Skip to main content

Inexactness Issues in the Lagrange-Newton-Krylov-Schur Method for PDE-constrained Optimization

  • Conference paper
Large-Scale PDE-Constrained Optimization

Part of the book series: Lecture Notes in Computational Science and Engineering ((LNCSE,volume 30))

Abstract

We present an overview of the Lagrange-Newton-Krylov-Schur (LNKS) method for solution of optimization problems that are governed by systems of partial differential equations. We discuss how to improve LNKS’s work efficiency by carrying out certain computations inexactly, without compromising convergence. LNKS solves the Karush-Kuhn-Tucker optimality conditions using a NewtonKrylov algorithm. Its key component is a preconditioner based on variants of quasiNewton reduced space Sequential Quadratic Programming (QN-RSQP) methods. LNKS combines the fast convergence properties of a Newton method with the ability of preconditioned Krylov methods to solve very large linear systems. Nevertheless, even with good preconditioners, solution of the optimization problem is several times more expensive than solution of the underlying PDE problem. To accelerate LNKS, its computational components are carried out inexactly: premature termination of iterative algorithms, inexact evaluation of gradients and Jacobians, and approximate line searches. We discuss several issues that arise with respect to these inexact computations, and the resulting trade-offs between speed and robustness.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Satish Balay, William D. Gropp, Lois Curfman Mcinnes, and Barry F. Smith. PETSc home page. http://www.mcs.anl.gov, /petsc 1999.

  2. Lorenz T. Biegler, Jorge Nocedal, and Claudia Schmid. A reduced Hessian method for large-scale constrained optimization. SIAM Journal on Optimization, 5:314–347, 1995.

    Article  MathSciNet  MATH  Google Scholar 

  3. George Biros. Parallel Algorithms for PDE-Constrained Optimization and Application to Optimal Control of Viscous Flows. PhD thesis, Carnegie Mellon University, Pittsburgh, PA, August 2000.

    Google Scholar 

  4. George Biros and Omar Ghattas. Parallel Newton-Krylov algorithms for PDEconstrained optimization. In Proceedings of SC99, The SCxy Conference series, Portland, Oregon, November 1999. ACM/IEEE.

    Google Scholar 

  5. George Biros and Omar Ghattas. Parallel preconditioners for KKT systems arising in optimal control of viscous incompressible flows. In D. E. Keyes, A. Ecer, J. Periaux, and N. Satofuka, editors, Parallel Computational Fluid Dynamics 1999. North-Holland, 1999.

    Google Scholar 

  6. George Biros and Omar Ghattas. Parallel Lagrange-Newton-Krylov-Schur methods for PDE-constrained optimization. Part I: The Krylov-Schur solver. Technical report, Laboratory for Mechanics, Algorithms, and Computing, Carnegie Mellon University, 2000.

    Google Scholar 

  7. George Biros and Omar Ghattas. Parallel Lagrange-Newton-Krylov-Schur methods for PDE-constrained optimization. Part II: The Lagrange Newton solver, and its application to optimal control of steady viscous flows. Technical report, Laboratory for Mechanics, Algorithms, and Computing, Carnegie Mellon University, 2000.

    Google Scholar 

  8. John Dennis E., Jr., Mahmoud El-Alem, and Maria C. Magiel. A global convergence theory for general trust-region-based algorithms for equality constrained optimization. SIAM Journal on Optimization, 7(1):177–207, 1997.

    Article  MathSciNet  MATH  Google Scholar 

  9. Stanley C. Eisenstat and Homer F. Walker. Globally convergent inexact Newton methods. SIAM Journal on Optimization, 4(2):393–422, 1994.

    Article  MathSciNet  MATH  Google Scholar 

  10. Stanley C. Eisenstat and Homer F. Walker. Choosing the forcing terms in an inexact Newton method. SIAM Journal on Scientific Computing, 17(1):16–32, 1996.

    Article  MathSciNet  MATH  Google Scholar 

  11. Roger Fletcher. Practical Methods of Optimization. John Wiley and Sons, second edition, 1987.

    Google Scholar 

  12. Roland W. Freund and Noël M. Nachtigal. An implementation of the QMR method based on coupled two-term recurrences. SIAM Journal of Scientific Computing, 15(2):313–337, March 1994.

    Article  MathSciNet  MATH  Google Scholar 

  13. Omar Ghattas and Jai-Hyeong Bark. Optimal control of two-and threedimensional incompressible Navier-Stokes flows. Journal of Computational Physics, 136:231–244, 1997.

    Article  MATH  Google Scholar 

  14. Max D. Gunzburger. Finite Element for Viscous Incompressible Flows. Academic Press, 1989.

    Google Scholar 

  15. Max D. Gunzburger, editor. Flow Control, volume 68 of IMA Math. Appl. Springer-Verlag, New York, 1995.

    Google Scholar 

  16. Max D. Gunzburger and Roy A. Nicolaides, editors. Incompressible Computational Fluid Dynamics. Cambridge University Press, 1993.

    Google Scholar 

  17. Matthias Heinkenschloss and Luis N. Vicente. Analysis of inexact trust-region SQP algorithms. Technical Report TR99-18, Rice University, Department of Computational and Applied Mathematics, 1999.

    Google Scholar 

  18. C. T. Kelley and David E. Keyes. Convergence analysis of pseudo-transient continuation. SIAM Journal on Numerical Analysis, 35:508–523, 1998.

    Article  MathSciNet  MATH  Google Scholar 

  19. C.T. Kelley and Ekkehard W. Sachs. Truncated Newton methods for optimization with inaccurate functions and gradients. SIAM Journal on Optimization, 10(1):43–55, 1999.

    Article  MathSciNet  MATH  Google Scholar 

  20. F. Leibritz and E. W. Sachs. Inexact SQP interior point methods and large scale optimal control problems. SIAM Journal on Control and Optimization, 38(1):272–293, 1999.

    Article  MathSciNet  Google Scholar 

  21. Ivan Malčević, Large-scale unstructured mesh shape optimization on parallel computers. Master’ s thesis, Carnegie Mellon University, 1997.

    Google Scholar 

  22. Stephen G. Nash and Ariela Sofer. Linear and Nonlinear Programming. McGraw-Hill, 1996.

    Google Scholar 

  23. Jorge Nocedal and Stephen J. Wright. Numerical Optimization. Springer, 1999.

    Google Scholar 

  24. T. Steihaug. The conjugate gradient method and trust regions in large scale optimization. SIAM Journal on Numerical Analysis, 20:626–637, 1983.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Biros, G., Ghattas, O. (2003). Inexactness Issues in the Lagrange-Newton-Krylov-Schur Method for PDE-constrained Optimization. In: Biegler, L.T., Heinkenschloss, M., Ghattas, O., van Bloemen Waanders, B. (eds) Large-Scale PDE-Constrained Optimization. Lecture Notes in Computational Science and Engineering, vol 30. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-55508-4_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-55508-4_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-05045-2

  • Online ISBN: 978-3-642-55508-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics