Skip to main content

A Sequential Quadratic Programming Method for Nonlinear Model Predictive Control

  • Conference paper
  • 1105 Accesses

Part of the book series: Lecture Notes in Computational Science and Engineering ((LNCSE,volume 30))

Abstract

A local sequential quadratic programming, or Newton-Lagrange, approach to the solution of the partial differential equation constrained optimization problem arising from the application of model predictive control on nonlinear distributed parameter systems is presented. The nonlinear system model considered is a general form of the initial value advective-diffusion parabolic partial differential equation. This equation form is chosen because it describes a wide range of chemical process systems, however, other initial value partial differential equation forms can be considered in a similar manner. The optimization problem is constructed from the discretized model, constraint, and objective function equations. A finite volume approach is used to discretize the distributed parameter model equat ions. Inequality constraints on the model states and controls are addressed with an active set method. The nonlinear equations resulting from the first order Karush-Kuhn-Tucker conditions are solved directly using preconditioned Newton-Krylov techniques.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   139.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. W. Howse, G. A. Hansen, D. J. Cagliostro, and K. R. Muske. Solving a thermal regenerator model using implicit Newton-Krylov methods. Numerical Heat Transfer: Part A, 38(1):23–44, 2000.

    Article  Google Scholar 

  2. C. Hirsch. Numerical Computation of Internal and External Flows, Volume 1: Fundamentals of Numerical Discretization. John Wiley & Sons, Ltd., Chichester, United Kingdom, 1988.

    MATH  Google Scholar 

  3. D. Q. Mayne, J. B. Rawlings, C. V. Rao, and P. O. Scokaert. Constrained model predictive control: Stability and optimality. Automatica, 36:789–814, 2000.

    Article  MathSciNet  MATH  Google Scholar 

  4. S. Vasantharajan and L. T. Biegler. Simultaneous strategies for optimization of different ial-algebraic systems with enforcement of error criteria. Compo Chern. Eng., 14(10):1083–1100, 1990.

    Article  Google Scholar 

  5. D. P. Bertsekas. Nonlinear Programming. Athena Scientific, Belmont, MA, 1995.

    MATH  Google Scholar 

  6. J. Nocedal and S. J. Wright. Numerical Optimization. Springer Series in Operations Research. Springer-Verlag, New York, 1999.

    Book  MATH  Google Scholar 

  7. R. S. Dembo, S. C. Eisenstat, and T. Steihaug. Inexact newton methods. SIAM J. Num. Anal., 19(2):400–408, 1982.

    Article  MathSciNet  MATH  Google Scholar 

  8. C. T. Kelley. Iterative Methods for Linear and Nonlinear Equations. Number 16 in Frontiers in Applied Mathematics. SIAM, Philadelphia, 1995.

    Book  MATH  Google Scholar 

  9. Y. Saad. Iterative Methods for Sparse Linear Systems. PWS Publishing Company, Boston, 1996.

    MATH  Google Scholar 

  10. P. N. Brown and Y. Saad. Convergence theory of nonlinear Newton-Krylov algorithms. SIAM J. Optimization, 4(2):297–330, 1994.

    Article  MathSciNet  MATH  Google Scholar 

  11. S. C. Eisenstat and H. F. Walker. Choosing the forcing terms in an inexact Newton method. SIAM J. Sci. Comput., 14(2):470–482, 1993.

    Article  MathSciNet  Google Scholar 

  12. N. M. Nachtigal, S. C. Reddy, and L. N. Trefethen. How fast are nonsymmetric matrix iterations? SIAM J. Matrix Anal. Appl., 13(3):778–795, 1992.

    Article  MathSciNet  MATH  Google Scholar 

  13. Y. Saad and M.H. Schultz. GMRES: A generalized minimal residual algorithm for solving nonsymmetric linear systems. SIAM J. Sci. Stat. Comput., 7(3):856–869, 1986.

    Article  MathSciNet  MATH  Google Scholar 

  14. R. W. Freund. A transpose-free quasi-minimal residual algorithm for nonhermitian linear systems. SIAM J. Sci. Comput., 14(2):470–482, 1993.

    Article  MathSciNet  MATH  Google Scholar 

  15. H.A. van der Vorst and C. Vuik. The superlinear convergence behavior of GMRES. J. Comp. Appl. Mathematics, 48(3):327–341, 1993.

    Article  MATH  Google Scholar 

  16. G. Biros and O. Ghattas. Parallel Lagrange-Newton-Krylov-Schur methods for PDE-constrained optimization. Part I: The Krylov-Schur solver. Technical report, Laboratory for Mechanics, Algorithms, and Computing, Department of Civil and Environmental Engineering, Carnegie Mellon University, 2000.

    Google Scholar 

  17. D. G. Luenberger. Linear and Nonlinear Programming. Addison-Wesley, Reading, MA, 2nd edition, 1989.

    Google Scholar 

  18. P. E. Gill, W. Murray, and M. H. Wright. Practical Optimization. Academic Press, New York, 1981.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Muske, K.R., Howse, J.W. (2003). A Sequential Quadratic Programming Method for Nonlinear Model Predictive Control. In: Biegler, L.T., Heinkenschloss, M., Ghattas, O., van Bloemen Waanders, B. (eds) Large-Scale PDE-Constrained Optimization. Lecture Notes in Computational Science and Engineering, vol 30. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-55508-4_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-55508-4_15

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-05045-2

  • Online ISBN: 978-3-642-55508-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics