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Abstract. We present attacks on full Hummingbird-2 which are able to
recover the 128-bit secret keys of two black box cipher instances that have
a certain type of low-weight XOR difference in their keys. We call these
highly correlated keys as they produce the same ciphertext with a sig-
nificant probability. The complexity of our main chosen-IV key-recovery
attack is 264. The first 64 bits of the key can be independently recovered
with only 236 effort. This is the first sub-exhaustive attack on the full
cipher under two related keys. Our attacks use some novel tricks and
techniques which are made possible by Hummingbird-2’s unique word-
based structure. We have verified the correctness and complexity of our
attacks by fully implementing them. We also discuss enabling factors of
these attacks and describe an alternative design for the WD16 nonlin-
ear keyed function which is resistant to attacks of this type. The new
experimental function replaces S-boxes with simple χ functions.

Keywords: Hummingbird-2 · Related-key cryptanalysis · Lightweight
cryptography · Authenticated encryption · Hummingbird-2nu

1 Introduction

Hummingbird-2 is a light-weight authenticated encryption primitive designed
by a team led by Eric Smith of Revere Security and presented in RFIDSec ’11
[1]. Hummingbird-2 has been proposed for standardization in RFID use within
ISO [2].

Hummingbird-2 was created largely in response to an effective FSE ’11 attack
by Saarinen [3] against the original Hummingbird algorithm [4–6]. Saarinen’s
single-key attack broke the 256-bit Hummingbird-1 with 264 effort.

Some independent analysis on Hummingbird-2 has been published. In [7] a
“differential sequence attack” is described, but the total complexity of the attack
is higher than exhaustive search and therefore it is “of theoretical interest only”.
The same is said of the side channel cube attack presented in [8]. An even more
far-fetched attack is described in [9], requiring 2240 memory.

IACR ePrint [10] described an attack simultaneously using dozens of related
keys. Unfortunately the attack, as described, had some errors and the authors
subsequently withdrew the paper. However, some observations contained in it
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inspired our research that led to the discovery of high-probability correlated keys
described in Sect. 2.1.

The structure of this paper is as follows. In Sect. 2 we describe the relevant
components of the Hummingbird-2 algorithm and make a number of observations
about its various features. In Sect. 3 we describe an effective key-recovery attack
that uses a single key relation. We discuss enabling factors of the attack in
Sect. 3.7, followed by conclusions in Sect. 4.

Appendix A contains a full specification for a new variant which is resistant to
these attacks and is based on novel χ functions (rather than traditional S-boxes).

2 Examining the Hummingbird-2 Algorithm

Hummingbird-2 is neither a block cipher nor a stream cipher in the traditional
sense but combines some of the features of both. In this it resembles other
integrated authenticated encryption proposals such as Helix [11] and Phelix [12].

The “Hummingbird structure” uses 16-bit data paths throughout as it was
originally targeted towards low-end microcontrollers such as the TI MSP430
family. Data is always encrypted or decrypted in 16-bit increments. The cipher
accepts a 64-bit initialization vector IV , a 128-bit secret key K, and maintains a
128-bit state in registers R. A method for deriving message authentication tags
from the internal state is also given in the specification [1].

We use the following symbols and notation:

x ⊕ y : Exclusive-or operation between x and y.
x � y : Modular addition x + y mod216.
x � y : Modular subtraction x − y mod216.

x ≪ n : Left circular shift (rotation) of x by n bits.
x ≫ n : Right circular shift (rotation) of x by n bits.

Si : A 4 × 4 - bit nonlinear substitution box, i ∈ {1, 2, 3, 4}.
IV i : Word i of the 64-bit initialization vector, i ∈ {1, 2, 3, 4}.
Ki : Word i of the 128-bit secret key, i ∈ {1, 2, · · · , 8}.
Rr

i : Word i of the 128-bit state at position r, i ∈ {1, 2, · · · , 8}.
P r, Cr : Plaintext and ciphertext words at position r.

t
(r)
i : Used to mark temporary, internal quantities.

In the following sections, we will describe the various algorithm components
and present observations that will be used in the final overall attack. These
cryptanalytic observations may also be useful in attacks of other types than the
one described in this work. For a complete specification of Hummingbird-2, we
refer the reader to [1].

2.1 WD16 (and High-Correlation Related Keys)

Hummingbird-2 draws almost all of its nonlinearity from the WD16 function.
WD16 uses four keying words (total 64 bits) which define a permutation on a
16-bit input value. One may see WD16 as a 16-bit block cipher with a 64-bit key.
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WD16 is a four-round substitution-permutation network. In each round, a
16-bit subkey is XORed to the state, four 4 × 4 - bit S-boxes are applied in
parallel, followed by a linear mixing step. The structure is shown in Fig. 1.

We use S(x) to denote the parallel application of the 4-bit S-boxes S1, S2, S3,
S4 on the 16-bit word x. The linear operation is L(x) = x⊕ (x ≪ 6)⊕ (x ≫ 6).
If we shorten their compound operation to LS(x) = L(S(x)) then WD16 can be
written as:

WD16(x, k1, k2, k3, k4) = LS(LS(LS(LS(x ⊕ k1) ⊕ k2) ⊕ k3) ⊕ k4). (1)

We occasionally also use LS−1 and WD16−1 to denote the inverses of respective
functions. We fist observe that the WD16 can produce closely correlated output
with some distinct but related keys.

Observation 1. Consider two 64-bit WD16 keys (k1, k2, k3, k4) and (k′
1, k

′
2,

k′
3, k

′
4) that for some i ∈ {1, 2, 3} are related by δ = ki ⊕k′

i and Δ = ki+1 ⊕k′
i+1,

with the other two key words equivalent. There are such pairs that will yield
equivalent WD16 encryption and decryption for approximately 1/4 for input and
output values.

In a differential attack we only want to have a single active S-box to maximize
the probability. As with any 4 × 4 S-box, each one of S1, S2, S3 and S4 must
have differentials that work for at least four of the 16 input values, leading to
the given probability 1/4.

Looking at Fig. 1 we can see how after the δ = ki ⊕k′
i difference is introduced

at position i, it is then subjected to a S-box substitution and a linear transfor-
mation before the Δ = ki+1 ⊕ k′

i+1 key difference cancels it out at i+1 with the
given probability 1/4.

Table 1 gives a list of all of such pairs that have the optimum probability of
exactly 1/4. This table was created via an exhaustive search.

We give some examples of WD16 key pairs for which WD16A(x) = WD16B

(x) with probability 1/4:

A = 0001 0000 0000 0000 B = 0000 3B8E 0000 0000
A = FFFF FFFF F000 6198 B = FFFF FFFF 0000 0000
A = 1234 5000 6090 1234 B = 1234 A000 0108 1234

The last two examples use the F000 → 6198 relation which was (randomly)
chosen for the main attack described in Sect. 3 of this paper. There is a wide
spectrum of variations of a more general attack methodology that is represented
by that specific case; picking some other relation leads to a different attack.

2.2 Initialization and State Collisions

The initialization phase of Hummingbird-2 creates a 128-bit initial state from
the 64-bit IV using the secret key and the WD16 function.
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Fig. 1. The “WD16” mixing function is a 16-bit substitution-permutation network
with four rounds and a 64-bit subkey (k1, k2, k3, k4). It is used in both initialization
and encryption phases.
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Table 1. All 4 × 18 = 72 high-probability related key word pairs where δ = ki ⊕ k′
i is

canceled by Δ = ki+1 ⊕ k′
i+1 in the WD16 nonlinear function with probability 1/4.

δ → Δ δ → Δ δ → Δ δ → Δ

0001 → 3B8E 0010 → 74D3 0100 → C30C 1000 → D374

0002 → 2A8A 0010 → DC71 0100 → C71D 2000 → 6198

0002 → 2ECB 0020 → 30C3 0200 → 4D37 2000 → E3B8

0003 → 0441 0020 → B8E3 0300 → 8208 3000 → 2088

0007 → 0441 0030 → CC30 0300 → 8E3B 3000 → B2EC

0007 → 3B8E 0040 → CC30 0400 → 4515 5000 → E3B8

0008 → 1545 0050 → 1041 0400 → 8619 6000 → 8220

0008 → 3FCF 0060 → DC71 0600 → 4926 7000 → 8220

0009 → 330C 0060 → FCF3 0700 → 0822 8000 → 9264

000A → 1104 0070 → 1041 0700 → 8E3B 8000 → C330

000A → 3FCF 0080 → 5451 0A00 → 8208 9000 → 5154

000B → 0882 00A0 → 4410 0B00 → 0411 B000 → 1044

000C → 0CC3 00B0 → FCF3 0B00 → 4926 B000 → B2EC

000C → 2208 00C0 → 6492 0C00 → 4104 C000 → 4110

000E → 0882 00D0 → 2082 0D00 → 4D37 E000 → 1044

000E → 2649 00D0 → B8E3 0E00 → 0411 E000 → F3FC

000F → 1DC7 00F0 → 4410 0E00 → CF3F F000 → 4110

000F → 2649 00F0 → 5451 0F00 → 4104 F000 → 6198

Initialization is a four-round process. Figure 2 shows a single initialization
round. The state is first set as R = IV | IV . In each round, there are four
invocations of WD16 together with some mod 216 additive mixing, followed by
cyclic rotations of the first four registers and linear exclusive-or “accumulation”
mixing of the first four registers with the last four. The round counter i = 0, 1, 2, 3
is also used in the mix at the very beginning. The input keys to WD16 alter
between the two halves of the master key (K1, K2, K3, K4) and (K4, K5, K7,
K8).

Observation 2. For each key K, there is a family of 432 related keys K ′ that
yield the same state R after four initialization rounds with probability P = 2−16

over all IV values.

There are six possible positions i for δ = Ki ⊕ K ′
i and Δ = Ki+1 ⊕ K ′

i+1

that maximize the probability; i ∈ {1, 2, 3, 5, 6, 7}. Since there are two S-box
activations in each round and four initialization rounds, the total probability of
arriving at the same initial state for two such related keys is (1/4)2×4 = 2−16.
As there are 72 suitable (δ,Δ) pairs (see Table 1), for each 128-bit key K there
are at least 6 × 72 = 432 related keys that will give the same initial state with
the given 2−16 probability. This observation has been experimentally verified.
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Fig. 2. Initialization round. There are four initialization rounds with a counter stepping
through i = 0, 1, 2, 3.

2.3 Encryption

Hummingbird-2 encrypts and decrypts data in 16-bit increments, as shown in
Fig. 3. The 128-bit state Ri and key K define a permutation from the plaintext
word P i to the ciphertext word Ci or vice versa. To encrypt plaintext word P i

into a ciphertext word Ci, the following steps are taken:

ti0 = P i � Ri
1

ti1 = WD16(ti0,K1,K2,K3,K4)

ti2 = WD16(ti1 � Ri
2,K5 ⊕ Ri

5,K6 ⊕ Ri
6,K7 ⊕ Ri

7,K8 ⊕ Ri
8)

ti3 = WD16(ti2 � Ri
3,K1 ⊕ Ri

5,K2 ⊕ Ri
6,K3 ⊕ Ri

7,K4 ⊕ Ri
8)

ti4 = WD16(ti3 � Ri
4,K5,K6,K7,K8)

Ci = ti4 � Ri
1.
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Fig. 3. Encryption of plaintext word P i to ciphertext word Ci and update of state R.
The “temporary” variables t0 · · · t4 are used in the description of the attack.

After each encrypted word is processed, the state is updated:

Ri+1
1 = Ri

1 � ti3

Ri+1
2 = Ri

2 � ti1

Ri+1
3 = Ri

3 � ti2

Ri+1
4 = Ri

4 � Ri
1 � ti3 � ti1

Ri+1
5 = Ri

5 ⊕ (Ri
1 � ti3)

Ri+1
6 = Ri

6 ⊕ (Ri
2 � ti1)

Ri+1
7 = Ri

7 ⊕ (Ri
3 � ti2)

Ri+1
8 = Ri

8 ⊕ (Ri
4 � Ri

1 � ti3 � ti1).

For decryption, an inverse of WD16 function is required and the t quantities
are computed in reverse order. The update function remains the same.

2.4 Related-Key Progression in Encryption

We see that there are four invocations of WD16 in each encryption operation and
that key halves K1..K4 and K5..K8 are used twice each. In the middle two WD16
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rounds the key is XORed with four of the higher “accumulator” state registers,
but that has no effect on the differential. Since the differential is activated twice,
there is a (1/4)2 = 1/16 probability of matching ciphertexts.

Observation 3. There is a 1/16 probability that for a matching state R the
related keys K and K ′ (as defined in Sect. 2.1) will encrypt the same plaintext
word to the equivalent ciphertext word.

Note that if the key difference is in K5..K8, there is a 1/4 probability of
equivalent state update as the last WD16 invocation only affects ciphertext
output, not the state. Conversely, if the key difference is in K1..K4, the state
update will be equivalent in decryption with 1/4 probability. Furthermore, if the
(δ,Δ) difference is in (K1,K2) as the first WD16 does not affect the state in
decryption and at least 12 bits of the plaintext will be equivalent as there is only
one active S-box.

3 Crafting an Attack

There are many ways that one can use the high-probability correlated keys in an
attack. We will describe the one that we implemented, which uses only a single
related key pair described in Sect. 3.1.

The attack proceeds in a number of distinct stages. We first find a suitable
IV values for the attack (Sect. 3.2), and then proceed to solve various inter-
nal quantities (Sects. 3.3 and 3.4) and finally parts of the secret key (Sects. 3.5
and 3.6).

3.1 Attack Model

We assume that the attacker has access to two “black box” oracles whose keys
are related by

K ⊕ K ′ = (F000 6198 0000 0000 0000 0000 0000 0000). (2)

The choice of this particular key relation is almost arbitrary in the set of
admissible key differences. Many of the differentials in Table 1 could be used as
well.

In our model the attacking algorithm may perform chosen-IV initializations
and query encryptions and decryptions from the oracles. For an ideal cipher the
most effective way to recover the secret key K (and K ′) would be to through
brute force with expected complexity of 2128 trials. Therefore we will use the
estimated time required for a single trial, consisting of initialization and encryp-
tion/decryption of a single word as the “unit complexity” c = 20.

We note that in a brute force attack eight words need to be encrypted in
order to be reasonably sure that the correct key has been found, but with the
probability 65535/65536 the incorrect ones can be rejected after encryption of a
single word. Hence we use this as the unit complexity.
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3.2 Finding a State Collision

The first stage of the attack is to find an IV value that produces a matching state
R after the four-round initialization procedure for both K and K ′. As indicated
by Observation 2 in Sect. 2.2, one expects to find such a collision after searching
through 216 different IV values. Detection of a collision can be made by trial
decryptions. If we decrypt a word x immediately after initialization, then there
is a 1/4 probability that 12 bits of the corresponding plaintext words will match
as discussed in Sect. 2.4. The overall complexity of this step is no more than 220

to find an IV collision that holds with overwhelming probability.
Note that subsequent collisions may be found faster (for this K1,K2 relation)

if we first search using words (IV 1, IV 2, IV 3) and for consecutive searches keep
those words constant and loop through values of IV 4. The two initial round
collisions are therefore guaranteed and consecutive collisions can be found with
probability 2−12.

Our attack requires only a single initialization state collision, henceforth
denoted simply as IV .

3.3 Attacking Ri
1 with Carry Bits

It is important to note that in HB2 encryption we can also have state and
ciphertext word collisions when the plaintext words P (for K instance) and P ′

(for K ′ instance) are not equal.
The next stage involves the recovery of Ri

1. We can generate full codebooks
P i ↔ Ci and P ′i ↔ C ′i that depend on the IV and previous P j , j < i values
with roughly 217 effort if i is small. We fix Cj = C ′j for j < i and the states Ri

do not diverge. Looking at Figures 1 and 3 we note the following.

Observation 4. The first (δ,Δ) collision in the encryption operation works
when

S((P i � Ri
1) ⊕ K1) ⊕ S((P ′i � Ri

1) ⊕ K ′
1) = L−1(Δ). (3)

Here we use S to denote the four parallel S-box lookups and L−1 to denote
the inverse of the shift/XOR linear step in WD16, as in Eq. 1.

The δ and Δ values dictate which values the input differential P i ⊕ P ′i can
take. Since the input differential δ = K1 ⊕ K ′

1 = F000 is in the high nibble, only
the high nibbles N = ((P i�Ri

1)⊕K1)) >> 12 and N ′ = ((P ′i�Ri
1)⊕K ′

1) >> 12
really matter. We can tabulate successful pairs; see Table 2.

We see that Table 2 has only one entry per each horizontal and vertical line;
N ′ can be given as a function of N and vice versa. If the N and N ′ entries are
shifted by one position the collision at that point becomes impossible.

As we only want to have a single active S-box, may choose the high nibbles
of P i and P ′i arbitrarily, but we have to keep the low 12 bits the same.

Observation 5. The probability of the carry shift depends solely on the value
of plaintext low bits and the low bits of Ri

1. The shift will occur only when

(P i ∧ 0FFF) + (Ri
1 ∧ 0FFF) ≥ 1000. (4)
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Table 2. High nibbles of intermediate values N = ((P i � Ri
1) ⊕ K1)) >> 12 and

N ′ = ((P ′i � Ri
1) ⊕ K′

1) >> 12 in WD16 that will provide a collision. These are the
pairs for which S1(N) ⊕ S1(N

′ ⊕ 0xF) = 0x6. Note that in the diagonal there are four
entries as expected; if N = N ′ there is a 1/4 probability of a collision.

N\N′
0 1 2 3 4 5 6 7 8 9 A B C D E F

0 - - - - - - - - - - A - - - - -

1 - 1 - - - - - - - - - - - - - -

2 - - 2 - - - - - - - - - - - - -

3 - - - - - - - - 8 - - - - - - -

4 - - - 3 - - - - - - - - - - - -

5 - - - - - - - - - - - - - - - F

6 0 - - - - - - - - - - - - - - -

7 - - - - - - - - - - - - C - - -

8 - - - - - 5 - - - - - - - - - -

9 - - - - 4 - - - - - - - - - - -

A - - - - - - - 7 - - - - - - - -

B - - - - - - 6 - - - - - - - - -

C - - - - - - - - - - - B - - - -

D - - - - - - - - - - - - - D - -

E - - - - - - - - - - - - - - E -

F - - - - - - - - - 9 - - - - - -

Since we have created a codebook of P i ↔ Ci, we may effectively loop
through the low 12 bits of p = P i ∧ 0FFF = P ′i ∧ 0FFF and until the carry-over
“shift” occurs and the pattern changes from p = 0000. This will give us the low
bits of Ri

1. This process isn’t entirely foolproof as there are is a second collision
that is required in the encryption process, but due to abundance of trials we
may accurately pinpoint the p carry transition point with a good probability.

For each p value we may test 16 × 16 = 256 high nibble pairs for a matching
ciphertext collision. Those collisions must occur at the points with an entry in
Table 2. We may loop from low values of p towards higher values and see the
lowest p value which starts to give different “grid”. The algorithm we use is
therefore essentially based on elimination of impossible combinations.

Note that the K1 keying XOR in Eq. 3 also affects this step and the actual
shift that occurs. However, we have found that if we guess the highest bit of K1

(and hence K ′
1 which has the inverse high bit), we can actually determine all

16 bits of Ri
1 with high probability with roughly 217 total complexity and one

guessed bit.
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3.4 Deriving Additional Quantities for an Attack

From Sect. 2.3 we see that R1 is updated as Ri+1
1 = Ri

1 � ti3. If we have derived
two consecutive R1 values using the technique outlined in Sect. 3.3, we obtain
the value of t3 at round i:

ti3 = Ri+1
1 � Ri

1. (5)

Furthermore, since Ci = ti4 � Ri
1, we obtain

ti4 = Ci � Ri
1. (6)

This stage proceeds by attempting to create a sequence where ti4 = ti+1
4 holds

with a high probability. To do this, for i = 1, 2, 3 · · · 27 process each full 16-bit
codebook as discussed in Sect. 3.3 and choose Ci to be the smallest value after
Ri

1 such that corresponding Pi and P ′
i form a state collision.

For those pairs where ti4 = ti+1
4 , the following relation holds since WD16 is a

permutation and matching output words imply matching input words:

ti3 � Ri
4 = ti+1

3 � Ri+1
4 . (7)

We manipulate Eq. 7 into ti3 = ti+1
3 � Ri+1

4 � Ri
4 and substitute that into the

R4 update function
Ri+1

4 = Ri
4 � Ri

1 � ti3 � ti1 (8)

to obtain
ti1 = �Ri

1 � ti+1
3 . (9)

Since Ri
1 and ti+1

3 are known quantities, as is ti0 = P i � Ri
1, we now can

attack the first half of the keywords:

ti1 = WD16(ti0,K1,K2,K3,K4). (10)

Note that due to the probabilistic nature of our R1 derivation method, not all of
these candidate pairs are valid. However, we have experimentally verified that
in practice a sufficient number is valid and the key search algorithm (described
in Sect. 3.5) is designed in a way that accounts for false pairs.

3.5 A Time-Memory Trade-off for K1 · · ·K4 Search

The information obtained in Sects. 3.3 and 3.4 – especially Eq. 10 – already
allow the keyspace of Hummingbird-2 to be split in half and a 264 attack can be
mounted via exhaustive search. We will describe a simple time-memory tradeoff
attack that allows further square root reduction for the first half of the key
words.

In this step, we are given n values (xi, yi), 1 ≤ i ≤ n, that satisfy

WD16(xi,K1,K2,K3,K4) = yi (11)

with a reasonable probability (see Eq. 10).
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We’ve experimentally discovered that if we perform the search for matching
consecutive t4 pairs discussed in Sect. 3.4 up to a limit of 27 plaintext / ciphertext
words, we are typically left with n = 24 candidates. Out of these, about 23 will
be “right pairs” that actually satisfy Eq. 11 for the correct subkeys. This is a
sufficient fraction for a time-memory trade-off technique.

To eliminate one of the keys, we pair the values and investigate (xi, yi) and
(xj , yj), 1 ≤ i ≤ j ≤ n. There are n(n−1)/2 pairs, quarter of which will be right
pairs. This will help to cancel out K3 in the computation.

Table Generation. For each i, j pair, we first construct a lookup table for
subkey K4. For each guessed 0 ≤ K4 < 216 we compute the middle value h and
build a table T ():

h = LS−1(LS−1(yi) ⊕ K4) ⊕ LS−1(LS−1(yj) ⊕ K4)
T (h) = K4.

Here a candidate for K4 can be obtained from the h value by building an appro-
priate data structure that takes care of collisions.

Key Search. Approaching the WD16 from the other direction, we then loop
through the 232 values of K1 and K2 and look for a match in

h′ = LS(LS(xi ⊕ K1) ⊕ K2) ⊕ LS(LS(xj ⊕ K1) ⊕ K2) (12)

Here T (h′) gives a candidate for K4 with O(1) effort. Then we check for all
1 ≤ k ≤ n pairs (xk, yk) how many of those yield the same K3 value

K?
3 = LS(LS(xk ⊕ K1) ⊕ K2) ⊕ LS−1(LS−1(yk) ⊕ T (h′)). (13)

If five or six of those K3 values agree, then there is a significant probability
that we have found the correct 64-bit quartet (K1,K2,K3,K4) of the secret key
words.

Complexity. Since about 24 lookup key searches of 232 primitive operations
(and a total of 216 memory) is required, we estimate that the total complexity
of this step is less than 236 when adjusted to the scale of the complexity of brute
force key search as discussed in the beginning of Sect. 3.

3.6 Finding the Rest: K5 · · ·K8 Search

After the first half of the keying material has been discovered, it is a simple
matter to brute force the rest. We have not found a time-memory tradeoff or
other simple shortcut for the recovery of this part. Hence the total complexity
is dominated by the second half, giving the total complexity of 264 processing
and about 216 data.
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It is quite easy to see that the last WD16 instance could be used to speed up
key recovery if the difference between two keys would be at the right half of the
key. However, in the beginning of Sect. 3 we chose a specific difference which lies
at the first words. If we adopt the nonstandard setting of [10] where more than
two “black boxes” with specific key relations can be accessed, then it the overall
complexity of key recovery can be pushed down to the 236 range. However, this
attack model is rather unrealistic.

3.7 Discussion

Our attacks are specific to the Hummingbird structure as they do not purely
follow any clear classical attack path such as linear or differential cryptanalysis.
One may create a number of different attacks based on the same observations.

We developed the attack described in this paper while we were implementing
it. One discovery led to the next. Our attack implementation used clear black
box insulation and therefore we have a high degree of confidence that it works.
We have tested it with various subsets of key space.

Design Issues. The attacks are made possible by a combination of factors.
Lessons were perhaps not fully learned from the attacks of [3] which exploited
the simplistic key schedule and algebraic properties of the Hummingbird struc-
ture. However, a simple and fast key schedule is partly dictated by the timing
constraints of the RFID environment and protocols for which Hummingbird was
designed. It can also be argued that having 16-bit datapaths with additive mix-
ing has certain advantages when a cipher is specifically to be used with a 16-bit
embedded CPU, even though the particular structure of Hummingbird may not
fully utilize the potential.

Fixing WD16: Hummingbird-2ν. The main enabler of the attacks is the
WD16 function and the way it is keyed. Furthermore WD16 has a linear mixing
stage L(x) that has suboptimal diffusion and does not allow effective use of
lookup tables to speed up decryption of data like the MDS [13] matrices of
SHARK [14] and AES [15] do.

To mitigate both security and efficiency issues, we propose an alternative
where WD16(x, k1, k2, k3, k4) has been replaced with “S-boxless” χν(x, k1, k2,
k3, k4) to produce a variant called Hummingbird-2ν. Hummingbird-2ν is
described in more detail in Appendix A. This variant is geared towards hardware
implementation. We note that that the estimated implementation footprint for a
32-cycle version of HB2 is only 500 GE and an implementation that can perform
both encryption and decryption is around 700 GE. More accurate implementa-
tion results will be reported separately.

4 Conclusions

We have discovered and demonstrated large related key classes which produce
closely correlated output for any given input. The weak key classes penetrate
both the initialization and actual ciphering stages of Hummingbird-2.



480 M.-J.O. Saarinen

We have developed a full key recovery related-key attack algorithm which
effectively halves the cipher’s key size. This attack allows the secret key can to
be recovered with only 264 time and 216 data in a two-key setting. The attack
has been implemented and verified to work. Furthermore, the first half of the
key can be recovered with only 236 effort. Other types of attacks may be derived
from the same observations.

Even though it may be tempting to derive multiple keys from a single one
(e.g. one for each communication direction or medium), Hummingbird-2 should
only be used with strictly random keys. This approach is taken in the ISO
protocol proposal [2]. System designs where the secret keys of tags are related
or shortened should be avoided. Key bits must never be used to denote access /
product categories or other information.

Appendix

A Hummingbird-2ν

The new experimental variant Hummingbird-2ν is the same as Hummingbird-2,
expect that the WD16 substitution-permutation network has been replaced with
a new function, χν(x, k1, k2, k3, k4). The new variant is geared towards hardware
implementation and has a lower gate count than Hummingbird-2. Due to space
constraints, we can only give a brief description of the new variant here and
leave more detailed analysis for a separate report.

The new construction is based on χ functions, which are simple shift-invariant
transformations that were first characterized by Daemen in [16]. The SHA3
algorithm Keccak uses a χ function as it’s sole nonlinear component [17]. This
selection was done in part to inspire research on functions of this type. The
S-Boxes of the Hummingbird-2 WD16 design were selected based on extensive
research [18].

We define two nonlinear functions f and g that operate on 16-bit words:

f(x) =
(
(x ≪ 2) ∧ ¬(x ≪ 1) ∧ (x ≫ 1)

) ⊕ x

g(x) =
(¬x ∧ (x ≪ 4) ∧ ¬(x ≪ 12)

) ⊕ (x ≪ 8)

The steps required to compute y = χν(x, k1, k2, k3, k4) are

t1 = f(g(x ⊕ k1) ⊕ 4D71) t2 = f(g(t1 ⊕ k2) ⊕ 0F65)
t3 = f(g(t2 ⊕ k3) ⊕ 2746) t4 = f(g(t3 ⊕ k4) ⊕ 0B7C)
t5 = f(g(t4 ⊕ k1) ⊕ CFD5) t6 = f(g(t5 ⊕ k3) ⊕ 8E45)
t7 = f(g(t6 ⊕ k2) ⊕ 40DA) y = f(g(t7 ⊕ k4) ⊕ 62F0)

We acknowledge that one could use more of the keying material in each χν

function to make divide-and-conquer attacks more difficult. We decided not to
change the overall structure outside the nonlinear component at all, however.
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The “magic constants” 4D710F6527.. are derived from the Ehrenfeucht-
Mycielski sequence [19,20]. The inverse function x = χ−1

ν (y, k1, k2, k3, k4) is
easy to derive when we note that f and g are involutions: f(f(x)) = x and
g(g(x)) = x. The steps are simple performed in reverse order. In a hardware
implementation the decryption circuitry closely matches the encryption circuit.

Here are some test vectors for χν and a trace of execution for the last entry:

χν(0000, 0000, 0000, 0000, 0000) = FECB

χν(1234, 5555, 5555, 5555, 5555) = 18E6

χν(0000, 0123, 4567, 89AB, CDEF) = 3286

x=0000 t: 4C70 D80E 8857 2DB9 169D B89A 39B7 y=3286

Note that Hummingbird byte-word conversions are little-endian. Here’s a test
vector for Hummingbird-2ν encryption of 16 bytes and the resulting MAC:

KEY = 01 23 45 67 89 AB CD EF FE DC BA 98 76 54 32 10
IV = 12 34 56 78 9A BC DE F0

PT = 00 11 22 33 44 55 66 77 88 99 AA BB CC DD EE FF
CT = 63 66 F6 CB 60 0F A4 CE 52 78 D8 A8 5B 39 E2 B3

MAC = E8 50 64 50 68 CA 49 04 9C E8 6A 54 55 F0 00 F0
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