society, Los
Alamitos (1986)

8. Goldreich, O.: Encryption Schemes. In: The Foundations of Cryptography, vol. 2. Cambridge
University Press (2004)

9. Li, J., Atallah, M.J.: Secure and private collaborative linear programming. In: Proceedings
of the 2nd International Conference on Collaborative Computing: Networking, Applications
and Worksharing, November 17-20, pp. 1–8 (2006)

10. Vaidya, J.: A secure revised simplex algorithm for privacy-preserving linear programming.
In: AINA 2009: Proceedings of the 23rd IEEE International Conference on Advanced Infor-
mation Networking and Applications (2009)

11. Catrina, O., de Hoogh, S.: Secure multiparty linear programming using fixed-point arith-
metic. In: Gritzalis, D., Preneel, B., Theoharidou, M. (eds.) ESORICS 2010. LNCS,
vol. 6345, pp. 134–150. Springer, Heidelberg (2010)

12. Du, W.: A Study of Several Specific Secure Two-party Computation Problems. PhD thesis,
Purdue University, West Lafayette, Indiana (2001)

13. Vaidya, J.: Privacy-preserving linear programming. In: SAC, pp. 2002–2007 (2009)

http://www.math.uwaterloo.ca/tsp/


194 Y. Hong et al.

14. Bednarz, A., Bean, N., Roughan, M.: Hiccups on the road to privacy-preserving linear pro-
gramming. In: Proceedings of the 8th ACM Workshop on Privacy in the Electronic Society,
WPES 2009, pp. 117–120. ACM, New York (2009)

15. Bednarz, A.: Methods for Two-party Privacy-preserving Linear Programming. PhD thesis,
The University of Adelaide, Adelaide, Australia (2012)

16. Hong, Y., Vaidya, J., Lu, H.: Efficient distributed linear programming with limited disclosure.
In: Li, Y. (ed.) DBSec 2011. LNCS, vol. 6818, pp. 170–185. Springer, Heidelberg (2011)

17. Mangasarian, O.L.: Privacy-preserving horizontally partitioned linear programs. Optimiza-
tion Letters 6(3), 431–436 (2012)

18. Mangasarian, O.L.: Privacy-preserving linear programming. Optimization Letters 5(1),
165–172 (2011)

19. Li, W., Li, H., Deng, C.: Privacy-preserving horizontally partitioned linear programs with
inequality constraints. Optimization Letters 7(1), 137–144 (2013)

20. Hong, Y., Vaidya, J.: An inference-proof approach to privacy-preserving horizontally parti-
tioned linear programs. Optimization Letters 8(1), 267–277 (2014)

21. Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game - a completeness
theorem for protocols with honest majority. In: Proceedings of the 19th ACM Symposium
on the Theory of Computing, pp. 218–229. ACM, New York (1987)

22. Ben-Or, M., Goldwasser, S., Wigderson, A.: Completeness theorems for non-cryptographic
fault-tolerant distributed computation. In: Proceedings of the 20th Annual ACM Symposium
on Theory of Computing, pp. 1–10 (1998)

23. Papadimitriou, C.H., Steiglitz, K.: Combinatorial optimization: algorithms and complexity.
Prentice-Hall, Inc., Upper Saddle River (1982)

24. Kirkpatrick, S., Gelatt Jr., C.D., Vecchi, M.P.: Optimization by simulated annealing. Sci-
ence 220(4598), 671–680 (1983)

25. Croes, G.A.: A method for solving traveling salesman problems. Operations Research 6(6),
791–812 (1958)

26. Paillier, P.: Public-key cryptosystems based on composite degree residuosity classes. In:
Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 223–238. Springer, Heidelberg
(1999)

27. Metropolis, N., Rosenbluth, A.W., Rosenbluth, M.N., Teller, A.H., Teller, E.: Equation of
state calculations by fast computing machines. The Journal of Chemical Physics 21, 1087
(1953)

28. Ben-David, A., Nisan, N., Pinkas, B.: Fairplaymp: a system for secure multi-party com-
putation. In: Proceedings of the 15th ACM Conference on Computer and Communications
Security, CCS 2008, pp. 257–266. ACM, New York (2008)

29. Ioannidis, I., Grama, A.: An efficient protocol for yao’s millionaires’ problem. In: Hawaii In-
ternational Conference on System Sciences (HICSS-36), Waikoloa Village, Hawaii, January
6-9, pp. 205–210 (2003)

30. Kim, B.-I., Shim, J.-I., Zhang, M.: Comparison of tsp algorithms. In: Project for Models in
Facilities Planning and Materials Handling (1998)

31. Bogdanov, D., Laur, S., Willemson, J.: Sharemind: A framework for fast privacy-
preserving computations. In: Jajodia, S., Lopez, J. (eds.) ESORICS 2008. LNCS, vol. 5283,
pp. 192–206. Springer, Heidelberg (2008)

32. Zhang, Y., Steele, A., Blanton, M.: Picco: a general-purpose compiler for private distributed
computation. In: ACM Conference on Computer and Communications Security, pp. 813–826
(2013)


	Collaboratively Solving the Traveling Salesman Problem with Limited Disclosure
	1 Introduction
	2 Related Work
	3 Problem Formulation
	3.1 TSP and Simulated Annealing
	3.2 Cost-Reducible Collaborative TSP

	4 Privacy-Preserving Algorithm
	4.1 Building Blocks
	4.2 Two-Level Secure Simulated Annealing (TSSA)
	4.3 Secure Communication Protocol

	5 Security and Cost Analysis
	6 Experimental Validation
	6.1 Computation Cost Comparison (Two-party)
	6.2 Results of k-RTSP


	7 Conclusion and Future Work
	References




