Skip to main content

Evaporite Microbial Sediments

  • Chapter
Microbial Sediments

Abstract

Signatures of microbial life in shallow evaporite systems are discussed using examples from modern coastal hypersaline settings. Organisms contributing to microbial sediments are assigned to moderate halophiles (e.g. cyanobacteria, other phototrophic bacteria, diatoms, non-phototrophic eubacteria) and extremely halophilic taxa (e.g. green algae and halobacteria). Primary production creates the organic base upon which biogeochemical cycles are based that produce a variety of authigenic minerals found in deposits of hypersaline settings. Characteristic microbial sediments include stromatolitic laminae, biolaminoid facies and sedimentary augen structures. Communities dominated by stenotopic major taxa often contribute with less unambiguous laminated structures, e.g. flocculent organics, to the sedimentary record. Based on the criteria of brine depth and salinity, a biofacies classification of marine-derived microbial sediments is proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Assereto RLAM, Kendall CGStC (1977) Nature, origin and classification of peritidal tepee structures and related breccias. Sedimentology 24: 153–210

    Article  Google Scholar 

  • Bernier P, Gaillard C, Gall JC, Barale G, Bourseau JP, Buffetaut E, Wenz S (1991) Morphogenetic impact of microbial mats on surface structures of Kimmeridgian micritic limestones ( Cerin, France). Sedimentology 38: 127–136

    Google Scholar 

  • Brongersma-Sanders M (1992) On the association of ore deposits with stromatolites. In: Schidlowski M et al. (eds) Early organic evolution: Implications for mineral and energy resources. Springer, Berlin Heidelberg New York, pp 478–482

    Chapter  Google Scholar 

  • Cohen Y, Krumbein WE, Goldberg M, Shilo M (1977) Solar Lake (Sinai). s. Physical and chemical limnology. Limnol Oceanogr 22: 597–608

    Google Scholar 

  • Cornée A, Dickman M, Busson G (1992) Laminated cyanobacterial mats in sediments of solar salt works: some sedimentological implications. Sedimentology 39 599–612

    Google Scholar 

  • Dahanayake K, Krumbein WE (1985) Ultrastructure of a microbial mat generated phosphorite. Miner Deposita 20: 260–265

    Article  Google Scholar 

  • Dahanayake K, Krumbein WE (1986) Microbial structures in oolitic iron formations. Miner Deposita 21: 85–94

    Article  Google Scholar 

  • Dahanayake K, Gerdes G, Krumbein WE (1985) Stromatolites, on-colites and oolites biogenically formed in situ. Naturwissenschaften 72: 513–518

    Article  Google Scholar 

  • Decima A, McKenzie JA, Schreiber BC (1988) The origin of “evaporative” limestones: an example from the Messinian of Sicily ( Italy ). J Sed Petrol 58: 256–272

    Google Scholar 

  • Dor I, Paz N (1989) Temporal and spatial distribution of mat micro-algae in the experimental Solar ponds, Dead Sea area, Israel. In: Cohen Y, Rosenberg E (eds) Microbial mats, physiological ecology of benthic microbial communities. ASM, Washington, DC, pp 114–122

    Google Scholar 

  • Dyer BD, Krumbein WE, Mossman DJ (1994) Accumulation of gold in the sheath of Plectonema terebrans (filamentous marine cyanobacteria). Geomicrobiology J 12: 91–98

    Article  Google Scholar 

  • Ehrlich HL (1990) Geomicrobiology. Dekker, New York

    Google Scholar 

  • Fan P, Li J, Meng Q, tu X, Li Z (1992) Biomarkers and other hydrocarbon in Upper Sinian stromatolitic dolostones from southwest China. In: Schidlowski M et al. (eds) Early organic evolution: Implications for mineral and energy resources. Springer, Berlin Heidelberg New York, pp 308–316

    Google Scholar 

  • Folk RL (1973) Carbonate petrography in the post-Sorbian age. In: Ginsburg RN (ed) Evolving concepts in sedimentology. John Hopkins University, Baltimore, pp 118–158

    Google Scholar 

  • Friedman GM (1978) “Solar Lake”: a sea-marginal pond of the Red Sea (Gulf of Aqaba or Elat) in which algal mats generate carbonate particles and laminites. In: Krumbein WE (ed) Environmental biogeochemistry and geomicrobiology 1. The aquatic environment. Ann Arbor, pp 227–235

    Google Scholar 

  • Friedman GM (1980) Dolomite is an evaporite mineral: Evidence from the rock record and from sea-marginal pond of the Red Sea. SEPM Spec Publ 28: 69–8o

    Google Scholar 

  • Friedman GM, Sneh A, Owen RW (1985) The Ras Muhammad Pool: Implications for the Gavish Sabkha. In: Friedman GM, Krumbein WE (eds) Hypersaline ecosystems: the Gavish Sabkha. Ecological Studies 53. Springer, Berlin Heidelberg New York, pp 218–237

    Chapter  Google Scholar 

  • Friedman GM, Sanders JE, Kopaska-Merkel D (1992) Principles of sedimentary deposits. MacMillan, New York

    Google Scholar 

  • Gavish E, Krumbein WE, Halevy J (1985) Geomorphology, mineralogy and groundwater geochemistry as factors of the hydrodynamic system of the Gavish Sabkha. In: Friedman GM, Krumbein WE (eds) Hypersaline ecosystems: the Gavish Sabkha. Ecological studies 53. Springer, Berlin Heidelberg New York, pp 186–217

    Chapter  Google Scholar 

  • Gerdes G, Krumbein WE (1987) Biolaminated deposits. In: Bhattacharya S, Friedman GM, Neugebauer HJ, Seilacher A (eds) Lecture Notes in Earth Sciences 9. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Gerdes G, Krumbein WE, Holtkamp EM (1985) Salinity and water activity related zonation of microbial communities and potential stromatolites of the Gavish Sabkha. In: Friedman GM, Krumbein WE (eds) Hypersaline Ecosystems–The Gavish Sabkha. Ecological Studies 53. Springer, Berlin Heidelberg New York, pp 238–266

    Chapter  Google Scholar 

  • Gerdes G, Krumbein WE, Reineck HE (1991) Biolaminations–ecological versus depositional dynamics. In: Einsele G, Ricken W, Seilacher A (eds) Cycles and events in stratigraphy. Springer, Berlin Heidelberg New York, pp 592–607

    Google Scholar 

  • Gerdes G, Dunajtschik-Piewak K, Riege H, Taher AG, Krumbein, WE., Reineck HE (1995) Structural diversity of biogenic carbonate particles in microbial mats. Sedimentology 41: 1273–1294

    Article  Google Scholar 

  • Golubic S (1980) Halophily and halotolerance in cyanophytes. Origins Life 10: 169–183

    Article  Google Scholar 

  • Guerrero R, Mas J (1989) Multilayered microbial communities in aquatic ecosystems: Growth and loss factors. In: Cohen Y, Rosenberg E (eds) Microbial mats, physiological ecology of benthic microbial communities. ASM, Washington, DC, pp 37–51

    Google Scholar 

  • Hardie LA (1984) Evaporites: marine or non-marine? Am J Sci 284: 193–240

    Article  Google Scholar 

  • Hardie LA (1987) Dolomitization: a critical view of some current views. J Sed Petrol 57x66–183

    Google Scholar 

  • Imhoff JF (1988) Halophilic phototrophic bacteria. In: Rodriguez-Valera F (ed) Halophilic bacteria. CRC Press, Boca Raton, pp 85–108

    Google Scholar 

  • Javor B (1989) Hypersaline environments. Springer, Berlin Heidelberg New York

    Book  Google Scholar 

  • Kendall AC (1992) Evaporites. In: Walker RG, James NP (eds) Facies models. Geol Assoc Can, pp 375–409

    Google Scholar 

  • Kiene RP, Oremland RS, Catena A, Miller LG, Capone D (1986) Metabolism of reduced methylated sulfur compounds by anaerobic sediments and a pure culture of an estuarine methanogen. Appl Environ Microbiol 52x037–1045

    Google Scholar 

  • Kinsmann DJJ (1969) Modes of formation, sedimentary associations, and diagnostic features of shallow-water and supratidal evaporites. Am Assoc Petrol Geol Bull 53830–840

    Google Scholar 

  • Krumbein WE (1979) Calcification by bacteria and algae. In: Trudinger PA, Swaine DJ (eds) Biogeochemical cycling of mineral-forming elements. Elsevier, Amsterdam, pp 47–67

    Chapter  Google Scholar 

  • Krumbein WE (1985) Applied and economic aspects of sabkha systems–genesis of salt, ore and hydrocarbon deposits and biotechnology. In: Friedman GM, Krumbein WE (eds) Hypersaline ecosystems: the Gavish Sabkha. Ecological studies 53. Springer, Berlin Heidelberg New York, pp 426–436

    Chapter  Google Scholar 

  • Krumbein WE, Cohen Y, Shilo M (1977) Solar Lake (Sinai) 4. Stro- matolitic cyanobacterial mats. Limnol Oceanogr 22: 635–656

    Google Scholar 

  • Lopez-Cortes A, Ochoa JL, Vazquez-Duhalt R. (1994) Participation of halobacteria in crystal formation and the crystallization rate of NaCl. Geomicrobiol J 12: 69–8o

    Google Scholar 

  • Norton C, Grant WD (1988) Survival of halobacteria within fluid inclusions in salt crystals. J Gen Microbiol 134: 1365–1373

    Google Scholar 

  • Park RK (1977) The preservation potential of some recent stromatolites. Sedimentology 24: 485–506

    Article  Google Scholar 

  • Por FD (1985) Anchialine pools–comparative hydrobiology. In: Friedman GM, Krumbein WE (eds) Hypersaline ecosystems: the Gavish Sabkha, Ecological studies 53. Springer, Berlin Heidelberg New York, pp 136–145

    Chapter  Google Scholar 

  • Purser BH (1985) Coastal evaporite systems. In: Friedman GM, Krumbein WE (eds) Hypersaline ecosystems: the Gavish Sabkha. Ecological studies 53. Springer, Berlin Heidelberg, New York, pp 72–102

    Chapter  Google Scholar 

  • Reineck HE, Gerdes G, Claes M., Dunajtschik-Piewak K, Riege H, Krumbein WE (1990) Microbial modification of sedimentary surface structures. In: Heling D, Rothe P, Förstner U, Stoffen P (eds) Sediments and environmental geochemistry. Springer, Berlin Heidelberg New York, pp 254–276

    Chapter  Google Scholar 

  • Renfro AR (1974) Genesis of evaporite-associated stratiform metalliferous deposits–a sabkha process. Econ Geol 6933–45

    Google Scholar 

  • Schreiber BC, Kinsman DJJ (1975) New observations on the Pleistocene evaporites of Montallegro, Sicily and a modern analog. J Sed Petrol 45469–479

    Google Scholar 

  • Shinn E (1986) Modern carbonate tidal flats: their diagnostic features. In: Hardie LA, Shinn EA (eds) Carbonate depositional environments modern and ancient, part 3. Tidal flats. Colorado School of Mines Quarterly 81: 7–35

    Google Scholar 

  • Soudry D, Champetier Y (1983) Microbial processes in the Negev phosphorites (southern Israel). Sedimentology 30: 411–423

    Article  Google Scholar 

  • Taher AG (1988) Sedimentology and geochemistry of the coastal sabkha, Ras Shukheir, Gulf of Suez, Egypt. MSc Thesis, Cairo University, Egypt

    Google Scholar 

  • Taher AG, Wahab Abd el, Philip G, Krumbein WE, Wali AM (1995) Evaporitic sedimentation and microbial mats in a salina system ( Port Fouad, Egypt). Int J Salt Lake Res 4: 117–131

    Google Scholar 

  • Warren JK (1982) The hydrological setting, occurrence and significance of gypsum in late Quaternary salt lakes in south Australia. Sedimentology 29: 609–637

    Article  Google Scholar 

  • Wood A, Burke Ch, Knott B (1991) Chemolithotrophic surfur bacteria in sediments, mats, and stromatolites of Western Australian saline lakes. Geomicrobiol J 9: 41–49

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Gerdes, G., Krumbein, W.E., Noffke, N. (2000). Evaporite Microbial Sediments. In: Riding, R.E., Awramik, S.M. (eds) Microbial Sediments. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-04036-2_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-04036-2_22

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-08275-7

  • Online ISBN: 978-3-662-04036-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics