Skip to main content

Mathematical Modeling and Numerical Simulation of Earth’s Mantle Convection

  • Conference paper

Part of the book series: Lecture Notes in Computational Science and Engineering ((LNCSE,volume 19))

Abstract

Rheology and geometry are two important factors in the Earth’s mantle convection phenomenon. That is, the viscosity is strongly dependent on the temperature and the phenomenon occurs in a spherical shell domain. Focusing our attention on these two factors, we describe a total approach of numerical simulation of the Earth’s mantle convection, i.e., mathematical modeling, mathematical analysis, computational scheme, error analysis, and numerical result.

Dedicated to Professors Masayasu Mimura and Takaaki Nishida on their 60th birthday

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. R. Baumgardner. Three-dimensional treatment of convective flow in the earth’s mantle. Journal of Statistical Physics, 39:501–511, 1985.

    Article  Google Scholar 

  2. F. Brezzi and J. Pitkäranta. On the stabilization of finite element approximations of the Stokes equations. In W. Hachbush, editor, Efficient Solutions of Elliptic Systems, volume 10 of Notes on Numerical Fluid Mechanics, pages 11–19. Braunschweig, 1984.

    Google Scholar 

  3. P. G. Ciarlet. The Finite Element Method for Elliptic Problems. North-Holland, 1978.

    Google Scholar 

  4. L. P. Franca, S. L. Frey, and T. J. R. Hughes. Stabilized finite element methods: I. Application to the advective-diffusive model. Computer Methods in Applied Mechanics and Engineering, 95:253–276, 1992.

    Article  MathSciNet  MATH  Google Scholar 

  5. T. J. R. Hughes and A. Brooks. A theoretical framework for Petrov-Galerkin methods with discontinuous weighting functions: Application to the streamline-upwind procedure. In R. H. Gallagher et al., editors, Finite Elements in Fluids, volume 4, pages 47–65. John Wiley & Sons, 1982.

    Google Scholar 

  6. T. J. R. Hughes and L. P. Franca. A new finite element formulation for computational fluid dynamics: VII. the Stokes problem with various well-posed boundary conditions: symmetric formulations that converge for all velocity/pressure spaces. Computer Methods in Applied Mechanics and Engineering, 65:85–96, 1987.

    Article  MathSciNet  MATH  Google Scholar 

  7. J. L. Lions. Quelques méthodes de résolution des problèmes aux limites non linéaires. Dunod, Paris, 1969.

    MATH  Google Scholar 

  8. J. T. Ratcliff, G. Schubert, and A. Zebib. Three-dimensional variable viscosity convection of an infinite Prandtl number Boussinesq fluid in a spherical shell. Geophysical Research Letters, 22:2227–2230, 1995.

    Article  Google Scholar 

  9. A. Suzuki, M. Tabata, and S. Honda. Numerical solution of an unsteady Earth’s mantle convection problem by a stabilized finite element method. Theoretical and Applied Mechanics, 48:371–378, 1999.

    Google Scholar 

  10. M. Tabata and A. Suzuki. A stabilized finite element method for the Rayleigh-Bénard equations with infinite Prandtl number in a spherical shell. Computer Methods in Applied Mechanics and Engineering, 190:387–402, 2000.

    Article  MathSciNet  MATH  Google Scholar 

  11. P. J. Tackley. Self-consistent generation of tectonic plates in time-dependent, three-dimensional mantle convection simulations 1. pseudoplastic yielding. Geochemistry Geophysics Geosystems, An Electronic Journal of the Earth Sciences, l(2000GC000036):1–45, 2000.

    Google Scholar 

  12. R. Temam. Navier-Stokes Equations — Theory and Numerical Analysis. North-Holland, 1977.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Tabata, M., Suzuki, A. (2002). Mathematical Modeling and Numerical Simulation of Earth’s Mantle Convection. In: Babuška, I., Ciarlet, P.G., Miyoshi, T. (eds) Mathematical Modeling and Numerical Simulation in Continuum Mechanics. Lecture Notes in Computational Science and Engineering, vol 19. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-56288-4_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-56288-4_16

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-42399-7

  • Online ISBN: 978-3-642-56288-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics