Skip to main content

Non-Intrusive Fruit and Plant Analysis by Laser Photothermal Measurements of Ethylene Emission

  • Chapter
Fruit Analysis

Part of the book series: Modern Methods of Plant Analysis ((MOLMETHPLANT,volume 18))

Abstract

Photothermal trace gas detection reaches extremely high sensitivity combined with good time resolution for a select group of molecules that are of great importance in a biological context. For ethylene, a sensitivity of 6 pl/l has been achieved; for ammonia, 0.5 nl/l has been detected; methane produced by anaerobic bacteria has been measured down to 1 nl/l. The field of application and of investigated gas species is growing rapidly. In this contribution, we focus on ethylene because, for this molecule, this novel technique has been extensively applied.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abeles FB, Morgan PW, Saltveit ME Jr (1992) Ethylene in plant biology, 2nd end. Academic Press, London

    Google Scholar 

  • AFGL-HITRAN data base, USF HITRAN-PC Version (1992) (ed Killinger K) Univ of South Florida, Tampa

    Google Scholar 

  • Bassi PK, Spencer MS (1989) Methods for the quantification of ethylene produced by plants. In: Linskens HF, Jackson JF (eds) Modern methods of plant analysis, vol 9. Springer, Berlin Heidelberg New York, pp 309–321

    Google Scholar 

  • Bijnen FGC (1995) Refined CO-laser photoacoustic trace gas detection, applied to insects. PhD Thesis, University of Nijmegen, The Netherlands

    Google Scholar 

  • Bijnen FGC, Harren FJM, Reuss J, van Hoek AHAM, van Alen TA, Hackstein JHP (1993) Intracavity CO-laser photoacoustic trace detection; CH, production by methanogenic bacteria. In: Werner Ch, Weiderlich (eds) Lasers in remote sensing. Springer, Berlin Heidelberg New York, pp 66–71

    Google Scholar 

  • Bijnen FGC, de Vries HSM, Harren FJM, Reuss J (1994) Cockroaches and tomatoes investigated by laser photoacoustics. J Phys IV, Colloq C7 (Suppl J Phys III ) 4:435–443

    CAS  Google Scholar 

  • Boller T, Kende H (1980) Regulation of wound ethylene synthesis in plants. Nature 286:259–260

    Article  CAS  Google Scholar 

  • Brewer RJ, Bruce CW (1978) Photoacoustic spectroscopy of NH3 the 9-μm and 10-μm 12C16O2 laser wavelengths. Appl Opt 21:4092–4100

    Article  Google Scholar 

  • Brewer RJ, Bruce CW, Mater JL (1982) Opto-acoustic spectroscopy of C2H4 at the 9 and 10 µm CO2 laser wavelengths. Appl Opt 21:4092–4100

    Article  PubMed  CAS  Google Scholar 

  • Burg SP, Burg EA (1965) Gas exchange in fruits. Physiol Plant 18:870–884

    Article  CAS  Google Scholar 

  • Cameron AC, Yang SF (1982) A simple method for the determination of resistance to gas diffusion in plant organs. Plant Physiol 70:21–23

    Article  PubMed  CAS  Google Scholar 

  • de Greef JA, de Proft M (1978) Kinetic measurements of small ethylene changes in an open system designed for plant physiological studies. Physiol Plant 42:79–84

    Article  Google Scholar 

  • de Vries HSM (1994) Local trace gas measurements by laser photothermal detection; Physics meets physiology. PhD Thesis KUN, Nijmegen, The Netherlands

    Google Scholar 

  • de Vries HSM, Harren FJM, Reuss J (1992) The photothermal deflection technique (PTD):fast trace gas detection in the atmosphere. In: Bicanic D (ed) Photoacoustic and photothermal phenomena III. Springer, Berlin Heidelberg New York, pp 12–15

    Google Scholar 

  • de Vries HSM, Bijnen FGC, Voesenek LACJ, Blom CWPM, Harren FJM, Reuss J (1994a) Laser photothermal deflection applied to local trace gas detection; respiration of tomatoes. Laser Optoelektronik (in press)

    Google Scholar 

  • de Vries HSM, Harren FJM, Voesenek LACJ, Blom CWPM, Woltering EJ, van der Valk HCPM, Reuss J (1994b) In situ investigation of ethylene emission for intact cherry tomatoes by means of photothermal deflection and photoacoustic detection. Plant Physiol (in press)

    Google Scholar 

  • de Vries HSM, Harren FJM, Reuss J (1994c) In situ, real-time monitoring of wound-ethylene in cherry tomatoes by two infrared laser-driven systems. POSTHARVEST Biology and Technology (in press)

    Google Scholar 

  • de Vries HSM, Harren FJM, Woltering EJ, van der Valk HCPM, Reuss J (1994d) Laser investigation of ethylene emission by fruits. Proc Cost 94 Conf, Oosterbeek, The Netherlands, Nov 1994

    Google Scholar 

  • de Vries HSM, van Lieshout MR, Harren FJM, Reuss J (1995) Infrared laser photothermal trace gas detection applied to environmental and biological problems. Infrared Phys 36:483–488

    Article  CAS  Google Scholar 

  • Harren FJM, Bijnen FGC, Reuss J, Voesenek LACJ, Blom CWPM (1990a) Sensitive intracavity photoacoustic measurements with a CO2 waveguide laser. Appl Phys B50:137–144

    Article  Google Scholar 

  • Harren FJM, Reuss J, Woltering EJ, Bicanic DD (1990b) Photoacoustic measurements of agriculturally interesting gases and detection of C2H4 below the ppb level. Appl Spectrosc 44:1360–1367

    Article  CAS  Google Scholar 

  • Huelin FE, Kennett BH (1959) Nature of the olefins produced by apples. Nature 184:996

    Article  CAS  Google Scholar 

  • Jackson WB, Amer NM, Boccara AC, Fournier D (1981) Photothermal deflection spectroscopy and detection. Appl Opt 20:1333–1344

    Article  PubMed  CAS  Google Scholar 

  • Kende H (1993) Ethylene biosynthesis. Annu Rev Plant Physiol Plant Mol Biol 44:283–307

    Article  CAS  Google Scholar 

  • Mehlhorn H, Wellburn AR (1987) Stress ethylene formation determines plant sensitivity to ozone. Nature 327:417–418

    Article  CAS  Google Scholar 

  • Osborne DJ (1989) Abscission. Crit Rev Plant Sci 8:103–129

    Article  CAS  Google Scholar 

  • Petruzzelli L, de Vries HSM, Harren FJM (1994) Alleviation of injury due to a short cold exposure in germinating peas by seed decoating and its effects on ethylene synthesis and respiration. (Submitted )

    Google Scholar 

  • Ryan JS, Hubert MH, Crane RA (1983) Water vapor absorption at isotopic CO2 laser wavelengths. Appl Opt 22:711–717

    Article  PubMed  CAS  Google Scholar 

  • Seymour GB, Taylor JE, Tucker GA (1993) Biochemistry of fruit ripening. Chapman and Hall, London

    Book  Google Scholar 

  • Sigrist MW (1994) Air monitoring by spectroscopic techniques. In: Winefordner JD (ed) Chemical analysis 127. John Wiley, New York

    Google Scholar 

  • Thuring JWJF, Harren FJM, Nefkens GHL, Reuss J, Titulaer GTM, de Vries HSM, Zwanenburg B (1994) Ethylene production by seeds of Striga hermonthica induced by germination stimulants. Proc 3rd Int Worksh on Orobanche ( 8–12 Nov ), Amsterdam

    Google Scholar 

  • Voesenek LACJ, van der Veen R (1994) The role of phytohormones in plant stress:too much or too little water. Acta Bot Neerl 43:91–127

    CAS  Google Scholar 

  • Voesenek LACJ, Banga M, Thier RH, Mudde CM, Harren FJM, Barendse GWM, Blom CWPM (1993) Submergence-induced ethylene synthesis, entrapment, and growth in two plant species with contrasting flooding resistances. Plant Physiol 103:783–791

    PubMed  CAS  Google Scholar 

  • Woltering EJ, Harren FJM, Boerrigter HAM (1988) Use of a laser-driven photoacoustic detection system for measurement of ethylene production in Cymbidium flowers. Plant Physiol 88:506–510

    Article  PubMed  CAS  Google Scholar 

  • Woodstock LW, Taylorson RB (1981) Ethanol and acetaldehyde in imbibibing soybean seeds in relation to deterioration. Plant Physiol 67:424–428

    Article  PubMed  CAS  Google Scholar 

  • Yang SF, Hoffman NE (1984) Ethylene biosynthesis and its regulation in higher plants. Annu Rev Plant Physiol 35:155–189

    Article  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

de Vries, H.S.M. (1996). Non-Intrusive Fruit and Plant Analysis by Laser Photothermal Measurements of Ethylene Emission. In: Linskens, H.F., Jackson, J.F. (eds) Fruit Analysis. Modern Methods of Plant Analysis, vol 18. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-79660-9_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-79660-9_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-79662-3

  • Online ISBN: 978-3-642-79660-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics