Skip to main content

Wafer Bonding of Ferroelectric Materials

  • Chapter
Wafer Bonding

Part of the book series: Springer Series in MATERIALS SCIENCE ((SSMATERIALS,volume 75))

Abstract

In recent years a major effort has been put into achieving integration of functional materials into semiconductor technology. Among functional materials ferroelectrics are an important class of materials, exhibiting a large spectrum of properties and effects including the piezoelectric effect, pyroelectric effect, electro-optic effect, spontaneous polarization, etc. Ferroelectrics are attractive for many applications, the most important being ferroelectric non-volatile random access memories (FERAMs) and micro-electromechanical mechanical system (MEMS) devices. For these specific applications, but also desirable for most other envisaged applications of ferroelectric materials, direct integration of ferroelectrics with silicon or other semiconductors of technological potential would be highly desirable. Beside the memory effect, the photoelectric and pyroelectric effects in ferroelectricsemiconductor heterostructures [1,2] could be promising for developing new types of integrated detectors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Chen CJ, Wu ET, Xu YH, Chen KC, MacKenzie JD (1990) Sol-gel derived ferroelectric PZT thin films on doped silicon substrates. Ferroelectrics 112: 321–7

    Article  Google Scholar 

  2. Pintilie L, Alexe M, Pintilie I, Botila T (1996) Photovoltaic effect in PbS/PbTiO3/Si heterostructures. Appl. Phys. Lett 69: 1571–3

    Article  ADS  Google Scholar 

  3. Scott JF, Paz de Araujo CA (1989) Ferroelectric memories. Science 246: 1400

    Article  ADS  Google Scholar 

  4. Sumi T, Moriwaki N, Nakane G, Nakakuma T, Judai Y, Uemoto Y, Nagano Y, Hayashi S, Azuma M, Otsuki T, Kano G, Cuchiaro JD, Scott MC, McMillan LD, Paz de Araujo CA (1995) 256 Kb ferroelectric nonvolatile memory technology for 1T/1C cell with 100 ns read/write time at 3 V. Integrated Ferroelectrics 6: 1

    Google Scholar 

  5. Eaton SS, US Pat No 4, 873, 664 (1989)

    Google Scholar 

  6. Wu SY (1974), IEEE Trans Electron Dev ED-21:499

    Google Scholar 

  7. Rabson TA, Rost TA, Lin H (1995) Ferroelectric gate transistors. Integrated Ferroelectries 6: 15

    Article  Google Scholar 

  8. Tokumitsu E, Nakamura R, Ishiwara H (1997) Nonvolatile memory operations of metal-ferroelectric-insulator-semiconductor (MFIS) FETs using PLZT/STO/Si(100) structures. IEEE Electron Dev Lett 18: 160

    Article  ADS  Google Scholar 

  9. Kalkur TS, Jacobs B, Argos G (1994) Characteristics of ferroelectric gate MOS and MOSFETs. Integrated Ferroelectrics 5: 177

    Article  Google Scholar 

  10. Scott JF (1998), Ferroelectric Memories, Springer Verlag

    Google Scholar 

  11. Auciello O, Kingon AI (1992) A critical review of physical vapor deposition techniques for the synthesis of ferroelectric thin films. Proc 8th IEEE Int Sympos on Applications of Ferroelectrics (Cat No92CH3080–9) IEEE, pp 320–31 New York, USA

    Google Scholar 

  12. Li SH, Miller RO (1999) Chemical Mechanical Polishing in Silicon Processing. Academic Press, Boston

    Google Scholar 

  13. Runnels SR, Eyman LM (1994) Tribology analysis of chemical-mechanical polishing. J Electrochem Soc 141: 1698

    Article  Google Scholar 

  14. Alexe M, Hesse D, Gösele U (1998) Deposition and processing of bismuth titanate thin films for direct wafer bonding. Mater Chem and Phys 55: 55–60

    Article  Google Scholar 

  15. Tomozawa M (1997) Oxide CMP mechanisms. Solid State Technology 40: 169

    Google Scholar 

  16. Alexe M, Senz S, Pignolet S, Hesse D, Gösele U (1999) Direct wafer bonding and layer transfer for ferroelectric thin film integration. Integrated Ferroelectrics 27: 205

    Article  Google Scholar 

  17. Alexe M (1998) Measurement of interface trap states in metal—ferroelectric—silicon heterostructures. Appl Phys Lett 72: 2283

    Article  ADS  Google Scholar 

  18. Nicollian EH, Brews JR (1982) MOS Physics and Technology. John Wiley, New York

    Google Scholar 

  19. Alexe M, Senz S, Pignolet A, Hesse D, Gösele U (1999) Structural and electrical properties of metal—ferroelectric—silicon heterostructure fabricated by a direct wafer bonding and layer transfer process. Ferroelectrics 225: 75–82

    Article  Google Scholar 

  20. Massoud HZ (1997) Device physics and simulation of metal/ferroelectric-film/p-type silicon capacitors. Microelectronic Engineering 36: 95

    Article  Google Scholar 

  21. Grove AS (1967) Physics and Technology of Semiconductor Devices. John Wiley, New York

    Google Scholar 

  22. Alexe M, Senz S, Pignolet A, Hesse D, Gösele U (1999) Direct wafer bonding and layer transfer — a new approach to integration of ferroelectric oxides into silicon technology. Ferroelectrics 231: 169

    Article  Google Scholar 

  23. Alexe M, Senz S, Scott JF, Pignolet A, Hesse D, Gösele U (1998) Direct wafer bonding and layer transfer: an innovative way for the integration of ferroelectric oxides into silicon technology. Mater Res Soc Symp Proc 493: 517

    Article  Google Scholar 

  24. Hu C (1994) SOI (silicon-on-insulator) for high-speed ultra-large-scale integration. Japn J Appl Phys Part 1 33: 365–9

    Article  ADS  Google Scholar 

  25. Bruel M (1995) Silicon-on-insulator material technology. Electron Lett 31: 1201

    Article  Google Scholar 

  26. Tong Q-Y, Gösele U (1999) Wafer bonding and layer splitting for microsystems. Adv Mater 11: 1404

    Article  Google Scholar 

  27. Alexe M, Dragoi V, Reiche M, Gösele U (2000) Low temperature GaAs/Si direct wafer bonding. Electronics Letters 36: 675–677

    Article  Google Scholar 

  28. Hung LJ, Tong Q-Y, Gösele U (1999) Hydrogen-implantation induced blistering and layer transfer of LaA1O/sub 3/ and sapphire. Electrochemical Solid-State Lett 2: 238

    Article  Google Scholar 

  29. Radu I, Szafraniak I, Scholz R, Alexe M, Gösele U (2002) Ferroelectric oxide single-crystalline layers by wafer bonding and hydrogen/helium implantation. Mater Res Soc Symp Proc 748: U1181–6

    Article  Google Scholar 

  30. Ruglovsky JL, Park YB, Ryan CB, Atwater HA (2002) Wafer bonding and layer transfer for thin film ferroelectrics. Mat Res Soc Symp Proc 748: U1171–6

    Article  Google Scholar 

  31. Watton R (1989) Ferroelectric materials and devices in infrared detection and imaging. Ferroelectrics 91: 87

    Article  Google Scholar 

  32. Patel A, Shorrocks NM, Whatmore RW (1992) Lead scandium tantalate thin films for thermal detectors. In: Ferroelectric Thin Films II Symposium. Mater Res Soc Symp Proc 243: 67–72

    Google Scholar 

  33. Scott JF (1997) Ferroelectric memories. Ferroelectrics Rev 1: 1

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Alexe, M., Radu, I., Szafraniak, I. (2004). Wafer Bonding of Ferroelectric Materials. In: Alexe, M., Gösele, U. (eds) Wafer Bonding. Springer Series in MATERIALS SCIENCE, vol 75. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-10827-7_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-10827-7_13

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-05915-5

  • Online ISBN: 978-3-662-10827-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics