
Faster Repeated Doublings on Binary
Elliptic Curves

Christophe Doche(B) and Daniel Sutantyo

Department of Computing, Macquarie University, Sydney, Australia
{christophe.doche,daniel.sutantyo}@mq.edu.au

Abstract. The use of precomputed data to speed up a cryptographic
protocol is commonplace. For instance, the owner of a public point P
on an elliptic curve can precompute various points of the form [2k]P
and transmit them together with P . One inconvenience of this approach
though may be the amount of information that needs to be exchanged.
In the situation where the bandwidth of the transmissions is limited, this
idea can become impractical. Instead, we introduce a new scheme that
needs only one extra bit of information in order to efficiently and fully
determine a point of the form [2k]P on a binary elliptic curve. It relies
on the x-doubling operation, which allows to compute the point [2k]P
at a lower cost than with k regular doublings. As we trade off regular
doublings for x-doublings, we use multi-scalar multiplication techniques,
such as the Joint Sparse Form or interleaving with NAFs. This idea gives
rise to several methods, which are faster than Montgomery’s method
in characteristic 2. A software implementation shows that our method
called x-JSF2 induces a speed-up between 4 and 18 % for finite fields
F2d with d between 233 and 571. We also generalize to characteristic 2
the scheme of Dahmen et al. in order to precompute all odd points [3]P ,
[5]P, . . . , [2t−1]P in affine coordinates at the cost of a single inversion and
some extra field multiplications. We use this scheme with x-doublings as
well as with the window NAF method in López–Dahab coordinates.

Keywords: Public key cryptography · Elliptic curves · Scalar
multiplication.

1 Introduction

We refer readers to [28] for Sutantyo, Daniel a general introduction to elliptic
curves. An ordinary elliptic curve E defined over the finite field F2d can always
be written with an equation of the form

E : y2 + xy = x3 + a2x
2 + a6, with a2 ∈ {0, 1}, a6 ∈ F

∗
2d . (1)

This work was partially supported by ARC Discovery grant DP110100628.

T. Lange, K. Lauter, and P. Lisoněk (Eds.): SAC 2013, LNCS 8282, pp. 456–470, 2014.
DOI: 10.1007/978-3-662-43414-7 23, c© Springer-Verlag Berlin Heidelberg 2014

Faster Repeated Doublings on Binary Elliptic Curves 457

This is an example of a curve in Weierstraß form. A point P = (x1, y1) satisfying
(1) is an affine point and the set of rational points of E, denoted by E(F2d),
corresponds to

E(F2d) = {(x1, y1) ∈ F2d × F2d | y2
1 + x1y1 = x3

1 + a2x
2
1 + a6} ∪ P∞,

where P∞ is a special point called the point at infinity . The set E(F2d) can
be endowed with an abelian group structure under a point addition operation,
denoted by +, with P∞ as the identity element. Naturally, this addition leads
to the scalar multiplication

[n]P = P + P + · · · + P
︸ ︷︷ ︸

n times

,

for an integer n � 1 and a point P ∈ E(F2d). Given n and P , there are very
efficient techniques to compute [n]P , see Sect. 2.3. But the converse problem,
known as the Elliptic Curve Discrete Logarithm Problem (ECDLP), appears to
be intractable for a well chosen elliptic curve defined over F2d with d prime.
Therefore the security of many protocols in elliptic curve cryptography relies on
the hardness of the ECDLP. This makes scalar multiplication the most ubiqui-
tous operation in any elliptic curve based protocols. See [3,5,6,14] for further
discussions specific to the use of elliptic curves in cryptography.

2 State of the Art

2.1 Affine and López–Dahab Coordinates

Consider the elliptic curve E as in (1) and the point P = (x1, y1) ∈ E(F2d). The
double P2 = [2]P with coordinates (x2, y2) can be obtained with one inversion,
two multiplications and one squaring. We abbreviate this as I+2M+S. There are
similar formulas to compute the addition of two points at the cost of I+ 2M+ S
as well. In F2d , represented by a polynomial basis, a squaring involves only a
reduction. Thus it costs much less than a generic multiplication. Computing the
inverse of an element α ∈ F2d is more complex. We rely usually on the Extended
Euclidean gcd algorithm or on the relation α−1 = α2d−2. In software, an inver-
sion can be cheaper than 10M, whereas the same operation can be extremely
time consuming on platforms such as embedded devices. This explains why an
alternate representation of E in projective coordinates is often considered. The
equation

Y 2 + XY Z = X3Z + a2X
2Z2 + a6Z

4 (2)

is an homogenized version of the equation E where the point P is represented in
projective-like López–Dahab (LD) coordinates [17] by the triple (X1 : Y1 : Z1).
When Z1 = 0, the point P is the point at infinity whereas for Z1 �= 0, P
corresponds to the affine point (X1/Z1, Y1/Z

2
1). The complexity of a doubling in

LD coordinates is 3M + 1 × a6 + 5S, including one multiplication by the fixed
element a6.

458 C. Doche and D. Sutantyo

The addition of two points requires 13M + 4S in general, but only 8M + 5S
in case at least one of the points is in affine coordinates, or in other words its
Z-coordinate is equal to 1. This operation, that is very useful in practice, is
referred to as a mixed addition [8]. See [4] for all the corresponding formulas.

2.2 Decompression Techniques in LD Coordinates

In the following, we show how the x-coordinate of a point together with one
extra bit is enough to fully recover the point in affine coordinates. Indeed, let
us consider a point P that is not the point at infinity nor a point of order 2
and which is represented by (X1 : Y1 : Z1) in LD coordinates. Assuming that
we ignore Y1 but know X1 and Z1 as well as the last bit of Y1/(X1Z1), let us
see how to determine the affine coordinates x1 and y1 of P . Before we start,
note that Y1/(X1Z1) is equal to y1/x1, so it is independent of the choice of the
Z-coordinate of P in LD format.

Since P is on (2), it follows that Y1 is a root of the quadratic equation

T 2 + TX1Z1 = X3
1Z1 + a2X

2
1Z2

1 + a6Z
4
1 .

The other root is Y1 + X1Z1. The two solutions correspond to the points P
and −P . Because of the assumption on P , we have X1Z1 �= 0 so the change of
variable U = Tα where α = 1/(X1Z1) is valid and leads to the new equation

U2 + U = β (3)

with β = αX2
1+a2+α2a6Z

4
1 . To solve this equation let us introduce the half-trace

function H defined by

H(γ) =
(d−1)/2

∑

i=1

γ22i .

When d is odd, it is well known that the solutions of Eq. (3) are H(β) and
H(β) + 1.

Clearly, we have x1 = αX2
1 . Now, let us explain how to find the correct

value of y1. It is easy to see that the solutions of (3) correspond to y1/x1 and
y1/x1 +1. So we can use the least significant bit of a root to identify the correct
y1. Let b be the last bit of y1/x1, then if the last bit of H(β) is equal to b, set
y1 = H(β)x1, otherwise y1 = (H(β)+1)x1. The public point P can therefore be
represented as (x1, b) and we can fully determine P in affine coordinates with
I+H+ 4M+ 1 × √

a6 + 2S, where H is the complexity to evaluate the half-trace
function.

As the half-trace function is linear, its computation can be sped up signifi-
cantly provided that there is enough memory to store some precomputed values.
With those enhancements, we have in general H ∼ M. See [2,14,15] for details.

Next, we review how to compute [n]P . Note that throughout the paper the
coordinates of [n]P are denoted by (xn, yn) or (Xn : Yn : Zn).

Faster Repeated Doublings on Binary Elliptic Curves 459

2.3 Classical Scalar Multiplication Techniques

The simplest, yet efficient, way to perform a scalar multiplication [n]P is the
double and add method, which is a straightforward adaptation of the square
and multiply algorithm used to compute an exponentiation. Given the binary
representation of n, denoted by (n�−1 . . . n0)2, a doubling is performed at each
step followed by an addition if ni = 1. The double and add method is therefore
intrinsically linked to the binary representation of n. This is no surprise as the
method used to perform the scalar multiplication [n]P is often related to the
representation of the integer n. Other choices are available to represent n, for
instance in base 2k for a fixed parameter k, or signed digits. A signed-digit
expansion for an integer n is of the form

n =
�−1
∑

i=0

ci2i, with ci ∈ S,

where S is a finite set of acceptable coefficients. This is particularly interesting
as a negative coefficient −c in the representation of n induces the use of the
point −[c]P in the computation of [n]P . Note that −[c]P can be obtained virtu-
ally for free from the point [c]P in affine coordinates. The Non-Adjacent Form
(NAF) [20,21] is especially relevant as the density of the expansion, i.e. the num-
ber of nonzero terms divided by the total length is equal to 1

3 on average. Also
for a given n, the NAF has the lowest density among all signed-digit expansions
of n with coefficients in {−1, 0, 1}. A generalization of the NAF, called window
NAF of size w [18,23,27] and denoted by NAFw achieves an average density
equal to 1

w+1 for the set S of digits containing 0 and all the odd integers strictly
less than 2w−1 in absolute value. For maximal efficiency, the points [c]P are
precomputed in affine coordinates for all the positive c in S. See [11] or [14] for
more details on NAF and window NAF expansions.

It is often required, for instance during the verification phase of the ECDSA
signature protocol, to perform a double-scalar multiplication of the form [n1]Q1+
[n0]Q0. Instead of computing each scalar multiplication separately, it is more
efficient to combine the binary expansions of n1 and n0 in

(

n1

n0

)

=
(

uk−1 . . . u0

vk−1 . . . v0

)

.

Mimicking the double and add method, we process a sequence of joint-bits,
instead of a sequence of bits. At each step, a doubling is then followed by an
addition of Q1, Q0, or Q1 + Q0 depending on the value of the joint-bit that
is considered, i.e.

(
1
0

)

,
(
0
1

)

, or
(
1
1

)

. This idea, often attributed to Shamir is in
fact a special case of an idea of Straus [26]. Mixing this idea with signed-digit
representations gives birth to the Joint Sparse Form (JSF) [24] that can be
seen as a generalization of the NAF for double-scalar multiplication. Indeed, the
joint-density of the JSF is equal to 1

2 on average and is optimal across all the
joint signed-digit representations of n1 and n0. Note that the points Q1, Q0,
Q1 + Q0, and Q1 − Q0 must be precomputed in affine coordinates for maximal

460 C. Doche and D. Sutantyo

efficiency. The JSF method is the standard way for computing a double-scalar
multiplication when both points are not known in advance or when the amount
of memory available on the device performing the computation is limited and
does not allow the use of more precomputed values. Otherwise, interleaving with
NAFs [14, Algorithm 3.51] gives excellent results. The principle of this approach
is simply to form

(

n1

n0

)

=
(

vk−1 . . . v0
uk−1 . . . u0

)

where (vk−1 . . . v0) and (uk−1 . . . u0) are the window NAF expansions of n1 and
n0, possibly padded with a few zeroes at the beginning. Note that we precompute
only the points [3]Qi, [5]Qi, . . . , [2w − 1]Qi for i = 0 and 1 and not all the
combinations [2s+1]Q1±[2t+1]Q0 as this option is too costly in most situations.
It remains to compute all the doublings together and then perform at most
two mixed additions at each step. Obviously, it is easy to generalize this idea
to efficiently compute the k + 1 scalar multiplications [nk]Qk + · · · + [n0]Q0

simultaneously provided that the points [3]Qi, [5]Qi, . . . , [2w − 1]Qi, for i =
0, . . . , k are all precomputed.

2.4 Fixed Point Scalar Multiplication Using Precomputations

There are faster scalar multiplications techniques when the point P is known in
advance and when some precomputations are available. For instance, we could
considerably reduce the number of doublings, if not totally avoid them, by con-
sidering precomputed points of the form [2ki]P for a fixed k. Three methods,
namely the Euclidean, Yao, and fixed-base comb, make use of this space-time
trade-off to greatly reduce the complexity of a scalar multiplication. See [11,
Sect. 9.3] for a presentation of those different methods.

If we consider a specific protocol such as ECDSA, Antipa et al. [1] show how
to speed up the signature verification process by introducing the precomputed
multiple [2k]P of the public point P , with k = ��/2�. Tests show that the
speed-up is significant, more than 35 % of the time saved, but this approach
shares a drawback with the techniques discussed so far: it requires to transmit
an important amount of additional data on top of the public point P .

When exchanging large volume of data is not practical, for instance because
the bandwidth of the network is limited, the methods described in this part
do not apply, even if the point P is known in advance. Instead, Montgomery’s
method is perfectly suited, as it allows to perform arithmetic on an elliptic curve
using only the x-coordinate of P .

2.5 Montgomery’s Method

Montgomery developed an efficient arithmetic for special elliptic curves defined
over a prime field [19]. Ultimately, it relies on the possibility to derive the x-
coordinate of P + Q from the x-coordinates of P , Q, and P − Q. This approach

Faster Repeated Doublings on Binary Elliptic Curves 461

has been generalized to binary curves by López and Dahab [16]. Indeed, starting
from P in LD coordinates and assuming that we know at each step the X
and Z coordinates of [u]P and of [u + 1]P , we can determine the X and Z
coordinates of [2u]P and [2u + 1]P . See [16,25] for the actual formulas. The
full scalar multiplication [n]P can then be computed with Montgomery’s ladder,
which requires an addition and a doubling at each step. If the square root of a6

is precomputed, the complexity of the scheme is (5M+ 1 × √
a6 + 4S) per bit of

the scalar.

3 Applications of x-doublings to Scalar Multiplication

We have just seen that the x-coordinate of [2]P only depends on the x-coordinate
of the point P itself. Namely, if P = (X1 : Y1 : Z1), we have [2]P given by
X2 = X4

1 + a6Z
4
1 = (X2

1 +
√

a6Z
2
1)2 and Z2 = X2

1Z2
1 . In the following, we

refer to this operation as an x-doubling . We can compute an x-doubling with
M + 1 × √

a6 + 3S. This means that an x-doubling saves 2M + 2S compared
to a regular doubling in LD coordinates. A doubling in LD coordinates costs
3M + 1 × a6 + 5S in the same conditions. From now on, we assume that

√
a6 is

precomputed and does not enjoy any special property so that 1 × √
a6 = 1M.

We propose to speed up the scalar multiplication [n]P by replacing some
regular LD doublings with x-doublings. To take full advantage of this operation,
our idea is to determine the x-coordinate of [2k]P using k successive x-doublings
and then recover the y-coordinate using decompression techniques and one extra
known bit of information.

3.1 Double Scalar Multiplication and x-Doublings

Let � be the bit size of the order of a point P and k = 	�/2
. Let (x1, b) be the
public information corresponding to the point P , as explained in Sect. 2.2. We
assume that the owner of the point P has also precomputed bk, i.e. the last bit
of y2k/x2k , and made it public.

Let n be an integer of size � bits. It is clear that [n]P = [n1]Q1+[n0]Q0 where
n = 2kn1 +n0, Q1 = [2k]P , and Q0 = P . The X and Z coordinates of Q1 can be
obtained with k straight x-doublings at a cost of (2M+3S)k. Then we can recover
the y-coordinates of Q0 and Q1 using b and bk with decompression techniques.
For that, we compute β = αx2

1 + a2 + a6α
2 and βk = αkX2

2k + a2 + a6α
2
kZ4

k

where α = 1/x1 and αk = 1/(X2kZ2k). Montgomery’s trick [19] allows to obtain
α and αk with only one inversion and three extra multiplications. Then we
compute the half-trace of β and βk and identify the correct root with the bits
b and bk. Assuming that a6 is a random element of F2d and that

√
a6 has been

precomputed, the complexity to determine Q0 and Q1 in affine coordinates is
I+2H+12M+4S. This approach can easily be generalized to retrieve an arbitrary
number of points. It then takes I + tH + (7t − 2)M + 2tS to fully determine Q0,
Q1, . . . , Qt−1 in affine coordinates once the X and Z coordinates of those points
have been obtained using x-doublings.

462 C. Doche and D. Sutantyo

Now that we have Q0 and Q1 in affine coordinates, we can compute [n]P =
[n1]Q1 + [n0]Q0 with any standard double scalar multiplication technique, for
instance the JSF, see Sect. 2.3. In this case, the complexity is approximately
�/2 x-doublings, �/2 regular doublings, and �/4 mixed additions using the four
points Q0, Q1, Q0 + Q1, and Q0 − Q1. Note that Q0 + Q1 and Q0 − Q1 should
be computed simultaneously with I + 4M + 2S.

This new approach, called x-JSF, compares favorably against the window
NAFw method in LD coordinates and Montgomery’s approach. Both are very
popular methods in practice for a wide range of extension degrees when only
the x-coordinate of the point P is transmitted. The x-JSF requires essentially
5M+5.25S per bit compared to 6M+4S for Montgomery’s method. Adding the
complexities of all the steps involved, including the cost of precomputations, and
assuming that H = M, we obtain the following result.

Proposition 1. Let n be an integer of binary length �. The average complexity
of the x-JSF method to compute the scalar multiplication [n]P is

(

5M + 21
4 S

)

� + 3I + 20M + 7S.

Proof. Starting from the x-coordinate of P , we do �
2 consecutive x-doublings

with
(

M + 3
2S

)

�. We need I + 12M + 4S to form the two quadratic equations
and 2M to solve them in order to obtain P and [2��/2�]P in affine coordinates.
We then need I + 4M + 2S to compute the sum and difference of those two
points in affine coordinates again. Then, we perform �

2 regular doublings, with
(

2M + 5
2S

)

�, and �
4 mixed additions on average, with

(

2M + 5
4S

)

�. Finally, we
express the point in affine coordinates with I + 2M + S.

3.2 Trading Off More Doublings for x-Doublings

Previously, we explained how to replace approximately 50% of normal doublings
by x-doublings. Since an x-doubling is significantly cheaper than a doubling, it is
natural to try to increase this ratio, i.e. replace more doublings with x-doublings.
A simple idea is for instance to work with three shares instead of two, i.e. fix
k = 	�/3
 and write n = 22kn2 + 2kn1 + n0. If we fix Q0 = P , Q1 = [2k]P and
Q2 = [22k]P , we see that [n]P = [n2]Q2 + [n1]Q1 + [n0]Q0. We denote by w-w-
w the generalization of the interleaving with NAFs method, where the NAFw

expansions of n2, n1, and n0 are stacked together as follows
⎛

⎝

n2

n1

n0

⎞

⎠ =

⎛

⎝

wk . . . w0

vk . . . v0
uk . . . u0

⎞

⎠ .

and processed from left to right using Straus’ idea, see Sect. 2.3. The only points
that we precompute are [3]Qi, [5]Qi,. . . , [2w−1 − 1]Qi, for i ∈ [0, 2].

Proposition 2. Let n be an integer of binary length �. The average complexity
of the w-w-w interleaving with NAFs method to compute the scalar multiplication

Faster Repeated Doublings on Binary Elliptic Curves 463

[n]P with w > 3 is

(

(8w + 32)M + (11w + 26)S
) �

3(w + 1)
+ 3 × 2w−2(I+ 2M+ S) + 2I+ 24M+ 7S.

For w = 3, the complexity is simply
(
14
3 M + 59

12S
)

� + 5I + 42M + 19S.

Proof. The proof is similar to Proposition 1. It is clear that we need 2 �
3 succes-

sive x-doublings and �
3 normal doublings, plus a certain number of additions,

which depends on the size of the window w. The exact number can be derived via
some probabilistic analysis. Given that the density of the NAFw is 1

w+1 , we may
assume that the probability for a coefficient in a long expansion to be nonzero
is 1

w+1 . It follows that the w-w-w interleaving method requires �
w+1 mixed addi-

tions on average. To determine the precomputations, we could compute [2]Q0,
[2]Q1, and [2]Q2 in LD coordinates, make those three points affine simultane-
ously, before performing 3(2w−2 −1) LD mixed additions, and converting all the
resulting points to affine simultaneously again. This approach only needs two
inversions. Instead, in our implementation as well as in this analysis, we perform
all the computations directly in affine coordinates for simplicity. The formula
follows by adding all the different contributions.

The complexity is very low, but in practice the main drawback of this approach
is the number of precomputations, which grows as 3 × 2w−2. Another method
along those lines, called x−JSF2, requires less storage and involves splitting n in
four shares as 23kn3+22kn2+2kn1+n0 with k = 	�/4
. The points Q3 = [23k]P ,
Q2 = [22k]P , Q1 = [2k]P , Q0 = P are determined after 3 �

4 straight x-doublings.
Four extra bits of information are necessary to fully recover the points. Then we
compute the JSF expansions of n3 and n2 and of n1 and n0, together with the
precomputed affine points Q3 ± Q2, and Q1 ± Q0. We then need �

4 regular LD
doublings as well as �

4 mixed additions. The following result follows immediately.

Proposition 3. Let n be an integer of binary length �. The average complexity
of the x-JSF2 method to compute the scalar multiplication [n]P is

(
9
2M + 19

4 S
)

� + 4I + 40M + 13S.

Proof. We perform 3 �
4 x-doublings, then need I + 30M + 8S to recover the four

points Q0, Q1, Q2, and Q3 in affine coordinates. We need 2(I + 4M + 2S) to
compute Q3 ± Q2 and Q1 ± Q0. Then, we perform �

4 regular doublings and �
4

mixed additions on average. Finally, we express the point in affine coordinates
with I + 2M + S.

Tests show that the x-JSF2 achieves a speed-up close to 18 % over the fastest
known method in F2571 , i.e. Montgomery’s method. See Sect. 5 for details.

464 C. Doche and D. Sutantyo

3.3 Trading Off Even More Doublings for x-Doublings

In some sense, the x-JSF2 relies on interleaving with JSFs. Generalizing this idea,
the x-JSFt uses 2t shares, each of size �/2t bits, and needs 2t−1

2t x-doublings and
1
2t regular doublings. Arranging the scalars two by two, and computing their cor-
responding JSF expansions, we see that �

4 mixed additions are necessary on aver-
age, provided that we precompute 2t−1 pairs of points of the form Q2i+1±Q2i.

To further reduce the number of regular doublings without using precom-
putations, we turn our attention to a method first described by de Rooij, but
credited to Bos and Coster [10]. As previously, write n in base 2k, for a well
chosen k. It follows that [n]P = [nt−1]Qt−1 + · · · + [n0]Q0, where Qi = [2ki]P .

The main idea of the Bos–Coster method is to sort the shares in decreasing
order according to their coefficients and to recursively apply the relation

[n1]Q1 + [n2]Q2 = [n1](Q1 + [q]Q2) + [n2 − qn1]Q2

where n2 > n1 and q = 	n2/n1
. The process stops when there is only one
nonzero scalar remaining. Because the coefficients are roughly of the same size
throughout the process, we have q = 1 at each step almost all the time. This
implies that [n]P can be computed almost exclusively with additions once the
shares Qi’s are obtained via x-doublings.

Clearly, this approach requires k(t − 1) successive x-doublings and t point
reconstructions. The precise number of additions involved is much harder to ana-
lyze but can be approximated by �

log k for reasonable values of k. So, with the
Bos–Coster method, we have replaced almost all the doublings by x-doublings,
but one detail plays against us. Most of the additions that we need are full
additions and not mixed additions as it was the case for the x-JSF and inter-
leaving with NAFs. Indeed, even if the different points Q0, . . . , Qt−1 are initially
expressed in affine coordinates, then after a few steps of the algorithm, it is no
longer the case and subsequent additions need to be performed in full. Those full
additions are too expensive to make this scheme competitive with Montgomery’s
method.

Next, we investigate Yao’s method [29]. As for the previous approach, we
express n in base 2k as (nt−1 . . . n0)2k and we consider the points Qi = [2ki]P ,
for i = 0, . . . , t − 1, obtained with x-doublings only. Note that we can rewrite
the sum [n]P = [nt−1]Qt−1 + · · · + [n0]Q0 as

[n]P =
2k−1
∑

j=1

[j]
(∑

ni=j

Qi

)

.

We deduce the following algorithm. Starting from T = P∞, R = P∞, and j =
2k −1, we repeat R = R+Qi for each i such that ni = j, followed by T = T +R
and j = j − 1 until j = 0.

To update R, we use mixed additions, but the statement T = T +R requires a
full LD addition. Therefore, the complexity of this approach is essentially k(t−1)
successive x-doublings, t point reconstructions,

(

1 − 1
2k

)

t mixed additions on

Faster Repeated Doublings on Binary Elliptic Curves 465

average, and 2k full additions. In order to minimize the number of full additions,
we need to keep k low, which means increasing t. This increases the number of
mixed additions. Also it is quite expensive to retrieve a point in affine coordinates
from its X, Z-coordinates and the last bit of y/x. As explained in Sect. 3.1, we
need H+7M+2S per additional point Qi to fully recover it in affine coordinates.
This proves to be too much and all the parameters k that we tried failed to
introduce any improvement over Montgomery’s method.

3.4 Generic Protocol Setup Compatible with x-doublings

The purpose of this article is to evaluate the relevance of x-doublings to perform
a scalar multiplication, not to precisely describe how to use this operation in
a specific protocol. However, it seems that the most realistic setup to use one
of the schemes presented in Sects. 3.1 and 3.2 is for the owner of a point P to
precompute and store the last bit bk of y2k/x2k , for all k ∈ [0, d + 1]. This of
course is done only once at the very beginning and does not affect the security
of the scheme. Since P is public, anybody can perform the computations and
retrieve those bits. The other party can then access x1, the x-coordinate of P ,
as well as a few bits bk. At most four bits are sufficient to deliver a significant
speed-up with the x-JSF2 approach, see Sect. 5. The choice of those bits does
not reveal anything on the scalar n except maybe its size, which we do not see
as a problem.

4 Affine Precomputations with Sole Inversion in Char 2

The other contribution of this paper is a generalization of the work of Dahmen
et al. [9] to precompute all the affine points required by the NAFw method
with just one inversion. Indeed, starting from the affine point P , Dahmen et
al. show how to obtain [3]P , [5]P ,. . . , [2t − 1]P also in affine coordinates with
I + (10t − 11)M + 4tS. But their work only addresses the case of large odd
characteristic.

With a generalized scheme, we can precompute all the points necessary for
the w-w-w interleaving with NAFs method with just three inversions instead of
3×2w−2, using affine arithmetic. We mimic their approach and follow three easy
steps. First, we compute all the denominators involved. Then we apply Mont-
gomery’s inversion trick [19] that combines j inversions in F2d at the expense
of one inversion and 3j − 3 field multiplications. Finally, we reconstruct all the
points. The total complexity to compute [2]P , [3]P , [5]P , . . . , [2t−1]P for t > 2
is I + (11t − 13)M + 2tS. See the Appendix for the actual algorithm. When we
only need [3]P , for instance for the NAF3, we compute [3]P directly following
the approach explained in [7]. Note however that I + 6M + 4S are enough to
determine [3]P , saving one multiplication.

466 C. Doche and D. Sutantyo

5 Tests and Results

To validate the use of the x-doubling operation and the methods described in
Sect. 3, we have implemented all of them in C++ using NTL 6.0.0 [22] built on
top of GMP 5.1.2 [13]. The program is compiled and executed on a quad core
i7-2620 at 2.70Ghz.

In the following, we test some of the techniques described in Sects. 2 and 3 to
perform a scalar multiplication on a random curve defined over F2d for d = 233,
409, and 571. Namely, we compare the following methods: Montgomery (Mont.),
window NAF in LD coordinates with w ∈ [2, 6] (NAFw), x-JSF, x-JSF2, and
interleaving with NAFs (w-w-w). Note that NAFw and w − w − w are slightly
different variants where the precomputations are obtained with the sole inversion
technique, explained in Sect. 4. We generate a total of 100 curves of the form

E : y2 + xy = x3 + x2 + a6,

where a6 is a random element of F
∗
2d . For each curve, a random point P is

created as well as 100 random scalars selected in the interval [0, 2d + 2d/2 − 1].
We assume that the point P needs to be decompressed for all the methods. The
different methods are then tested against the same curves, points, and scalars.
The computations are timed over 10 repetitions.

Together with the average timings of the best methods in each category,
we present the average number of basic operations required to compute [n]P .
Those basic operations, i.e. inversion, half-trace computation, multiplication,
and squaring in F2d are respectively represented by Id, Hd, Md, and Sd. In any
case we have, Id/Md between 8 and 10, and Sd/Md between 0.14 and 0.23.

See Table 1 for the actual figures, which features timings and operation counts
of the x-JSF, the x-JSF2, as well as the fastest interleaving with NAFs methods
among w-w-w, for w ∈ [2, 5] and among w − w − w again for w ∈ [2, 5]. Table 1
also includes the number of stored points required by each method (#P), and
the improvement, if any, over Montgomery’s method and the fastest window
NAF method.

With our implementation, the x-JSF2 breaks even with Montgomery’s
method around d = 233 and enjoys a much bigger speed-up for larger degrees,
reflecting Proposition 3. The interleaving with NAFs method 5-5-5 is the fastest
of all for d = 571, with a speed-up that is close to 20%.

Remark 1. A careful reader would have noticed that for d = 233, 3-3-3 is faster
than 4-4-4. This is surprising for two reasons. First, 4-4-4 is faster than 3-3-3
Second, it is more efficient, given the value of the ratio I233/M233, to deter-
mine the precomputations using the single inversion approach. So 4-4-4 should
be faster. This is confirmed by an analysis of the average numbers of multiplica-
tions and squarings required. Indeed, we need 1112M + 1120S for 4-4-4, against
1143M+1165S for 3-3-3. We observe the same phenomenon for degrees d = 163
and d = 283, but not for d = 409 or d = 571. We explain this by the large num-
ber of variables needed to determine the precomputations when w > 3. See the
Appendix for details. For w = 3, the formulas are simpler, requiring much less

Faster Repeated Doublings on Binary Elliptic Curves 467

Table 1. Comparison of different methods for degrees 233, 409, and 571

Degree 233: I233/M233 = 8.651 and S233/M233 = 0.226
#P I233 H233 M233 S233 Time (ms) Speed-up (%)

Mont. 1 2 0 1402 928 1.102 0
NAF5 8 10 0 1253 1360 1.221 -10.81
NAF5 8 3 0 1312 1368 1.241 -12.66
x-JSF 4 3 2 1181 1229 1.118 -1.51
x-JSF2 8 4 4 1094 1126 1.053 4.43
4-4-4 12 14 3 1043 1108 1.079 2.05
3-3-3 6 5 3 1143 1165 1.083 1.70

Degree 409: I409/M409 = 9.289 and S409/M409 = 0.140
#P I409 H409 M409 S409 Time (ms) Speed-up (%)

Mont. 1 2 0 2457 1631 4.289 -0.68
NAF5 8 10 0 2192 2386 4.267 -0.16
NAF5 8 3 0 2251 2394 4.260 0
x-JSF 4 3 2 2061 2153 3.928 7.79
x-JSF2 8 4 4 1885 1962 3.650 14.33
4-4-4 12 14 3 1793 1929 3.667 13.94
4-4-4 12 5 3 1862 1941 3.752 11.94

Degree 571: I571/M571 = 9.212 and S571/M571 = 0.153
#P I571 H571 M571 S571 Time (ms) Speed-up (%)

Mont. 1 2 0 3430 2280 10.986 0
NAF6 16 18 0 2961 3269 12.154 -10.64
NAF6 16 3 0 3092 3285 12.464 -13.46
x-JSF 4 3 2 2871 3004 10.153 7.58
x-JSF2 8 4 4 2618 2735 9.014 17.94
5-5-5 24 26 3 2355 2601 8.843 19.51
5-5-5 24 5 3 2532 2625 8.810 19.81

intermediate storage. This overhead of declaring and manipulating extra vari-
ables tends to have less impact for larger degrees because multiplications and
squarings take relatively longer.

6 Conclusion and Future Work

We have shown how to make use of x-doublings to compute a scalar multi-
plication on a binary elliptic curve. Our main approach is to trade off regu-
lar doublings for cheaper x-doublings using classical multi-scalar multiplication
techniques.

Unfortunately, it seems impossible to generalize the use of x-doublings in
large characteristic, since solving quadratic equations is much slower than in
characteristic 2.

A possible generalization of this work would be to investigate which endo-
morphisms different from doublings enjoy similar properties, i.e. have an x-
coordinate that can be computed efficiently and independently from the
y-coordinate. Certain endomorphisms [k]P that can be split as the product of

468 C. Doche and D. Sutantyo

two isogenies on special families of curves are known to have this property [12].
It would be interesting to see what kind of improvements those endomorphisms
could bring when it comes to computing a scalar multiplication.

Acknowledgments. We would like to thank Tanja Lange and Daniel J. Bernstein
as well as the reviewers of this article for their numerous comments and suggestions,
which greatly contributed to improve its contents.

Appendix: Affine Precomputations with Sole Inversion in
Characteristic 2

Let P = (x1, y1) be a point on the curve y2 + xy = x3 + a2x
2 + a6. For t > 2,

the following procedure computes the points [2]P , [3]P , [5]P, . . . , [2t − 1]P with
I + (11t − 13)M + 2tS.

Step 1. Computing all the denominators di’s to be inverted

d1 ← x1, s1 ← d2
1, c1 ← s1 · d1, n1 ← s1 + y1

A ← n1(n1 + d1), d2 ← A + (d1 + a2)s1
B ← d1 · d2, C ← B + s21, n2 ← n1 · d2 + C
s2 ← d2

2, A ← A · s2, c2 ← s2 · d2, d3 ← A + n2(n2 + B) + c2
for i = 3 to t − 1 do

B ← B · di, C ← C · ci−1, ni ← ni−1 · di + B + C
si ← d2

i , A ← A · si, ci ← si · di, di+1 ← A + ni(ni + B) + ci
end for

Step 2. Montgomery’s inversion trick

B ← B · dt, INV ← B−1, e1 ← c1
for i = 2 to t − 1 do

ei ← ei−1 · ci
end for

Step 3. Reconstructing the points

for i = t down to 2 do
ji ← INV · ei−1, INV ← INV · di

end for
j1 ← INV
λ2 ← j1 · n1

x2 ← λ2
2 + λ2 + a2

y2 ← λ2(x2 + x1) + x2 + y1

λ3 ← j2(y2 + y1)
x3 ← λ2

3 + λ3 + x2 + x1 + a2,
y3 ← λ3(x2 + x3) + x3 + y2

for i = 4 to t + 1 do
λ2i−3 ← ji−1(y2 + y2i−5)
x2i−3 ← λ2

2i−3 + λ2i−3 + x2 + x2i−5 + a2

y2i−3 ← λ2i−3(x2 + x2i−3) + x2i−3 + y2

end for

Faster Repeated Doublings on Binary Elliptic Curves 469

References

1. Antipa, A., Brown, D., Gallant, R.P., Lambert, R., Struik, R., Vanstone, S.A.:
Accelerated verification of ECDSA signatures. In: Preneel, B., Tavares, S. (eds.)
SAC 2005. LNCS, vol. 3897, pp. 307–318. Springer, Heidelberg (2006)

2. Avanzi, R.M.: Another look at square roots (and other less common operations) in
fields of even characteristic. In: Adams, C., Miri, A., Wiener, M. (eds.) SAC 2007.
LNCS, vol. 4876, pp. 138–154. Springer, Heidelberg (2007)

3. Avanzi, R.M., Cohen, H., Doche, C., Frey, G., Lange, T., Nguyen, K., Vercauteren,
F.: Handbook of elliptic and hyperelliptic curve cryptography. In: Avanzi, R.M.,
Cohen, H., Doche, C., Frey, G., Lange, T., Nguyen, K., Vercauteren, F. (eds.)
Discrete Mathematics and its Applications. Chapman & Hall, Boca Raton (2005)

4. Bernstein, D.J., Lange, T.: Explicit-formulas database. http://www.hyperelliptic.
org/EFD/

5. Blake, I.F., Seroussi, G., Smart, N.P.: Elliptic Curves in Cryptography. London
Mathematical Society Lecture Note Series, vol. 265. Cambridge University Press,
Cambridge (1999)

6. Blake, I.F., Seroussi, G., Smart, N.P.: Advances in Elliptic Curve Cryptography.
London Mathematical Society Lecture Note Series, vol. 317. Cambridge University
Press, Cambridge (2005)

7. Ciet, M., Joye, M., Lauter, K., Montgomery, P.L.: Trading inversions for multipli-
cations in elliptic curve cryptography. Des. Codes Crypt. 39(2), 189–206 (2006)

8. Cohen, H., Miyaji, A., Ono, T.: Efficient elliptic curve exponentiation using mixed
coordinates. In: Ohta, K., Pei, D. (eds.) ASIACRYPT 1998. LNCS, vol. 1514, pp.
51–65. Springer, Heidelberg (1998)

9. Dahmen, E., Okeya, K., Schepers, D.: Affine precomputation with sole inversion
in elliptic curve cryptography. In: Pieprzyk, J., Ghodosi, H., Dawson, E. (eds.)
ACISP 2007. LNCS, vol. 4586, pp. 245–258. Springer, Heidelberg (2007)

10. de Rooij, P.: Efficient exponentiation using precomputation and vector addition
chains. In: De Santis, A. (ed.) EUROCRYPT 1994. LNCS, vol. 950, pp. 389–399.
Springer, Heidelberg (1995)

11. Doche, C.: Exponentiation. In: [3], pp. 145–168 (2005)
12. Doche, Ch., Icart, T., Kohel, D.R.: Efficient scalar multiplication by isogeny decom-

positions. In: Yung, M., Dodis, Y., Kiayias, A., Malkin, T. (eds.) PKC 2006. LNCS,
vol. 3958, pp. 191–206. Springer, Heidelberg (2006)

13. Free Software Foundation. GNU Multiple Precision Library. http://gmplib.org/
14. Hankerson, D., Menezes, A.J., Vanstone, S.A.: Guide to Elliptic Curve Cryptog-

raphy. Springer, Heidelberg (2003)
15. Knudsen, E.W.: Elliptic scalar multiplication using point halving. In: Lam, K.-Y.,

Okamoto, E., Xing, Ch. (eds.) ASIACRYPT 1999. LNCS, vol. 1716, pp. 135–149.
Springer, Heidelberg (1999)

16. López, J., Dahab, R.: Fast Multiplication on Elliptic Curves over GF (2m) without
Precomputation. In: Koç, C., Paar, C. (eds.) CHES 1999. LNCS, vol. 1717, pp.
316–327. Springer, Heidelberg (1999)

17. López, J., Dahab, R.: Improved algorithms for elliptic curve arithmetic in GF (2n).
In: Tavares, S., Meijer, H. (eds.) SAC 1998. LNCS, vol. 1556, pp. 201–212. Springer,
Heidelberg (1999)

18. Cohen, H., Miyaji, A., Ono, T.: Efficient elliptic curve exponentiation using mixed
coordinates. In: Ohta, K., Pei, D. (eds.) ASIACRYPT 1998. LNCS, vol. 1514, pp.
51–65. Springer, Heidelberg (1998)

http://www.hyperelliptic.org/EFD/
http://www.hyperelliptic.org/EFD/
http://gmplib.org/

470 C. Doche and D. Sutantyo

19. Montgomery, P.L.: Speeding the Pollard and elliptic curves methods of factorisa-
tion. Math. Comp. 48, 243–264 (1987)

20. Morain, F., Olivos, J.: Speeding up the computations on an elliptic curve using
addition-subtraction chains. Inf. Theor. Appl. 24, 531–543 (1990)

21. Reitwiesner, G.: Binary arithmetic. Adv. Comput. 1, 231–308 (1962)
22. Shoup, V.: NTL: A Library for doing Number Theory. http://www.shoup.net/ntl
23. Solinas, J.A.: Improved algorithms for arithmetic on anomalous binary curves.

Technical Report CORR 99–46, CACR. http://cacr.uwaterloo.ca/techreports/
1999/corr99-46.pdf (1999)

24. Solinas, J.A.: Low-weight binary representations for pairs of integers. Combina-
torics and Optimization Research Report CORR 2001–41, University of Waterloo
(2001)

25. Stam, M.: On montgomery-like representations for elliptic curves over GF(2k). In:
Desmedt, Y.G. (ed.) Public Key Cryptography — PKC 2003. LNCS, vol. 2567.
Springer, Heidelberg (2003)

26. Straus, E.G.: Addition chains of vectors (problem 5125). Amer. Math. Mon. 70,
806–808 (1964)

27. Takagi, T., Yen, S.-M., Wu, B.-C.: Radix-r non-adjacent form. In: Zhang, K.,
Zheng, Y. (eds.) ISC 2004. LNCS, vol. 3225, pp. 99–110. Springer, Heidelberg
(2004)

28. Washington, L.C.: Elliptic Curves: Number Theory and Cryptography. Discrete
Mathematics and its Applications. Chapman & Hall, Boca Raton (2003)

29. Yao, A.C.C.: On the evaluation of powers. SIAM J. Comput. 5(1), 100–103 (1976)

http://www.shoup.net/ntl
http://cacr.uwaterloo.ca/techreports/1999/corr99-46.pdf
http://cacr.uwaterloo.ca/techreports/1999/corr99-46.pdf

	Faster Repeated Doublings on Binary Elliptic Curves
	1 Introduction
	2 State of the Art
	2.1 Affine and López--Dahab Coordinates
	2.2 Decompression Techniques in LD Coordinates
	2.3 Classical Scalar Multiplication Techniques
	2.4 Fixed Point Scalar Multiplication Using Precomputations
	2.5 Montgomery's Method

	3 Applications of x-doublings to Scalar Multiplication
	3.1 Double Scalar Multiplication and x-Doublings
	3.2 Trading Off More Doublings for x-Doublings
	3.3 Trading Off Even More Doublings for x-Doublings
	3.4 Generic Protocol Setup Compatible with x-doublings

	4 Affine Precomputations with Sole Inversion in Char 2
	5 Tests and Results
	6 Conclusion and Future Work
	References

