
Security Analysis of PRINCE

Jérémy Jean1(B), Ivica Nikolić2, Thomas Peyrin2,
Lei Wang2, and Shuang Wu2

1 École Normale Supérieure, Paris, France
2 Division of Mathematical Sciences,

School of Physical and Mathematical Sciences,
Nanyang Technological University, Singapore, Singapore

Jeremy.Jean@ens.fr,

{inikolic,thomas.peyrin,wang.lei,wushuang}@ntu.edu.sg

Abstract. In this article, we provide the first third-party security analy-
sis of the PRINCE lightweight block cipher, and the underlying PRINCEcore.
First, while no claim was made by the authors regarding related-key
attacks, we show that one can attack the full cipher with only a single
pair of related keys, and then reuse the same idea to derive an attack
in the single-key model for the full PRINCEcore for several instances of
the α parameter (yet not the one randomly chosen by the designers).
We also show how to exploit the structural linear relations that exist for
PRINCE in order to obtain a key recovery attack that slightly breaks the
security claims for the full cipher. We analyze the application of integral
attacks to get the best known key-recovery attack on a reduced version of
the PRINCE cipher. Finally, we provide time-memory-data tradeoffs that
require only known plaintext-ciphertext data and that can be applied to
full PRINCE.

Keywords: PRINCE · Block cipher · Cryptanalysis · Related-key
boomerang · Time-memory-data tradeoff

1 Introduction

Lightweight cryptography is a new, rapidly developing area of symmetric cryp-
tography that has emerged from the needs of constrained devices. The increasing
deployment of such devices in the everyday life has captured the attention of
the cryptographic community. It became clear that most of the available cryp-
tographic primitives, both ciphers and hash functions, fail to meet the basic
requirements of constrained devices – low cost hardware implementation, as well
as low power usage and latency. Thus, so-called lightweight primitives, designed
only for these type of devices, have been proposed (and some already have been
implemented) in the past several years.

This collaborative work was done while the first author was visiting CCRG lab of
Nanyang Technological University in Singapore.

S. Moriai (Ed.): FSE 2013, LNCS 8424, pp. 92–111, 2014.
DOI: 10.1007/978-3-662-43933-3 6, c© Springer-Verlag Berlin Heidelberg 2014

Security Analysis of PRINCE 93

PRINCE [4] is a lightweight cipher published at Asiacrypt 2012, and opti-
mized with respect to latency when implemented in hardware. It is based on
Even-Mansour-like construction (so-called FX construction [2,10]) and it has
the interesting feature that one can perform decryption by reusing the encryption
process with a slightly different key. This feature, so-called α-reflection property,
clearly provides an advantage in implementations requiring both encryption and
decryption, but at the same time induces some structure. This structure forced
the designers to reduce the security expectations compared to an ideal cipher and
they claimed that the security of the cipher is ensured up to 2127−n operations
when 2n encryption/decryption queries are made. This bound is only valid for
the single-key model, and the authors made no claim concerning the related-key
model (a trivial related-key distinguisher can be built).

Our Contributions. In this article, we provide the first third-party analysis of
the PRINCE cipher. First, we analyze in Sect. 3 the resistance of PRINCE in regard
to related-key attacks. We emphasize that the designers clearly did not make any
claim regarding this attack model. However, the best attack is a trivial related-
key distinguisher and moreover, it is not clear up to what extend an attack can
be mounted. We show that with a single pair of related keys, one can recover
the whole secret key faster than exhaustive search or faster than the claimed
single-key security bound.

Furthermore, our related-key attacks are actually interesting not only for
the related-key model, but also for the single-key one since we leverage these
techniques to show in Sect. 4 that several choices of values for α lead to an
insecure version of PRINCEcore in the single-key model. It is to be noted that the
designers required α �= 0 to enforce their security claims and the value of α was
eventually derived from the fraction part of π. We show that the choice of α is
actually sensitive for the security of the cipher.

In Sect. 5, we exploit the related-key relations verified with probability 1 that
exist for PRINCE in order to mount a key recovery attack, slightly breaking the
designers claims in the single-key scenario. Namely, we show that one can gener-
ically gain a factor 20.6 compared to their claims, by only taking into account
that the cipher is using the FX construction and has the α-reflection property.
While the gain is quite small, it indicates that more precise security proof (taking
in account the α-reflection property) might be an interesting research problem.

We explore the application of integral attacks in Sect. 6 and improve the best
known result on a reduced version of PRINCE, providing a 6-round key recovery
attack with low complexity.

Finally, in Sect. 7 we propose tradeoffs for PRINCE. We show that due to the
specific structure of the cipher, tradeoffs involving data and requiring only known
plaintexts-ciphertext are achievable for PRINCE. We start with a Memory-Data
tradeoff based on the meet-in-the-middle technique, and improve our results to
Time-Memory-Data tradeoff based on the original Hellman’s approach.

Our results are summarized in Table 1.

94 J. Jean et al.

Table 1. Summary of the results on PRINCE and PRINCEcore.

Cipher Rounds Data Time Memory Technique Ref.

PRINCE 4 24 264 24 Integral Sect. 6
5 5 · 24 264 28 Integral Sect. 6
6 216 264 216 Integral Sect. 6
12 21 2125.47 negl. Single-key Sect. 5
12 † 233 264 233 Related-key Sect. 3.1

12 MD = N, T = N
1
2 MD TO Sect. 7

12 T (MD)2 = N2N
1
2 TMD TO Sect. 7

12 TMD = NN
1
2 TMD TO Sect. 7

PRINCEcore 4 24 28 24 Integral Sect. 6
5 5 · 24 221 28 Integral Sect. 6
6 216 230 216 Integral Sect. 6
12 † 239 239 239 RK boomerang Sect. 3.2
12 241 241 negl. SK boomerang for chosen α Sect. 4

†: No security claim for related-key attacks TO: (Cryptanalytic) Tradeoff
RK: Related-key MD: Memory-Data
SK: Single-key TMD: Time-Memory-Data

2 Description of PRINCE

PRINCE [4] is a 64-bit block cipher that uses a 128-bit secret key k. The key
expansion first divides k into two parts of 64 bits each k = (k0||k1), where ||
denotes the concatenation, and then extends the key material into 192 bits:

k = (k0 || k1) → (k0 || k′
0 || k1) = (k0 ||L(k0) || k1), (1)

with L(x) = (x ≫ 1) ⊕ (x � 63). The 64-bit subkeys k0 and k′
0 are used as

input and output whitening keys respectively, while k1 is used as internal key
for the core block cipher PRINCEcore (see Fig. 1).

The internal block cipher PRINCEcore is a Substitution-Permutation Network
composed of 12 rounds. The round function Ri is defined by the bitwise addition
of the 64-bit subkey k1 and a 64-bit constant RCi, the application of a 4-bit
Sbox S to each of the 16 4-bit nibbles of the internal state, and finally the

R0

RC0

R1

RC1

R2

RC2

R3

RC3

R4

RC4

R5

RC5

SR-1 M′ SR R-1
6

RC6

R-1
7

RC7

R-1
8

RC8

R-1
9

RC9

R-1
10

RC10

R-1
11

RC11

PRINCEcore

k0 k′
0

k1 RCi

S M

k1RCi

S-1M-1

Fig. 1. A schematic view of the PRINCE cipher.

Security Analysis of PRINCE 95

multiplication by a linear diffusion matrix M . The encryption of PRINCEcore is
then composed of the application of the 6 rounds R0, . . . ,R5, the multiplication
by a linear diffusion matrix Mmid, and finally the application the 6 inverse rounds
R−1

6 , . . . ,R−1
11 :

PRINCEcore = R−1
11 ◦R−1

10 ◦R−1
9 ◦R−1

8 ◦R−1
7 ◦R−1

6 ◦Mmid◦R5◦R4◦R3◦R2◦R1◦R0.

The 4-bit S-box S has a maximal differential probability of pmax = 2−2, and is
given by (in hexadecimal display) S[x] = [B,F,3,2,A,C,9,1,6,7,8,0,E,5,D,4].
The linear diffusion matrix M is composed of a linear matrix M ′ and a nibble
shifting part SR (similar to a ShiftRows in AES [6]): M = SR◦M ′. Then, the lin-
ear middle matrix Mmid is defined by Mmid = M ◦M ′ ◦M−1 = SR◦M ′ ◦SR−1.
We refer to [4] for the complete description of M ′, but one must remark that its
diffusion property ensures that at least 16 Sboxes are active for 4 consecutive
round functions.

It is to be noted that RCi ⊕ RC11−i = α = 0xc0ac29b7c97c50dd for all
0 ≤ i ≤ 11, and since the matrix M ′ is an involution, this allows to perform the
decryption D of PRINCE by simply encrypting with the key k1 ⊕ α instead of k1
and flipping the whitening keys k0 with k′

0: D(k0 || k′
0 || k1)(·) = E(k′

0 || k0 || k1⊕α)(·).
In this article, we see the internal state s of PRINCE as a 4 × 4 matrix form,

where each cell is a nibble, and if we denote s[i] the i-th nibble, 0 ≤ i < 16 from
MSB to LSB, it would be located at row i (mod 4) and column �i/4	.

3 Related-Key Attacks

In this section, we describe a related-key attack on the full PRINCE, and a related-
key attack on the core block cipher PRINCEcore. The first one (Sect. 3.1) uses a
single related-key, and the α-reflection property of the core cipher to recover
the 128-bit master key with 233 data, 263 operations and 232 memory. The sec-
ond attack (Sect. 3.2) uses a related-key differential characteristic with high-
probability to mount a boomerang distinguisher on the core block cipher, that
can be turned into a key-recovery attack for the 64-bit key k1 of PRINCEcore. We
have verified experimentally our results – an example of boomerang quartet for
the full 12-round PRINCEcore is given in Appendix A.

3.1 Related-Key Attack on Full PRINCE with the α-Reflection
Property

We denote in the sequel the secret master key that we aim to recover by k =
(k0, k1). We introduce one related-key k′ = (k0, k1⊕α), where α refers to constant
defined in Sect. 2. The attack procedure uses the following distinguisher on the
whole core of PRINCE.

Property 1. Let (P,C) be the plaintext/ciphertext pair encrypted under the
secret key k of PRINCE, and (P ′, C ′) be the plaintext/ciphertext pair obtained
from PRINCE with the related key k′. If C ⊕ P ′ = k0 ⊕ L(k0), then P ⊕ C ′ =
k0 ⊕ L(k0) with probability 1.

96 J. Jean et al.

P PRINCEcore C

k1k0 L(k0)

P ′ PRINCEcore C′

k1 ⊕ αk0 L(k0)

x

y′

y

x′

Fig. 2. Related-key distinguisher on full PRINCE.

Proof. As described in Sect. 2, PRINCE transforms a plaintext P into the cipher-
text C = Ek1(k0⊕P)⊕L(k0), where Ek1 instantiates PRINCEcore with key k1. For
a second plaintext P ′, we set C ′ = Ek1⊕α(k0 ⊕P ′)⊕L(k0) using the related-key.
The condition C ⊕P ′ = k0 ⊕L(k0) actually states that the output of PRINCEcore

in the first message equals the input of PRINCEcore in the second one. Namely,
C ⊕P ′ = k0 ⊕L(k0) means x′ = y from the notations of Fig. 2. Since y = Ek1(x)
and y′ = Ek1⊕α(x′), we have x = y′, which gives P ⊕ C ′ = k0 ⊕ L(k0).
�

From this distinguisher, we show how to mount a key-recovery attack on
PRINCE.

1. Query 232 ciphertexts to PRINCE with the key k = (k0, k1), and obtain
plaintext/ciphertext pairs denoted as (Pi, Ci). Store them in a hash table
Tc indexed by Xi = Pi ⊕ Ci.

2. Query 232 plaintexts to PRINCE with the related key k′ = (k0, k1 ⊕ α), and
obtain plaintext/ciphertext pairs denoted as (P ′

i , C
′
i). Store them in a table

Tp index by Yi = P ′
i ⊕ C ′

i.
3. Find collisions in the keys of Tp and Tc.
4. For each pair Xi = Yj , compute Z = Ci ⊕P ′

j . Sample a plaintext P uniformly
at random, and obtain the corresponding ciphertext C from the encryption
oracle. Check the distinguisher by constructing the ciphertext C ′ = P ⊕ Z,
querying its corresponding plaintext P ′ decrypted with the related-key, and
check if P ′ ⊕ C = Z. If this holds, then Z = k0 ⊕ L(k0).

5. Retrieve k0 by inverting the bijection x → L(x) ⊕ x, and finish the attack by
recovering k1 exhaustively.

Complexity Analysis. After the two first steps where two structures of 232

independent values have been constructed, by the birthday paradox we expect
one collision for step 3. This collision gives a suggestion for k0 that we check with
the previously described distinguisher. This attack requires known plaintexts,
but we note that with a chosen plaintext attack, we can pick Ci and P ′

j carefully

Security Analysis of PRINCE 97

such that Ci ⊕ P ′
j covers all the possible 264 values. This ensures the value of k0

to be recover with probability 1 at Step 4.
The total data complexity is about 233 chosen plaintexts to construct the two

tables and check the distinguisher, and requires a time complexity equivalent to
233 + 264 ≈ 264 encryptions. We recall that the security bound for single-key
attack with 233 data claimed by the designers equals 127 − 33 = 94 bits.

3.2 Related-Key Boomerang Attack on PRINCEcore

In this section, we describe a related-key boomerang attack on PRINCEcore with a
time complexity equivalent to 248 encryptions. To construct the boomerang dis-
tinguisher, we split the core block cipher E of PRINCE into two halves E = E1◦E0,
where both E0 and E1 consists in 6 non-linear layers. The main observation that
makes the distinguisher efficient is the existence of related-key differential char-
acteristics with a very high probability. We start our analysis with an inspection
of the S-box of PRINCE.

Property 2. For the S-box of PRINCE, there are 15 differential transitions, i.e.
15 pairs of input-output differences, that hold with probability 2−2.

Further, we introduce three differences (Δ,ΔM ,∇) that play the main role in our
boomerang attacks. Let Δ → ΔO be one of the 15 transitions with probability
2−2, and let ΔM be defined as ΔM = M(ΔO), where M is the linear layer of
PRINCE. Finally, let ∇ = Δ ⊕ ΔM .

Property 3. For PRINCEcore, there exists one round iterative characteristic
(ΔM ,∇) → (ΔM) where ΔM is the difference in the incoming state and ∇
is the difference in the key, that holds with probability 2−2.

The proof is trivial and is based on the particular values of the differences we
have defined above (see Fig. 3).

The related-key boomerang distinguisher uses two independent six-round dif-
ferential characteristics, produced as concatenation of six copies on the single-
round differential characteristic previously described. Thus, we obtain two six-
round characteristics with probabilities p = q = 2−2×6 = 2−12. Consequently,

� ���
ΔM

� ���

∇

�

Δ

S

�

ΔO

M′

���� SR

� ���
ΔM

Fig. 3. Iterative differential characteristic on one round of PRINCEcore used in the
boomerang distinguisher.

98 J. Jean et al.

the related-key boomerang distinguisher finds a boomerang quartet of plain-
texts in (pq)−2 = 248 queries to the encryption/decryption oracle. We have
implemented the distinguisher on a PC and found out that due to the amplified
probability of the boomerang, the actual complexity is lower, i.e. it is somewhere
around 236. Thus, we were able to find a boomerang quartet for the full 12 rounds
of PRINCEcore. An example of one such quartet is given in Appendix A.

Before we continue, we would like to make a few observations regarding the
boomerang:

• the distinguisher is applicable regardless of the choice of the diffusion matrix
M ,

• the distinguisher is applicable regardless of the position of Δ in the state, i.e.
we can choose any of the 16 nibbles,

• the distinguisher is applicable regardless of the choice of Δ in the top and the
bottom characteristics,

• for one of the six-round characteristics one can choose differential transition
that holds even with probability 2−3. In that case, the probability of the
boomerang becomes 26·2·(−3)+6·2·(−2) = 2−60.

Thus we can conclude that for PRINCEcore, one can launch around 15·16·15·16 ≈
216 different related-key boomerang distinguishers that hold with probability
2−48, and around 210 · 16 · 15 · 16 + 15 · 16 · 210 · 16 ≈ 221 boomerangs with
probability 2−60. In the sequel, we denote A(i, j) the boomerang distinguisher
with probability 2−48 where the active on the top characteristic is the i-th one,
and the j-th one for the bottom characteristic, 0 ≤ i, j < 16.

Key-Recovery Attack. We now show how to turn the previous related-key
boomerang distinguisher into a key-recovery attack. After the previously described
distinguishing algorithm has completed, the attacker has one boomerang struc-
ture consisting in two pairs conforming to the first differential characteristic, and
two other pairs verifying the second differential characteristic. From the plaintext,
we show that the entropy of the nibble from k1 corresponding to the active nibble
in the top characteristic has been reduced to 2 bits. Indeed, as the pair verifies
the first round, we know the differential transition of the first active nibble, so
that there are only 4 possible values of that particular nibble1. Since we know the
values in the plaintexts, and we have two pairs that verify this transition, the cor-
responding key-nibble can only take two values. The same reasoning applies on
the ciphertexts for the bottom characteristic.

If we run 16 different instances of the boomerang distinguishing algorithm
A(n, n), 0 ≤ n < 16, with the same nibble position n in the two characteristic,
each iteration would narrow the n-th nibble of k1 to exactly one value, but this
would also require 16·236 chosen-plaintexts. Instead, we run 8 times the algorithm
with different nibble positions in the top and the bottom part: A(n, n + 8),

1 The transitions occurring with probability 2−2, there are two pairs of values that are
solution to S(x) ⊕ S(x ⊕ Δ) = ΔO.

Security Analysis of PRINCE 99

0 ≤ n < 8. Consequently, the information from the top pairs reduces the left
half of k1 to 28 values, and the bottom pairs reduces the right half of k1 to 28

values as well. In total, this requires 8 · 236 data and time to run the boomerang
algorithm A, and an additional 216 time to recover the actual key k1.

4 A Single-Key Attack on PRINCEcore with Chosen α

The related-key boomerang attack presented above does not make use of the α-
reflection property, but rather of the high probability one-round iterative char-
acteristic. In this section, we show that the two concepts can be combined into
a single-key boomerang attack with a modified value of α, i.e. we show exis-
tence of a set of values of α �= 0 for which one can launch key-recovery attack
on PRINCEcore. The idea of our single-key attack is to align encryption with
decryption in the boomerang. We note that the possibility of alignment has
been discussed in the submission (see Sect. 3.1 of [4]), however the designers did
not examine the case of boomerangs.

First, let us assume the encryption Enc of PRINCEcore is aligned with decryp-
tion Dec, and focus on differential trails. Due to the α-reflection property, these
two primitives are identical up the the addition of the round constants RCi. As
pointed by the designers, to build a related-key differential trail between Enc
and Dec, one takes difference α in the related keys and since the same difference
α is introduced by the round constants, in each round the differences cancel and
the trail holds with probability 1. On the other hand in the single-key case, the
difference coming from the key is 0, while the constants would still have the
predefined α. Recall that in the six-round differential trails used in the related-
key boomerang attack, in each round the difference introduced by the key is
∇. Hence, if α would coincide with the difference ∇ in the key from the above
related-key boomerang, then a six-round single-key trail between Enc and Dec
is precisely the same as the six-round related-key trail between two Enc (or
between two Dec), i.e. the keys and constants switch roles. In other words, in
the single-key case one can build a six-round trail with probability 2−12.

The single-key boomerang attack for the whole PRINCEcore uses the same
ΔM in the top and bottom characteristics, and it can be described as follows:

1. Aligning encryption with decryption at the beginning: Take a random
plaintext P1 and compute C2 = P1 ⊕ ΔM .

2. Aligning two encryptions with decryptions at the end: Encrypt P1

to produce the ciphertext C1, and decrypt C2 to produce the plaintext P2.
Compute C3 = C1 ⊕ ΔM and P4 = P2 ⊕ ΔM .

3. Aligning encryption with decryption at the beginning: Decrypt C3

to produce the plaintext P3. Encrypt P4 to produce the ciphertext C4. If
P3 ⊕ C4 = ΔM output the boomerang quartet (P1, C2, P3, C4), otherwise go
to step 1.

After repeating 1–3 around 248 times, one finds the quartet with a high
probability. The proof of correctness of the above boomerang is similar as in the
case of standard boomerangs (where one aligns encryptions with encryptions).

100 J. Jean et al.

In the single-key case, we cannot choose the position of the active nibble as
it is fixed by the value of α. Thus in the key recovery attack, we can recover
only a single nibble of the master key. The first boomerang quartet will suggest
4 possible values for this nibble, and an additional quartet will give the exact
value. Thus the complexity of recovering 4 bits of the master key is 2 ·248 = 249.
The remaining 60 bits can be searched exhaustively. Our experimental results
suggest that when the top and the bottom characteristic use the same value ΔM

then the probability of the boomerang is somewhat lower, i.e. instead of 2−36

obtained in the case of different ΔM , now we get 2−40. Therefore the actual
recovery of the 4 bits is around 2 · 240 = 241.

The above attack is applicable only when the value of the constant α coincides
with the value of ΔM defined in the previous section. Therefore, α can take
15 · 16 = 240 different values. We note that the original value chosen by the
designers is not among these 240 values.

5 Exploiting the Extra Linear Relation

In this section, we give an analysis of PRINCE in the single-key model. We show
that while the claim of the authors is that no attack can be conducted on PRINCE
with less than 2127−n computations with 2n queries, it is possible to slightly break
this bound by leveraging the various linear relations that exist with probability
1 in the cipher. Of course, considering the small gain factor (only about 20.6),
our attack does not really contradict the claim of the designers. However, it
indicates that perhaps it might be worth to tweak the security proof in order to
take into account all the linear relations inherent to the structure of PRINCE. We
emphasize that the gain factor comes directly from the number of keys tested,
and not by computing only parts of the cipher as for biclique attacks [3]. It would
be possible to slightly increase the gain by combining with the accelerating tricks
from biclique attacks, but our goal is not in this direction as we are analyzing
the structural behavior of the cipher.

5.1 The Linear Relations

The idea underlying our attack is that there exist two linear relations for PRINCE
cipher that are verified with probability 1:

E(k0||k1)(P) = E(k0⊕Δ||k1)(P ⊕ Δ) ⊕ L(Δ) (2)
or: D(k0||k1)(C) = D(k0⊕Δ||k1)(C ⊕ L(Δ)) ⊕ Δ (3)

and: D(k0||k1)(C) = E(k0||k1⊕α)(C ⊕ k0 ⊕ L(k0)) ⊕ k0 ⊕ L(k0) (4)

The first Eq. (2) is the simple related-key relation due to the Even-Mansour
construction of PRINCE, while the second Eq. (4) is the α relation required for
the smooth decryption of PRINCE. Using these two relations, we will be able to
test 4 keys at the same time, with only one PRINCE computation, thus leading to
a maximal gain factor of 2 over the claimed security (2127 with a single query).

Security Analysis of PRINCE 101

First let us assume that we queried some plaintext P to the encryption oracle
and we received ciphertext C. By picking a random key (k0||k1), the attacker
can compute E(k0||k1)(P) = C ′ and directly check if C ′ = C. If not, then he
knows that (k0||k1) is not the secret key. However, he can deduce more than just
this information. Indeed, from (2) and by denoting C ′ ⊕ C = δ �= 0, we deduce

E(k0⊕L−1(δ)||k1)(P ⊕ L−1(δ)) = E(k0||k1)(P) ⊕ L(L−1(δ))

= C ′ ⊕ δ = C

and since δ �= 0, then L−1(δ) �= 0 and thus the key (k0 ⊕ L−1(δ)||k1) encrypts
a different plaintext than P to ciphertext C, i.e. it is not a valid key (and it is
different from key (k0||k1) since L−1(δ) �= 0).

At this point, the attacker can test two keys with one PRINCE query and one
PRINCE offline computation. However, he can deduce even more information by
using Eq. (4) and using notation X = L−1(P ⊕ C ⊕ k0):

D(X||k1⊕α)(C) = E(X||k1)(C ⊕ X ⊕ L(X)) ⊕ X ⊕ L(X)
= E(k0||k1)(C ⊕ X ⊕ L(X) ⊕ k0 ⊕ X) ⊕ X ⊕ L(X) ⊕ L(k0 ⊕ X)
= E(k0||k1)(P) ⊕ L(k0) ⊕ X

= C ′ ⊕ L(k0) ⊕ L−1(P ⊕ C ⊕ k0)

and if C ′ ⊕L(k0)⊕L−1(P ⊕C ⊕k0) �= P , then it means that the key (X||k1 ⊕α)
deciphers the ciphertext C to a plaintext different from P , i.e. it is not a valid
key. Let us denote Y = P ⊕ C ′ ⊕ L(k0). Then:

E(Y ||k1⊕α)(P) = D(Y ||k1)(P ⊕ Y ⊕ L(Y)) ⊕ Y ⊕ L(Y)
= D(k0||k1)(P ⊕ Y ⊕ L(Y) ⊕ L(k0 ⊕ Y)) ⊕ Y ⊕ L(Y) ⊕ k0 ⊕ Y

= D(k0||k1)(C
′) ⊕ k0 ⊕ L(Y)

= P ⊕ k0 ⊕ L(P ⊕ C ′ ⊕ L(k0))

and if P ⊕ k0 ⊕ L(P ⊕ C ′ ⊕ L(k0)) �= C, then it means that the key (Y ||k1 ⊕ α)
encrypts the plaintext P to a ciphertext different from C, i.e. it is not a valid
key.

5.2 Speeding Up the Key Recovery with Linear Relations

For previous subsection, it is clear that with only a single query to the encryp-
tion oracle, and performing only a single PRINCE offline computation, one can
eliminate four keys at a time (namely K1 = (k0||k1), K2 = (k0 ⊕ L−1(δ)||k1),
K3 = (L−1(P ⊕ C ⊕ k0)||k1 ⊕ α) and K4 = (P ⊕ C ⊕ δ ⊕ L(k0)||k1 ⊕ α)) by
testing simple linear relations. However, there is a subtlety here because among
the four keys that are tested, some are not controlled by the attacker. Indeed,
while K1 is directly chosen by the attacker, the value of the tested keys K2 or
K4 depend on δ which is a random value from the view of the attacker. The
third key K3 does not depend on δ and therefore can be chosen by the attacker
as well (that is, k0 and k1 linearly define K1 and K3).

102 J. Jean et al.

We would like to evaluate the complexity of a brute force key search using
this method that tests four keys with only a single PRINCE computation. One
can first divide the sets of keys k1 into 263 independent pairs (k1, k1 ⊕ α). The
attacker will go through the 263 pairs and for each of them test all the possible
values of k0. For each PRINCE computation, he will eliminate two keys for k1 (i.e.
K1 and K2) and two keys for k1 ⊕ α (i.e. K3 and K4), continuing until he has
tested all the keys k0 for both k1 and k1 ⊕ α, and then going to the next pair
(k1, k1 ⊕ α). To minimize the overall complexity, at each step the attacker will
select a value for k0 such that key K1 and key K3 have not been tested yet and
this can be done with a good probability2 as long as the number of untested
keys k0 for both k1 and k1 ⊕ α is bigger than 232. The two others keys K2 and
K4 will randomly hit either a new and untested key or an already tested one,
but on average over the whole process about one key will be eliminated. Overall,
with one PRINCE computation on average about three new key candidates are
removed and the total key recovery complexity is about 2128/3 = 2126.4 PRINCE
evaluations, while with a single query to the encryption oracle the security claim
by the designers is 2127. We give in Appendix B a slightly more precise analysis
of the attack complexity, leading to 2126.47 computations.

5.3 Generalization to Several Queries

In the previous subsection, only a single plaintext query was sent to the encryp-
tion oracle, but in fact this is not enough to fully recover the PRINCE secret key
since at least two 64-bit queries are required to fully determine the 128-bit secret
key. Asking one more query to the oracle in order to prune the remaining key
candidates will reduce by a factor 2 the security claim given by the designers
which will become lower than our key recovery complexity. Therefore, we need
to generalize our previous attack to the case of several oracle queries, and we
analyze the example of two queries.

Our goal with two queries is now to be able to test 8 keys at a time (instead
of 4), using only one offline PRINCE computation. Let us assume that in addi-
tion to the first query (P,C), we also ask for the encryption of P ⊕ 1 and we
receive C+1. As before, by choosing a random key (k0||k1) and computing offline
E(k0||k1)(P) = C ′, we can test four keys at a time by using (P,C). It is actually
straightforward to apply the very same reasoning to (P ⊕ 1, C+1) as well and
get to test four more keys for free. For example, similarly to the first key K1 we
can write:

E(k0⊕1||k1)(P ⊕ 1) = E(k0||k1)(P) ⊕ L(1)
= C ′ ⊕ L(1)

and if C ′ ⊕ L(1) �= C+1, then it means that the key (k0 ⊕ 1||k1) ciphers the
plaintext P ⊕ 1 to a ciphertext different from C+1, i.e. it is not a valid key.
2 Since there are 264 values of k0 to test, there will always be at least 232 untested key

for both k1 and k1 ⊕ α except at the very end of the process, but then the effect is
negligible since only 232 keys will remain to be tested.

Security Analysis of PRINCE 103

We can apply this kind of transformation to the three other keys K2, K3, K4

and obtain three more free keys.
During the key recovery process, we now get a structure with 8 tested keys,

where 4 are for k1 (two controlled and two uncontrolled) and 4 are for k1 ⊕ α
(two controlled and two uncontrolled). With the very same reasoning as before3,
we deduce that 6 new keys are tested on average per offline PRINCE computation,
and the final key recovery complexity is 2128/6 = 2125.4 PRINCE evaluations, while
with two queries to the encryption oracle the security claim by the designers is
2126. Using the same reasoning than depicted in Appendix B, we obtain a slightly
more precise analysis of the attack complexity, leading to 2125.47 computations.

6 Integral Attacks for Reduced-Round PRINCEcore and
PRINCE

In this section, we present key-recovery attacks for reduced variants of 4, 5 and
6 rounds of PRINCEcore, and show how to extend them to key-recovery attack
on the same number of rounds for PRINCE. The basic strategy comes as a direct
application of the SQUARE attack proposed in [5]. We begin by describing the
context for PRINCE with a 4-round version, and then show how to extend it to
5 and 6 rounds. In the sequel, we use the notations defined in Sect. 2 where the
middle layer Mmid is linear.

6.1 Attack on 4 Rounds

This small version considers two rounds R0 and R1 in the first part of the core
block cipher, followed by the middle linear layer Mmid, and finally the two last
rounds R2 and R3. The secret key to recover for PRINCEcore is k1. This attack, as
well as the subsequent ones, uses the following 3-round distinguishing property
as its core.

Property 4. Let Pn be a set of 24 plaintexts such that a particular nibble
n assumes all 24 possible values while the 15 other ones are fixed to chosen
constants. We call this structure a δ-set. The encryption of the δ-set Pn through
three rounds of PRINCEcore produces a set C where all nibbles are balanced,
that is:

∀n ∈ {0, . . . , 15},
⊕

c∈C
c[n] = 0.

The proof strictly follows the one from [5] and is due to the wide-trail strategy
followed by the designers. Additionally, we can also consider the encryption of Pn

3 We have 4 controlled keys, which can be chosen to be always untested keys as long
as the number of untested keys k0 for both k1 and k1 ⊕ α is bigger than 248. Since
there are 264 values of k0 to test, there will always be at least 248 untested key for
both k1 and k1 ⊕ α except at the very end of the process, but then the effect is
negligible since only 248 keys will remain to be tested.

104 J. Jean et al.

under 3.5 rounds of PRINCEcore, where we skip the application of the non-linear
layer in the fourth round. Applying the S-box destroys this algebraic property
of the δ-set, but allows to mount a key-recovery attack.

We begin by constructing a δ-set P0 of 24 plaintexts where nibble at position
0 assumes all 24 values, we ask the encryption P0 under the secret key k1, and
store the ciphertexts in C. Then, for all nibbles n in k1, guess the value of k1[n]
and compute σ =

⊕
c∈C S

(
c[n] ⊕ k1[n] ⊕ RC4[n]

)
. If σ = 0, then the nibble

before the last non-linear layer is balanced, and we get a valid suggestion for the
value k1[n]. Otherwise, we discard the guess.

This algorithm requires 24 chosen plaintexts and suggests in average one
value per nibble of k1 since each check should remove 1 out of 24 guesses. At the
end, we recover in sequence all the nibbles of k1 with a total time complexity of
16 · 24 = 28 simple operations, and 24 64-bit words of memory.

6.2 Attack on 5 Rounds

Further we show how to add one round at the end of the previous attack, to reach
five rounds. We note that this reduced variant of PRINCEcore is not symmetric
since there are two rounds, R0 and R1, before Mmid and three rounds after: R2,
R3 and R4. The strategy remains the same: we guess particular key nibbles to
check the distinguishing property on an encrypted δ-set C. Now we need to guess
4 nibbles of a column of k1 to partially decrypt the corresponding columns of the
ciphertexts and check the balanced property. Note that in the case of PRINCEcore,
we only need to guess 4 nibbles since there is no key-schedule, whereas for the
AES we would need 5.

In comparison to the previous attack where one check suffices to remove all
but one key guess, here we need more. Indeed, we expect a single check to behave
as a 4-bit filter, so that 4 δ-sets should provide enough information to discard
all but 1 key guess. In practice, we measure that the filter is not that strong: we
require in average 4.7 δ-set to determine the 4 key nibbles uniquely. In total, the
attack requires 5 · 24 chosen plaintexts, 5 · 24 memory to store them, and a time
complexity of 4 · 5 · 216 ≈ 221 simple operations to recover the full k1.

6.3 Attack on 6 Rounds

On top on the previous attack, we add one additional round at the beginning to
reach six rounds. The strategy is the same as the one for the AES: we construct
a set of plaintexts P such that we can construct a δ-set after one round. To
do so, we consider a larger structure of 216 plaintexts where the four diagonal
nibbles assume all the possible values, and we ask its encryption to get the
set of corresponding ciphertexts C. Then, we guess the four diagonal nibbles
of k1 and partially encrypt the associated data under the key guess to find 24

plaintexts/ciphertexts pairs defining a δ-set in the second round. We expect
212 δ-sets Pi for any nibble i, so the data can be reused to replay the attack
on a different δ-set. We can now apply the 5-round attack by guessing only 3

Security Analysis of PRINCE 105

additional nibbles: we already know one in each column from the diagonal guess.
In total, the attack requires 216 chosen plaintexts of data and same for memory
requirements and runs in time equivalent to 4 · 216 · 212 = 230 simple operations.

6.4 Extension from PRINCEcore to PRINCE

All the three previous attacks on PRINCEcore can be extended to attacks on
PRINCE by guessing the same nibbles in L(k0). Namely, if we have an integral
attack on r rounds of PRINCEcore requiring g precise guesses in the last appli-
cation k1, we can deduce an attack recovering k1 ⊕ L(k0) on the same number r
of rounds by guessing the same g nibbles in both k1 and L(k0). For each correct
final guess g that verifies the balanced property, we deduce the right value for
k1[g] ⊕ L(k0)[g]. Hence, for the 6-round attack, we can recover k1 ⊕ L(k0) with
216 chosen plaintexts and (24)4+3+4 = 244 simple operations. We first guess the
four diagonal nibbles of k1 to find the δ-set, then we guess 4 nibbles in a column
of L(k0) and three new guesses in the same column of k1 to partially decrypt
the ciphertexts. For the same reason as before, only three guesses are needed in
k1 because we already know one. Finally, we can exhaust the 264 values of either
k0 or k1 to recover the full 128-bit master key.

7 Time-Memory-Data Tradeoffs

In this section, we present tradeoffs for the construction used in PRINCE, i.e.
our approaches work regardless of the cipher used as PRINCEcore. The proposed
tradeoffs are based on a property that the cipher can be divided into two parts,
leading to a similar division of the phases of the key recovery attack. Then,
one side of the attack is precomputed as it does not depend on the plaintext-
ciphertext, while the other side is data-dependent and it is recomputed in the
online phase. Depending on the precomputation phase and in particular on the
memory used in this phase, our tradeoffs are based either on the meet-in-the-
middle (MITM) attacks or on Hellman’s tradeoffs [9]. We note that we give time-
memory-data tradeoffs, i.e. we show that one can achieve tradeoffs involving data
as well. This is not the case for the rest of the block ciphers, as the only known
generic block cipher tradeoff is the Hellman’s tradeoff which does not make use
of larger data set.

We assume the reader is familiar with the Hellman’s time-memory trade-
off that consists of two phases: (1) precomputation or offline phase, when the
attacker encrypts a chosen plaintext under all possible keys and stores part of the
results in so-called Hellman’s tables, and (2) online phase, in which the attacker
recovers the secret key using the tables. A cryptanalytic tradeoff is defined by
the following parameters:

• N is the size of the key space (e.g. for PRINCE N = 2128)
• P is the time complexity of the precomputation phase
• M is the amount of the memory used in both the precomputation and the

online phases

106 J. Jean et al.

• T is the time required to recover the secret key, i.e. the complexity of the
online phase

• D is the amount of data required to recover the secret key

The standard way of presenting a tradeoff is by giving its curve, which is a
simple relation between the time, memory, data, and the size of the key. The
Hellman’s time-memory tradeoff is the only known generic tradeoff for block
ciphers, and has the curve TM2 = N2,M > N

1
2 and P = N . We use (P,C) to

denote the plaintext-ciphertext pair for PRINCE, and (A,B) to denote the pair
for PRINCEcore.

Our tradeoffs exploit the linearity of the addition of k0. Recall that the
addition of the key k0 is defined as:

P ⊕ k0 = A (5)
B ⊕ L(k0) = C, (6)

or equivalently

L(P) ⊕ L(A) = L(k0) (7)
B ⊕ C = L(k0). (8)

Thus, the values of P,C,A,B are related as:

L(P) ⊕ C = L(A) ⊕ B (9)

Therefore, the separation of (P,C) on one side, and (A,B) on the other is man-
ageable. We note that a similar reduction was presented in [7]. It was applied
to the case of single-key Even-Mansour, where L(k0) = k0, and the inner trans-
formation F is a permutation rather than a cipher as in our case. However, [7]
does not examine the possibility of tradeoff attacks.

A MITM Tradeoff. Our first tradeoff is MITM based. It can be described as
follows:

1. In the precomputation phase, the attacker fixes 264−d values of A and for
all possible 264 values of the key k1 computes the corresponding value of
B = PRINCEcore(A, k1) and stores the tuple (L(A)⊕B,A,B, k1) in a table
S̃. The size of S̃ is 2128−d.

2. In the online phase, given 2d pairs of known plaintexts-ciphertexts, for each
pair (Pi, Ci), the attacker computes the value of L(P) ⊕ C and checks for a
match in the table S̃. For every found match, the outer key k0 is computed,
and a possible candidate k0||k1 is checked on a few more pairs of plaintexts-
ciphertexts.

As there is 2d data, the size of the set S̃ is 2128−d, and the matching space is
only 64 bits, there would be 2d+128−d−64 = 264 candidates, thus the correct key
would be found with an overwhelming probability.

Security Analysis of PRINCE 107

This tradeoff has the following parameters:

N = 2128, P = 2128−d,M = 2128−d, T = 264,D = 2d, (10)

and thus the precomputation phase is smaller than N , i.e. PD = N , while the
resulting memory-data tradeoff curve is of the type:

DM = N,T = N
1
2 ,M > N

1
2 . (11)

Interestingly, this is precisely the curve given by Babbage and Golić [1,8] for
stream ciphers. Compared to the Hellman’s curve, we get TM2 = 26424·64−2d =
24·64264−2d = N2264−2d, hence when the data D > N

1
4 = 232, we get a better

tradeoff.

Hellman’s Tables Trade-off. Though the time complexity seems attractive
as it is only N

1
2 , the memory complexity required by the previous tradeoff is

quite large. Hence, it is reasonable to try to reduce the memory by increasing
the time. This is achievable by implementing Hellman’s tradeoff as intermediate
step of the tradeoff for the whole cipher. Hellman’s tradeoff satisfies the curve
TM2 = N2, where N = 2n, T = t2,M = mt, and mt2 = 2n. The values t,m are
related to the dimension and the number of the tables created during the offline
phase. Note that Hellman’s tables are computed for a particular plaintext. We
call P -Hellman’s tables, the precomputation phase computed under the plaintext
P . Thus P -Hellman’s tables can recover the secret key if the supplied plaintext
is P .

Our tradeoff based on Hellman’s tables can be described as:

1. In the precomputation phase, the attacker creates a set S̃ of 2n−d different
values Ai for A and for each value, builds Ai-Hellman’s tables for the cipher
PRINCEcore(Ai, k1).

2. In the online phase, given 2d pairs of known plaintexts-ciphertexts, for each
pair (Pi, Ci), the attacker performs the following steps:
• Fixes one value of Ai from the predefined set S̃,
• Computes the value of k0 = Pi ⊕ A,
• Computes the corresponding value of B = Ci ⊕ L(k0),
• Uses Ai-Hellman’s table, to find a value of k1 such that PRINCEcore(Ai,

k1) = B,
• Checks if the found key k0||k1 is the correct key by testing on a few more

pairs of plaintext-ciphertext,
• If the suggested key is incorrect, repeats all of the above steps.

As there is 2d data, and 264−d values of Ai in S̃, in total there are 2d264−d =
264 possible values for the key k0, and for each of them on average one value for
the key k1, or 264 pairs of suggested keys, thus the attacker finds the right key
with a high probability. In the precomputation phase, for a single value of A, the
attacker uses 264 computations to build Hellman’s tables and requires M = mt
memory to store each of them. In the online phase, given A and B, the attacker

108 J. Jean et al.

needs T = t2 time to find the correct value of the key k1. Therefore, the tradeoff
has the following parameters:

N = 2128, P = 2128−d,M = 264−dmt, T = 264t2,D = 2d, (12)

and the resulting time-memory-data tradeoff curve is of the type:

T (MD)2 = 264t222·64−2dm2t222d = 23·64(t2m2t2) = 23·6422·64 = 25·64 = N2N
1
2 .

(13)
Again, our tradeoff compared to the Hellman’s tradeoff is better at the points of
the curve where D > N

1
4 . We should note that due to the claimed security level

of PRINCE, i.e. TD < N , an additional requirement M2D > 2192 is introduced.

Hellman’s Single Table Trade-off. In the Hellman’s tradeoff, different tables,
each with a unique reduction function, are created in order to avoid colliding
chains, i.e. if the chains are too long, the probability they will collide is high and
therefore either the precomputation time has to be increased or the number of
keys that can be recovered in the online phase becomes small. The collisions in
the precomputation phase cannot be detected, hence the chains are kept short.
However, the situation changes if one can store all of the values. This type of
scenario is discarded in the classical Hellman’s tradeoff as it requires M = N .
However, in the case of PRINCEcore, the required memory is only M = N

1
2 which

is precisely the lower bound on the memory in the Hellman’s tradeoff (recall that
the memory requirement in the Hellman’s tradeoff is M > N

1
2 = 264). Using 264

memory, one can easily create a single Hellman’s table for the whole tradeoff –
the table has m chains, each with around t points. The first chain starts with a
terminal point (a value that does not have a preimage) and can have a length
of up to 232, i.e. t < 232. If the length t is chosen to be less than 232, then
the starting point of the next chain is the end point of the previous one. This
process is repeated until a collision is obtained – such collision can be detected
immediately as one has all the values stored. Once a collision occurs, the next
chain starts again with a terminal point. Hence, to build the whole table, one
needs 264 time and memory, and mt = 264. Only the starting and end points of
the chains are stored for the online phase, thus the memory of the online phase
is m, while the time complexity is t, and therefore the tradeoff curve becomes
TM = N . Note that the memory 264 is reusable across different tables, i.e. if
one wants to create different tables for tradeoffs with different plaintexts, the
same 264 can be used. Also, as the chains can have a maximal length of 232, if
follows that t ≤ 232 and m ≥ 232.

The tradeoff presented above can be tweaked, and instead of building multiple
Hellman’s tables with mt2 = 2128, we can use the single table described here with
mt = 264. Hence, using this technique, we obtain the following tradeoff:

N = 2128, P = 2128−d,M = max(264−dm, 264), T = 264t,D = 2d, (14)

and the resulting time-memory-data tradeoff curve is of the type:

TMD = 264t264−dm2d = 22·64(tm) = 22·64264 = NN
1
2 . (15)

Security Analysis of PRINCE 109

Obviously M > N
1
2 has to hold (same as in the Hellman’s tradeoff), but

now we get that for any D > M/N
1
2 our tradeoff is better than Hellman’s,

that is if one uses 264+d memory, and can obtain more than 2d known pairs
of plaintext-ciphertext, by implementing our tradeoff he can recover the key
with less computations then by implementing the generic Hellman’s tradeoff.
We emphasize that our tradeoff requires only known data, i.e. it is far more
practical requirement, than the one of the generic tradeoff.

Acknowledgement. The authors would like to thank the FSE 2013 reviewers and the
PRINCE team for their valuable comments. Ivica Nikolić is supported by the Singapore
National Research Foundation under Research Grant NRF-CRP2-2007-03. Thomas
Peyrin, Lei Wang and Shuang Wu are supported by the Singapore National Research
Foundation Fellowship 2012 NRF-NRFF2012-06.

A Example of a Boomerang Structure

We present here an example of a boomerang structure found for the attack
described in Sect. 3.2 (Table 2).

Table 2. Example of a related-key boomerang structure
(
(ki, pi, ci)

)
i=1,...,4

for the

full PRINCEcore in hexadecimal values.

(k1, k2, k1 ⊕ k2) 91b4e89d2625f1fb 91b5e88d2725f1fa 0001001001000001

(p1, p2, p1 ⊕ p2) 0b92a736c9bb91a3 0b93a726c8bb91a3 0001001001000000

(c1, c2, c1 ⊕ c2) 2f04603451d1d3df 3846bd541167b633 1742dd6040b665ec

(k3, k4, k3 ⊕ k4) 91a4e99d2635f1fa 91a5e98d2735f1fb 0001001001000001

(p3, p4, p3 ⊕ p4) a763296ea531a6b8 a762297ea431a6b8 0001001001000000

(c3, c4, c3 ⊕ c4) 2f14613451d1d3de 3856bc541167b632 1742dd6040b665ec

(k1, k3, k1 ⊕ k3) 91b4e89d2625f1fb 91a4e99d2635f1fa 0010010000100001

(p1, p3, p1 ⊕ p3) 0b92a736c9bb91a3 a763296ea531a6b8 acf18e586c8a371b

(c1, c3, c1 ⊕ c3) 2f04603451d1d3df 2f14613451d1d3de 0010010000000001

(k2, k4, k2 ⊕ k4) 91b5e88d2725f1fa 91a5e98d2735f1fb 0010010000100001

(p2, p4, p2 ⊕ p4) 0b93a726c8bb91a3 a762297ea431a6b8 acf18e586c8a371b

(c2, c4, c2 ⊕ c4) 3846bd541167b633 3856bc541167b632 0010010000000001

B Analysis of the Key Recovery Attack Complexity of
Sect. 5

In the cryptanalysis described in Sect. 5, the attacker would like to test the
entire set of the 2k possible keys. At each step, four keys will be tested directly.
However, for each step, the attacker can only choose the value of two keys, and

110 J. Jean et al.

the two others are randomly chosen among the set of all possible keys (thus
potentially already tested ones). Since the overall complexity of the attack is the
number of steps required to test the entire set of keys, we would like to evaluate
this quantity precisely.

In order to ease the modeling, we consider the problem where at each step
one key is chosen by the attacker (thus always an untested one) and another
one is chosen randomly. Let T1/2 be the step where half of the keys have already
been tested. After T1/2, at least one new key will be tested on average, since the
attacker can choose one key each step. Before T1/2, at least 1.5 new key will be
tested on average, since the attacker can choose one key each step and since the
randomly chosen key will have a probability greater than 1/2 to be an untested
key. We can conclude that the average number of keys tested per step is at least
2/(1 + 1/1.5) = 1.2.

We further continue the partitioning by denoting Ti/x the step where a pro-
portion i/x of all keys have already been tested. Then, with the same reasoning,
after Ti/x at least (2 − (i + 1)/x) new keys will be tested on average and before
Ti/x at least (2 − i/x) new keys will be tested on average. The approximation
gets more precise as x grows and we obtain that the average number of key
tested per step is equal to

lim
x→∞

x
∑x−1

i=0 (1/(1 + i/x))
=

1
ln(2)

≈ 1.443. (16)

As a consequence, the average number of steps required to test the entire key
space in Sect. 5 is approximately 2k/(2 × 1.443) = 2k−1.53.

References

1. Babbage, S.: A space/time trade-off in exhaustive search attacks on stream ciphers.
In: European Convention on Security and Detection, IEE Conference Publication
No. 408 (1995)

2. Biryukov, A.: DES-X (or DESX). In: van Tilborg, H.C.A., Jajodia, S. (eds.) Ency-
clopedia of Cryptography and Security, 2nd edn, p. 331. Springer, New York (2011)

3. Bogdanov, A., Khovratovich, D., Rechberger, C.: Biclique cryptanalysis of the full
AES. In: Lee, D.H., Wang, X. (eds.) ASIACRYPT 2011. LNCS, vol. 7073, pp.
344–371. Springer, Heidelberg (2011)

4. Borghoff, J., et al.: PRINCE – a low-latency block cipher for pervasive computing
applications. In: Sako, K., Wang, X. (eds.) ASIACRYPT 2012. LNCS, vol. 7658,
pp. 208–225. Springer, Heidelberg (2012)

5. Daemen, J., Knudsen, L.R., Rijmen, V.: The block cipher SQUARE. In: Biham,
E. (ed.) FSE 1997. LNCS, vol. 1267, pp. 149–165. Springer, Heidelberg (1997)

6. Daemen, J., Rijmen, V.: The Design of Rijndael: AES - The Advanced Encryption
Standard. Springer, New York (2002)

7. Dunkelman, O., Keller, N., Shamir, A.: Minimalism in cryptography: the even-
mansour scheme revisited. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT
2012. LNCS, vol. 7237, pp. 336–354. Springer, Heidelberg (2012)

8. Golić, J.D.: Cryptanalysis of alleged A5 stream cipher. In: Fumy, W. (ed.) EURO-
CRYPT 1997. LNCS, vol. 1233, pp. 239–255. Springer, Heidelberg (1997)

Security Analysis of PRINCE 111

9. Hellman, M.E.: A cryptanalytic time-memory trade-off. IEEE Trans. Inf. Theory
26(4), 401–406 (1980)

10. Kilian, J., Rogaway, P.: How to protect DES against exhaustive key search (an
analysis of DESX). J. Cryptology 14(1), 17–35 (2001)

	Security Analysis of PRINCE
	1 Introduction
	2 Description of PRINCE
	3 Related-Key Attacks
	3.1 Related-Key Attack on Full PRINCE with the -Reflection Property
	3.2 Related-Key Boomerang Attack on PRINCEcore

	4 A Single-Key Attack on PRINCEcore with Chosen
	5 Exploiting the Extra Linear Relation
	5.1 The Linear Relations
	5.2 Speeding Up the Key Recovery with Linear Relations
	5.3 Generalization to Several Queries

	6 Integral Attacks for Reduced-Round PRINCEcore and PRINCE
	6.1 Attack on 4 Rounds
	6.2 Attack on 5 Rounds
	6.3 Attack on 6 Rounds
	6.4 Extension from PRINCEcore to PRINCE

	7 Time-Memory-Data Tradeoffs
	A Example of a Boomerang Structure
	B Analysis of the Key Recovery Attack Complexity of Sect.5
	References

