PEALT: An Automated Reasoning Tool
for Numerical Aggregation of Trust Evidence

Michael Huth and Jim Huan-Pu Kuo

Department of Computing, Imperial College London
London, SW7 2AZ, United Kingdom
{m.huth, jimhkuo}@imperial.ac.uk

Abstract. We present a tool PEALT that supports the understanding
and validation of mechanisms that numerically aggregate trust evidence
of potentially heterogenous sources. Such mechanisms are expressed in
the policy composition language Peal and subjected to vacuity check-
ing, sensitivity analysis of thresholds, and policy refinement. Verification
code is generated by either compiling away numerical references prior to
constraint solving or by delegating numerical reasoning to Z3, the com-
mon back-end constraint solver of PEALT. The former gives compact
diagnostics but restricts value ranges and may be space intensive. The
latter generates compact verification code, but gives verbose diagnostics,
and may struggle with multiplicative reasoning. We experimentally com-
pare code generation and verification running times of these methods on
randomly generated analyses and on a non-random benchmark modeling
majority voting. Our findings suggest both methods have complementary
value and may scale up well for the analysis of most realistic case studies.

1 Introduction

Trust is a fundamental factor that influences decisions pertaining to human inter-
actions, be they social or economic in nature. Mayer et al. [11] offer a definition of
trust as “.. the willingness to be vulnerable, based on positive expectation about
the behavior of others.” These expectations of the trustor would be informed
by trust signals exchanged with the trustee of a planned interaction. Trust has
an economic incentive, it avoids the use of costly measures that guarantee as-
surance in the absence of trust-enabled interaction. We note that assurance is
the established means of realizing “IT security”. Traditionally, trust signals (e.g.
body language) could be observed both in spatial and temporal proximity to
a planned interaction. Modern IT infrastructures, however, disembed agents in
space and in time from such signals and interaction resources, making it hard to
use existing trust mechanics such as those proposed in [17] in this setting [10].
This identifies a need for a calculus in which trust and distrust signals can
be expressed and aggregated to support decision making in a variety of applica-
tions (e.g. financial transactions, software installations, and run-time monitoring
of hardware). In our proposed methodology, signals of trust or distrust have no
effect in their absence but evaluate to a score in their presence. These scores

E. Abrahédm and K. Havelund (Eds.): TACAS 2014, LNCS 8413, pp. 109-123, 2014.
(© Springer-Verlag Berlin Heidelberg 2014

110 M. Huth and J.H.-P. Kuo

may be determined by techniques suitable for the types of signals, e.g. machine
learning if signals are features, metrics if signals indicate trustworthiness of IT
infrastructures, etc. This then makes it challenging to devise a calculus for com-
bining scores of different types in a manner that articulates the expectations in
trust-mediated interactions. Let us give some examples of this.

Trust of an individual in an online transaction will depend, amongst other
things, on the monetary value of that transaction, the reputation of the seller,
and contextual information such as recommendations from friends. IT infras-
tructures in highly dynamic and volatile environments such as military operating
theatres can no longer be secured in a binary “secure or insecure” manner. They
have to react to risks in agile manners [1], suggesting the use of compositional
metrics for run-time trust management. Similarly, run-time systems may want
to monitor executing code by measuring signals from execution characteristics —
such as the threat level of parsed input (e.g. input such as meta-data may serve
as an attack surface [19]), the domain of a remote procedure call, etc. — and ag-
gregate such evidence to control execution paths. We refer to [8] for a case study
of such execution control in the Scala programming language, where methods are
annotated with expectation blocks — a precursor of the language Peal [4] — whose
aggregation computes what corresponds to the score of a policy set in Peal.

These examples suggest a trust calculus needs to express evidence that is not
only rooted in trust (e.g. an asset value), needs to be extensible for domain-
specific expressions of signals (e.g. those of a social network), and requires a
means of calculating trust from observed signals (e.g. compositional metrics). In
[4], such a language Peal was proposed in which signals are abstract predicates
whose truth triggers a score, and where score aggregation captures reasoning
about levels of trust. In [4], several analyses were also defined that assess if trust
calculations perform as expected by specifiers. Verification of trust calculations
is thus a key ingredient of such an approach, and the focus of this paper.

We here express the analysis of Peal expressions as constraints that can be an-
alyzed with the SMT solver Z3, and so capture logical dependencies of (dis)trust
signals. Specifically, we refine and extend the language Peal of [4] to support a
richer calculus, we implement analyses proposed in [4] in the SMT solver Z3 on
this richer language via two different methods of automated Z3 code generation
in PEALT, and we experimentally explore the trade-offs of both methods.

Outline of paper. Section 2 contains background on Peal and the SMT solver Z3.
Design and implementation of PEALT are outlined in Section 3. In Section 4, we
describe two methods for converting conditions used in analyses into Z3 input.
The validation of PEALT via experiments and other activities is reported in
Section 5. Section 6 contains related work, and Section 7 concludes the paper.

2 Background

Peal: a Pluggable Evidence A ggregation Language. The syntax of language Peal
is shown in Figure 1. In Peal, a rule rule consists of a predicate or signal ¢; and

PEALT: An Automated Reasoning Tool for Numerical Aggregation 111

its declared score s;, has no effect if predicate g; is false (no signal), and has
score s; as effect otherwise (signal present). Policies pol have form as in

pi=o0p ((q1 $1)-..(qn Sn)) default s or pi = op () default s (1)

contain zero or more rules, a default score s, and an aggregation operator op.
Policy p; returns default score s if all its rules have false predicates; otherwise
it returns the result of applying op to all scores s; of true predicates g;. The

op = min | max | + | *
rule ::=if (q) score
pol ::= op (rule™) default score

pSet := pol | maz(pSet,pSet) | min(pSet, pSet)
cond ::= th < pSet | pSet < th

Fig. 1. Syntax of Peal where ¢ ranges over some language of predicates, and th and
score range over real numbers (potentially restricted by domains or analysis methods)

design of Peal is layered as in [4]. Supported aggregation operators are min (e.g.
for distrust signals), max (e.g. for trust signals), + (e.g. for accumulative sig-
nals), and * (e.g. for aggregating independent probabilistic evidence). Policies
are composed into policy sets (pSet) using maz and min. Finally, policy sets are
compared to thresholds th using inequalities in conditions cond. The intuition
is that scores and thresholds are real numbers but that some analysis methods
may constrain the ranges of said values. The latter is one reason why the PEALT
input language under-specifies such design choices. The meaning of policy com-
position is context-dependent. For example, if a condition th < min(pS1,pS2) is
used in support of recommending an action, e.g., then min acts as a pessimistic
composition since the score of any of its arguments may falsify this condition.

SMT solver Z3. Satisfiability modulo theories [5] is supported with robust and
powerful tools, that combine the state-of-the-art of deductive theorem proving
with that of SAT solving for propositional logic. The SMT solver Z3 has a
declarative input language for defining constants, functions, and assertions about
them [12]. Figure 2 shows Z3 input code to illustrate that language and its
principal analysis directives. On the left, constants of Z3 type Bool and Real are
declared. Then an assertion defines that the Boolean constant q1 means that x
is less than y + 1, and the next assertion insists that q1 be true. The directives
check-sat and get-model instruct Z3 to find a witness of the satisfiability of
the conjunction of all visible assertions, and to report such a witness (called a
model). On the right, we see what Z3 reports for the input on the left: sat states
that there is a model; other possible replies are unsat (there cannot be a model),
and unknown (Z3 does not know whether or not a model exists).

112 M. Huth and J.H.-P. Kuo

(declare-const q1 Bool) sat

(declare-const x,y Real) (model

(assert (= q1l (< x (+ y 1)))) (define-fun y () Real 0.0)
(assert qi) (define-fun g1 () Bool true)
(check-sat) (define-fun x () Real 0.0
(get-model))

Fig. 2. Left: Z3 input with directives to find and generate a model. Right: Z3 output
for this input, a model that makes all input assertions true. (Both edited to save space.)

3 Workflow and Input Language of PEALT

The tool is rendered as a web application which accepts analysis declarations.
The declared analyses can be converted to Z3 input code, followed by calling
Z3 and getting feedback on running such code. The tool also allows generation
of random declarations or creation of majority-voting condition instances — the
latter stress test the explicit method for Z3 code generation described below. A
typical workflow of using PEALT would be to generate/write/edit Peal condi-
tions and their analyses, to run these analyses on the Z3 code the tool compiles,
and to study the Z3 output to decide whether further such actions are needed.
Analyses such as different? c1 c2 have keywords ending in 7 and list condi-
tions as arguments. Users may specify any number of analyses. Generated Z3
input code will execute each declared analysis in turn using a visibility stack
discipline for assertions, as detailed in Section 4.

Example 1. Figure 3 shows an example of PEALT input that may model trust
perceptions when downloading a software installation and where a non-matching
hash of the download, e.g., is mitigated by the fact that the download was done
in a browser X that may non-maliciously change file signatures in that process.
In the example, both analyses have negative outcome.

Keywords POLICIES etc. divide declarations into sorts: policies, policy sets,
conditions, domain-specific declarations, and analyses. Keyword if is omitted
from rules in PEALT input for sake of succinctness. A simple naming construct
name = expr is used to uniformly bind expressions from the syntactic categories
for policies, policy sets, conditions, and analyses to names that can be referenced
without any scope restrictions. The syntax for policies, policy sets, and condi-
tions is hoped to be intuitive enough given the definition of Peal. Domain-specific
declarations are written in zone DOMAIN SPECIFICS, are expressed directly in Z3
code, and assume that all predicates within rules of declared policies are declared
in Z3 input as Z3 type Bool already.

We implemented two different ways of generating Z3 input code for declara-
tions entered into PEALT: an explicit and a symbolic one, whose details we will
provide below. Intuitively, explicit code generation compiles away any references
to numerical values to capture logically — without loss of arithmetic precision —
the declared analyses; whereas symbolic code generation statically encodes the

PEALT: An Automated Reasoning Tool for Numerical Aggregation 113

POLICIES

bl = min ((companyDevice 0.1) (uncertifiedOrigin 0.2) (nonMatchingHash 0.2)) default 1
b2 = + ((downloadWithBrowserX 0.1) (useIOS 0.2) (uselLinux 0.1) (recentPatch 0.1)) default 0
POLICY_SETS

pSet = min(bl, b2)

CONDITIONS

condl = 0.2 < pSet

cond2 = 0.1 < pSet

DOMAIN_SPECIFICS

(declare-const numberOfDaysSinceLastPatch Real)

(assert (= recentPatch (< numberOfDaysSinceLastPatch 7)))

ANALYSES

anal = always_true? condl

ana2 = equivalent? condl cond2

Fig. 3. Trust perceptions of software download in PEALT, with two analyses

operational semantics of Peal through use of numerical declarations in order for
Z3 to be able to reason about all possible dynamic settings. Z3 code genera-
tion may produce an exponential blow-up in the explicit method whereas the
symbolic one typically finds it harder to reason about multiplication.

Users can specify which code generation method (explicit or symbolic) to use,
whether to just compile Z3 input code, and whether to also run it and display
results. Users also have the option of downloading the generated Z3 code (as
it may be large). For the explicit method, one may just generate results of all
analyses in pretty-printed, minimal form. We don’t offer this for the symbolic
method as its code generation prevents the creation of minimal output models.
PEALT is written in Scala 2.10.2 using the Lift web framework. After converting
Peal declarations into Z3 input code, PEALT interfaces with the SMT solver Z3
(version 4.3.1) by launching it as an external process via Scala’s ProcessBuilder.

4 73 Code Generation

Our tool only generates code for conditions that are used: i.e. that are declared
in the input panel and occur in at least one declared analysis as argument.
Let c1 be the declared name of such a condition for declaration c1 = cond. We
generate Z3 code that declares c1 as Z3 type Bool and adds an assert statement
that binds the name c1 to ¢[cond] via (assert (= c1 @[cond])) where ¢[cond] is
73 code for the logical formula generated for condition cond.

The code generated for ¢[cond] explicitly or implicitly lists all signal scenarios
that may occur if we ignore any logical dependencies between signals. This means
that we delegate to our analysis backend, the Z3 SMT solver, the task of only
generating scenarios in analyses that are also logically feasible. We now describe
two methods for generating Z3 code for ¢[cond], starting with the explicit one.

Ezplicit code generation. For sake of succinctness, we state ¢[cond] here as a
formula of propositional logic over predicates and not as Z3 input. The definition
of ¢[cond] is given by structural induction over the policy set argument in cond,
as shown in Figure 4. In the first four equations, min and max compositions

114 M. Huth and J.H.-P. Kuo

of policy sets create disjunctions or conjunctions of simpler code generation
problems, depending on the type of inequality in cond. The first equation, for
example, expresses that the minimum of (the score of) two policy sets is less
than or equal to a threshold iff that it the case for one of these two policy sets.

The next four equations define auxiliary predicates @1 to Q4 that we can
use to specify the remaining cases of conditions that involve only a sole policy.
All such conditions first generate the code context for the mon-default case:
in (6), the default score of the sole policy in the condition is compatible with the
inequality. Therefore, we generate a disjunction whose first disjunct captures
the default case when all predicates of all rules are false, and whose second
disjunct captures the non-default case. In (7), the default score of the sole policy
is incompatible with the inequality of its condition cond and so only the non-
default case may apply. Therefore, we generate a conjunction that forces at least
one predicate and the formula generated for the non-default case to be true.

It remains to describe the code generation for the non-default case ¢Z]§lf [cond]:
in (8), code generation of ¢21%[cond] adds a top-level negation and reverts the
condition type when @3 holds — where dual(pol < th) equals th < pol and
dual(th < pol) equals pol < th. This means that we only have to deal with
the same inequality type in the remaining cases, that enumerate scenarios. The
enumeration process for max and min in (9) is clear. For example, ¢"¥ [th < pol]
is a disjunction of all predicates in pol whose scores are strictly larger than th.

The code generation in (10) applies to conditions pol < th for * policies
pol, and conditions th < pol for + policies pol. In these cases, we enumerate
all minimal scenarios of present signals that make the condition true. These
scenarios are minimal in that any smaller subset of present signals won’t make
the condition true. The code therefore generates a disjunction of monomials
where each monomial describes such a minimal scenario. Concretely, as + is
monotone and the inequality is th < pol, we only need to generate minimal
index sets X such that the sum of all s; with ¢ in X is above th. These X are
the elements of set M, which is computed by enum in Figure 5. The Boolean
guard in the while-loop of enum_ makes use of the partial sums ¢; to ensure that
recursive calls to enum, are only made when they will still enumerate at least
one new element of M. The correctness proof for enum, is straightforward:
all such minimal index sets X are generated in some recursive execution path
(completeness), and all enumerated index sets are indeed minimal (soundness,
which requires the scores to be sorted in ascending order). Algorithm enum.
enumerates all minimal scenarios in the case of a * policy in pol < th and
is dual to enum_: it reverts all inequalities for th, lists scores in descending
order, and therefore retains the requirement to compute minimal index sets.
The correctness proof for enum, is that for enum, modulo that duality.

Let us discuss what restrictions use of this explicit code generation imposes on
the PEALT input language. It requires that all scores within * policies be within
[0,1] so that * is anti-tone; that all scores within + policies be non-negative to
get a correct interpretation of minimal index sets in enum,; whereas scores
within maz and min policies may be any real numbers, since the inequalities

PEALT: An Automated Reasoning Tool for Numerical Aggregation 115

a
2

e

¢lmin(pS1,pS2) < th] = $[pS1 < th]V ¢[pS2 < th] (2)
$lmaz(pS1,pSa) < th] = ¢[pSi < th] A ¢[pSa < th] (3)
plth < min(pSy,pSs)] & ¢[th < pSi] A ¢[th < pSa] (4)
o[th < maz(pS1,pSs)] X G[th < pSi]V [th < pSs] (5)

o
2

Q1(pol, cond) = (s < th, cond = pol < th) V (th < s,cond = th < pol)
Q2(pol, cond) dof (th < s,cond = pol < th) V (s < th,cond = th < pol)
Q3(op, cond) = (op € {4, maz}, cond = pol < th)V (op € {*, min}, cond = th < pol)
Q4(op, cond) ef (op = *,cond = pol < th) V (op = +, cond = th < pol)
¢[cond] ef (=q1 A+ A=gn) V oo [cond] (when Q1 (pol, cond) is true) (6)
¢[cond] ef (1 V-V an) A oo [cond] (when Q2(pol, cond) is true) (7)
ndf [cond] et —mi)ndf [dual(cond)] (when Qs(op, cond) is true) (8)
nhlth <poll < \/ @ ondlpol <th| = \/ g (9)
i|th<s; i|s; <th
et [cond} \/ /\ qi (when Q4 (op, cond) is true) (10)
XEMop i€X

Fig. 4. Explicit code generation (recursively): pol has form as in (1); predicates Q1 to
Q4 drive the compilation logic; the computation of sets M, is detailed in Figure 5

enum4 (X, ace, indezx, op) { enums (X, ace, index, op) {
if (th < acc) { output X; } if (acc < th) { output X; }
else { else {
j =1index — 1; j =1index — 1;
while ((0 < j) A (th < op(ace, t;)) { while ((0 < j) A (op(ace, t;) < th) {
enum. (X U {3}, oplace, s;), 4,0); enum. (X U {3}, oplace, 5;), j, op);
J=7-1}} j=3-1}1}}

Fig. 5. Left: algorithm enum4 computes M4 where scores s; are sorted in ascending
order. Right: algorithm enum. computes M. where s; are sorted in descending order.
Initial call context is ({},0,n,+) for enum4 and ({}, 1, n,*) for enum..

in (9) have the intended meaning for all sign combinations. Z3 code generated
for the PEALT input in Figure 3 is shown in Figure 6. PEALT uses the push
and pop directives of Z3 in order to add constraints specific to an analysis onto
the top of the assertion visibility stack that Z3 maintains, and to discharge these
assertions before turning to the next analysis. The Z3 code generated for analyses
is verbatim the same for the symbolic code generation to which we turn next.

116 M. Huth and J.H.-P. Kuo

(declare-const recentPatch Bool)
(declare-const useLinux Bool)
(declare-const uncertifiedOrigin Bool)
(declare-const companyDevice Bool)
(declare-const downloadWithBrowserX Bool)
(declare-const useI0OS Bool)
(declare-const nonMatchingHash Bool)
(declare-const cond2 Bool)
(declare-const condl Bool)
(assert (= condl (and (or (and (not companyDevice) (not uncertifiedOrigin) (not nonMatchingHash))
(not (or companyDevice uncertifiedOrigin nonMatchingHash)))
(and (or downloadWithBrowserX useIOS useLinux recentPatch)
(or (and useIOS recentPatch) (and useIOS useLinux) (and useI0S downloadWithBrowserX)
(and recentPatch uselLinux downloadWithBrowserX))))))
(assert (= cond2 (and (or (and (not companyDevice) (not uncertifiedOrigin) (not nonMatchingHash))
(not companyDevice)) (and (or downloadWithBrowserX useIOS useLinux recentPatch)
(or useIOS (and recentPatch useLinux) (and recentPatch downloadWithBrowserX)
(and useLinux downloadWithBrowserX))))))

(echo "Result of analysis [anal = always_true? cond1]:")
(push)

(declare-const always_true_anal Bool)

(assert (= always_true_anal condl))

(assert (not always_true_anal))

(check-sat)

(get-model)

(pop)

(echo "Result of analysis [ana2 = equivalent? condl cond2]:")

(push)

(declare-const equivalent_ana2 Bool)

(assert (= equivalent_ana2 (or (and condl (not cond2)) (and (not condl) cond2))))
(assert equivalent_ana2)

(check-sat)

(get-model)

(pop)

Fig. 6. Explicitly generated code for input from Figure 3 (hand edited to save space)

Symbolic code generation. This method also binds the name c1 of declaration
c1 = cond to its condition via (assert (= cl ¢[cond])). But for each policy p;
occurring in cond, it also declares a constant cond p; of Z3 type Bool and then
generates ¢[cond] as a positive Boolean formula over the constants cond p;. This
process follows the same logic as for explicit code generation in (2) to (5). For
each declared constant cond p i of Z3 type Bool, it then adds an assert state-
ment (assert (= cond p i ¢lcond p;])) that defines the meaning of cond p;.
For policies p; of form as in (1), the code generated is similar to the one of the
explicit method when op equals min or max — we refer to [7] for further details.

Let op equal * or + and policy p; occur in at least one condition within some
declared analysis. Then the code generation for ¢[cond p;] in Figure 7 trades off
the space complexity of enumerating elements in M and M, with the time
complexity of solving real-valued inequalities in the Z3 SMT solver. For each
predicate g; within p;, we declare a constant p; score g; of Z3 type Real, and
add two assertions that, combined, model that the value of p; score g; is s; iff
g; is true, and that this value equals the unit of + (respectively, *) iff ¢; is
false. This means that we can precisely model the effect of the non-default case
(when at least one g; is true) by aggregating all values p; score ¢; with op, and
by comparing that aggregated result to the threshold in the specified manner

PEALT: An Automated Reasoning Tool for Numerical Aggregation 117

(< or >). Crucially, the values of p; score g; for predicates that happen to be
false won’t contaminate this aggregated value as they are units for operator op.

The encoding for symbolic code generation is therefore linear in the size of
cond. Using this encoding, we can now express ¢[cond p;] in Z3 by directly
encoding the “operational” semantics of cond p;: either the default score satisfies
the inequality and all policy predicates are false, or at least one policy predicate is
true and the aggregation of all values p; score g; with op satisfies the inequality.
These Z3 declarations and expressions are stated in Figure 7.

(declare-const p_i_score_q_j Real)
(assert (implies q_j (= s_i p_i_score_q_j)))
(assert (implies (not (= <unit> p_i_score_q_j)) q_j))

(or (and (cop th s) (not (or gq_1 ... g_n)))
(and (or g_1 ... g_n)
(cop th (op p_i_score_g_1 ... p_i_score_q_n))))

Fig.7. Top: declarations for p; score q; where s j is s;, and <unit> is 0.0 for +
policies p; and 1.0 for * policies p;. Bottom: Z3 code for ¢[cond p;] for the first case
in (1); comparison operator cop is < for th < p; or > for th > p;, and th denotes th.

The symbolic code generation described above imposes no restrictions on the
ranges of scores s;. PEALT allows us to replace s i with an arithmetic expression
such as any real numbers ¢, real variables x, or products thereof (¢ - z).

Analyses. Analysis implies? checks whether the first condition logically implies
the second one, which is a form of policy refinement. Analyses always false?
and satisfiable? are “equivalent” but capture different intent of the user, ditto
for analysis equivalent? versus analysis different?. A typical use of analysis
different? is to check whether conditions differ for 0.5 < pSet and 0.6 < pSet,
i.e. whether pSet is sensitive to the increase of threshold value from 0.5 to 0.6.

Specification of domain specifics. Users may add domain-specific constraints or
knowledge as Z3 code within zone DOMAIN SPECIFICS: e.g. to declare variables
with which one can then define the exact meaning of predicates used in rules
(e.g. as a means of adding parameters to signals), to encode required properties
of the modeling domain, and to perhaps add assertions that guide the search of a
model of some analysis. The use of raw Z3 code means that any code generation
method will simply copy and paste this code into the generated Z3 input code.
We realize that our decision to automatically generate Z3 declarations of all
variables occurring in rules might confuse novice users, though, when they try
to declare these as Z3 types within zone DOMAIN SPECIFICS explicitly.

Witness generation. For each declared analysis, Z3 will try to decide it when
running PEALT. If the Z3 output is unsat, then we know that there is no witness
to the query — e.g. for always true? this would mean that Z3 decides that the
condition cannot be false, and so the answer is “yes, always true”. If the Z3

118 M. Huth and J.H.-P. Kuo

output is sat, then we report the correct answer (e.g. for always true? we say
“no, not always true”) and generate supporting evidence for this answer. For
explicit code generation, the generated models tend to be very short (few crucial
truth values of predicates ¢; and supporting values of variables used to define
these ¢; if applicable). PEALT can post-processes this raw Z3 output to extract
this information in pretty-printed form, an example thereof is seen in Figure 8.
For symbolic code generation, model list truth values for almost all declared
predicates ¢; that occur in at least one % or + policy. The reason for this seems
to stem from the assertions we declare for variables p_i_score_q_j in Figure 7.
We mean to investigate how to shorten such evidence in future work.

Result of analysis [anal = always_true? condl]

condl is NOT always true

For example, when uselLinux is true, recentPatch is true,
nonMatchingHash is true, companyDevice is false

Fig. 8. Sample of pretty printed evidence for satisfiability witness computed from ex-
plicitly generated code for always true? from Figure 3 (hand edited to save space)

Ezxecution constraints. To summarize, explicit code generation of policies within
analyzed conditions requires that no * policy has scores outside [0, 1] and that no
other policy has negative or non-constant scores. For symbolic code generation,
we only have to ensure that min and maxz policies have constant scores (negative
ones are allowed), and we mean to lift the latter restriction in future work.

5 Validation

We report experimental results for code generation methods and execution of
generated code on random and non-random analyses. We also discuss other tool
validation activities we conducted. All experiments were run on a test server
with two, 6-core, Intel E5 CPUs running at 2.5GHz and 48G of RAM.

Non-random benchmark. We use condition 0.5 < pp,(n) With + policy py,u(n)s
default score 0, and n many rules each with score 1/n. The condition is true
when more than half of the predicates are true (“majority voting”). There are
no logical dependencies of predicates in py,,(») and the size of M is exponential
in n. We can generate explicitly Z3 input code for values of n up to 27 (when
code takes up half a gigabyte), and code generation takes more than five minutes
for n being 23. By comparison, we could generate symbolically such code and
verify that this condition is true, within five minutes each, for n up to 49408.

Randomly generated analyses. We also implemented a feature
randPeal 1, Mmin, Mmaz, M4, M, P, th, 6

that randomly generates a policy set pSet, two conditions th < pSet and th +
0 < pSet and analyses the first one with always true?, the second one with

PEALT: An Automated Reasoning Tool for Numerical Aggregation 119

always false?, and then applies different? to both conditions. Predicates are
randomly selected from a pool of p many predicates (with n < p). Scores are
chosen from [0, 1] uniformly at random. In pSet, there are n policies for each
operator op of Peal (i.e. 4n policies in total) and each op policy has m,, many
rules. For the maximal k with 2% < 4n, we combine 2* policies using alternating
max and min compositions on their full binary parse tree; the result is further
composed with the remaining 4n— 2* policies (if applicable) by grouping these in
min pairs, and by adding these pairs in alternating min and maz compositions
to the binary policy tree. This stress tests policy composition above and beyond
what one would expect in practical specifications.

We then conducted three experiments that share an execution and termination
logic: experimental input to randPeal has only one degree of freedom and we use
unbounded binary search to see (within granularity of 10 and for five randomly
generated condition pairs) whether both code generation methods can generate
73 code within five minutes, and whether Z3 can perform each analysis within
that same time frame. If this fails for one of these condition pairs, we stop binary
expansion and go to a bisection mode to find the boundary.

Experiment 1 picks for operator min input headers 1,z,1,1,1, 3x,0.5,0.1 so
it explores how many (z) rules a sole min policy can handle within five minutes.
The same evaluation is done for the other three operators. We also investigated
a variant of this experiment — Exp 1 (DS) — for which we also add as many
assertions as there are declared predicates in the conditions, as described in
[7]. This uses a function calledBy that models method call graphs with at
most one incoming edge (using a forall axiom in Z3 code) and declares a
third of these predicates to mean that a specific method called. The other two
thirds define predicates as linear inequalities between real, respectively integer,
variables (which may stem from method input headers) — please see [7] for details.

Experiment 2 picks for operator min the input headers n,c,1,1,1, 3¢,0.5,0.1
where ¢ equals 2/10 for the boundary value of x found in Experiment 1. We here
explore how many min policies we can handle for a sizeable number of rules.
The same evaluation is done for the other three operators. Experiment 3 picks
for operator min input headers n,n,1,1,1,3n,0.5,0.1 so that we explore how
many (the n) min policies with the same number of rules we can handle within
five minutes. The same evaluation is done for the other three operators.

Results of these experiments are displayed in Figure 9. In their discussion we
need to recognize that random analyses can have very different analysis times
for the same configuration type. So a termination “boundary” does not mean
that we cannot verify larger instances within five minutes, it just means that we
encountered an instance at the reported boundary that took longer than that.

In the first experiment, Z3 code generation seems faster than execution of
that Z3 code. We also see that up to two million rules can be handled for min
and max for both code generation methods within two minutes. For *, explicit
code generation seems to be one order of magnitude better than symbolic code
generation, although the Z3 execution in the latter case appears to be faster.
For +, on the other hand, symbolic code generation now seems to be an order

120 M. Huth and J.H.-P. Kuo

Expl exmin sy min exmax sy max ex * sy * ex + sy +
rules 1867904 1802240 2101248 2162688 120 16 144 5784
code 26s 20s 32s 22s 5s 0.1s 14s 0.6s

73 110s 181s T4s 132s 48s 3s T2s 133s

Exp 1 (DS) ex min sy min ex max sy max ex * sy * ex + sy +

rules 8064 6280 6544 7240 136 16 128 1848
code 0.9 0.8 0.8s 0.8 8 0.1s 1s 1s
73 133s 88s 136s 150s 60s 14s 40s 9l1s
Exp 2 ex min Sy min ex max Sy max ex ¥ sy* ex+ sy-+
pol,rul 48,186790 56,180224 40,210124 56,216268 65888,12 4192,2 17488,14 24,578
code 264s 76s 169s 87s 279s 84s 277s 0.8s
73 time 438s 205s 44s 249s 4s 108s 2s 160s

Exp 3 ex min sy min ex max sy max ex * sy * ex + sy +
pol=rul 2128 2552 2136 2936 88 16 96 160

code 271s Tls 293s 99s 85s 0.2s 160s 1s
73 8s 63s 8s 120s 17s 144s 26s 23s

Fig.9. Experimental results: columns show code generation method (“ex”plicit or
“sy”mbolic) and operator; rows show number of rules for policies of chosen operator in
analyses, time (rounded to seconds) to generate Z3 code, and time to execute Z3 code

of magnitude better than the explicit one — handling thousands of rules in just
over two minutes. When we add the domain-specific constraints in Exp 1 (DS),
we notice that min and maz can only handle about seven-thousand rules in a
similar amount of time (compared to two million beforehand). The results for *
for both methods and for + for explicit code generation seem about the same
as without domain-specific constraints. But + now only can handle less than
two-thousand rules for symbolic code generation. In the second experiment, the
number of rules used for maz and min is about two-hundred thousand. We can
deal with about fifty policies with that many rules within five minutes, noting
that code generation now takes more time. It is noteworthy that explicit code
generation can handle over sixty-thousand * policies with 12 rules each, but that
this drops to less than twenty-thousand + policies; the symbolic approach does
not scale that well in comparison. In the third experiment, both methods can
handle between two to three thousand policies with that many rules for maz
and min. For operators * and +, the explicit method spends most of its time
in code generation whereas the symbolic one spends the bulk of its time in Z3
execution. For operator *, explicit code generation is still about an order of
magnitude better whereas for + it is not significantly better.

Ideally, we would like to extend these experiments to larger data points. But
such an attempt quickly reaches the memory boundary of our powerful server in
explicit code generation. We also believe that practical case studies would not

PEALT: An Automated Reasoning Tool for Numerical Aggregation 121

use more than a few dozen or hundreds of rules for each + and * policy declared,
and so both approaches may actually work well then.

Software validation and future work. We have not yet encountered a Z3 output
unknown for PEALT analyses, although this is easy to achieve by adding complex
constraints as domain specifics. We validated both code generation methods
by running them side by side on randomly generated analyses and checking
whether they would produce conflicting answers (unsat and sat). During the
development of PEALT, we encountered a few of these conflicts which helped to
identify implementation bugs. Of course, this does not mean what we proved the
correctness of our Z3 code generator (written in Scala), and doing so would be
unwise as this generator will evolve with the tool language. Therefore, we want
to independently verify the evidence computed by Z3, in future work. This will
also verify that no double rounding errors in Z3 corrupted analysis outcomes.
In future work, we also want to understand whether we can construct proofs for
outputs unsat such that these proofs are meaningful for the analyses in question.

6 Related Work

The language in Figure 1 extends that in [4]: it supports policies without rules,
* policies, negative and non-constant scores for symbolic code generation, and
logical dependencies of predicates g; within PEALT. The symbolic code genera-
tion in PEALT uses the same enumeration process for + and * on minimal index
sets (and not maximal ones as in [4]). PEALT implements most analyses of [4]
with logical dependencies, leaving more complex ones of [4] for future work.
The determination of scores is a fundamental concern in our approach, and
where PEALT is meant to provide confidence in such scorings and their implica-
tions. The process of arriving at scores depends on the application domain, we
offer two examples thereof from the literature. TrustBAC [3] extends role-based
access control with levels of trust, scores in [—1, 1], that are bound to roles in
RBAC sessions. These levels are derived from a trust vector that reflects user be-
havior, user recommendations, and other sources. No analysis of these levels and
their implications is offered. In [16], we see an example of how a sole score may
reflect the integrity of an information infrastructure, as a formula that accounts
for known vulnerabilities, threats that can exploit such vulnerabilities, and the
likelihood for each vulnerability to exist in the given infrastructure. We should
keep in mind that any such metrics are heuristics, and so it is important to an-
alyze their impact on decision making, especially if other factors also influence
such decisions. PEALT allows us, in principle, to conduct such analyses. Extant
work enriches security elements with quantities, e.g. credential chains [18], secu-
rity levels [15], trust-management languages [2], reputation [9], and combinations
of reputation and trust [13,14]. But we are not aware of substantial tool support
for analyzing the effect of such enrichments when combined with other aspects
of evidence. Shinren [6] offers the ability to reason about both trust and distrust
explicitly and in a declarative manner, with the support of priority composition

122 M. Huth and J.H.-P. Kuo

operators for layers of trust and distrust. Although Peal is in principle expressive
enough to encode most of this functionality, doing so would not constitute good
engineering practice: this is a good example for when conditions of Peal would
be expressions to be composed in upstream languages such as Shinren.

7 Conclusions

We have created a tool PEALT in which one can study different mechanisms of
aggregating numerical trust evidence. We extended the policy-composition lan-
guage Peal of [4] and modified the generation of verification conditions reported
in [4] for Peal conditions to make them dischargeable with an SMT solver. We
proposed two different means of generating such verification conditions and dis-
cussed both conceptual and experimental advantages and disadvantages of such
methods. The explicit method compiles away any references to numerical values
and so arrives at a purely logical formulation. The price for this may be an explo-
sion in the length of the resulting formula and in the restriction of score ranges for
certain policy composition operators (e.g. multiplication). The symbolic method
creates formulas with only linear size in the conditions but shifts the compu-
tational burden to Z3 and its reasoning about linear arithmetic. Both methods
delegate to Z3 logical feasibility checks of trust scenarios discovered in analyses.
Our current PEALT prototype supports verification of policy refinement, vacu-
ity checking, sensitivity analysis of thresholds in conditions, and non-constant
scores (for symbolic code generation) to express metrics. We think PEALT is
a good example of the benefits that can be gained by connecting to a powerful
back-end such as the SMT solver Z3 for analyses. The version of the source code
used in this paper is available on https://bitbucket.org/jimhkuo/pealt.

Acknowledgments. We thank Jason Crampton and Charles Morisset for very
fruitful discussions on PEALT', anonymous reviewers for helpful comments, and
Intel® Corporation for funding this work in its Trust Fvidence research project.

References

1. Announcement of Cybersecurity Collaborative Research Alliance. Press Release,
US Army Research Laboratory (October 15, 2013)

2. Bistarelli, S., Martinelli, F., Santini, F.: A semantic foundation for trust man-
agement languages with weights: An application to the RT family. In: Rong, C.,
Jaatun, M.G., Sandnes, F.E., Yang, L.T., Ma, J. (eds.) ATC 2008. LNCS, vol. 5060,
pp. 481-495. Springer, Heidelberg (2008)

3. Chakraborty, S., Ray, I.: TrustBAC: integrating trust relationships into the RBAC
model for access control in open systems. In: Proceedings of the Eleventh ACM
Symposium on Access Control Models and Technologies, SACMAT 2006, pp. 49—
58. ACM, New York (2006)

4. Crampton, J., Huth, M., Morisset, C.: Policy-based access control from numerical
evidence. Tech. Rep. 2013/6, Imperial College London, Department of Computing
(October 2013) ISSN 1469-4166 (Print), ISSN 1469-4174 (Online)

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

PEALT: An Automated Reasoning Tool for Numerical Aggregation 123

De Moura, L., Bjgrner, N.: Satisfiability modulo theories: introduction and appli-
cations. Commun. ACM 54(9), 69-77 (2011)

Dong, C., Dulay, N.: Shinren: Non-monotonic trust management for distributed
systems. In: Nishigaki, M., Jgsang, A., Murayama, Y., Marsh, S. (eds.) IFIPTM
2010. IFIP AICT, vol. 321, pp. 125-140. Springer, Heidelberg (2010)

Huth, M., Kuo, J.H.P.: PEALT" A reasoning tool for numerical aggregation of trust
evidence. Tech. Rep. 2013/7, Imperial College London, Department of Computing
(2013) ISSN 1469-4166 (Print)

Huth, M., Kuo, J.H.-P.: Towards verifiable trust management for software execu-
tion(extended abstract). In: Huth, M., Asokan, N., Capkun, S., Flechais, I., Coles-
Kemp, L. (eds.) TRUST 2013. LNCS, vol. 7904, pp. 275-276. Springer, Heidelberg
(2013)

Jgsang, A., Ismail, R.: The beta reputation system. In: Proceedings of the 15th
Bled Conference on Electronic Commerce, Bled, Slovenia, June 17-19 (2002)
Kirlappos, 1., Sasse, M.A., Harvey, N.: Why trust seals don’t work: A study of user
perceptions and behavior. In: Katzenbeisser, S., Weippl, E., Camp, L.J., Volkamer,
M., Reiter, M., Zhang, X. (eds.) TRUST 2012. LNCS, vol. 7344, pp. 308-324.
Springer, Heidelberg (2012)

Mayer, R., Davis, J., Schoorman, F.D.: An integrative model of organizational
trust. Academy of Management Review 20(3), 709-734 (1995)

de Moura, L., Bjgrner, N.: Z3: An efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337-340. Springer, Heidelberg
(2008)

Mui, L.: Computational Models of Trust and Reputation: Agents, Evolutionary
Games, and Social Networks. Ph.D. thesis, Massachusetts Institute of Technology
(2002)

Muller, T., Schweitzer, P.: On beta models with trust chains. In: Ferndndez-Gago,
C., Martinelli, F., Pearson, S., Agudo, I. (eds.) IFIPTM. IFIP AICT, vol. 401, pp.
49-65. Springer, Heidelberg (2013)

Ni, Q., Bertino, E., Lobo, J.: Risk-based access control systems built on fuzzy infer-
ences. In: Proceedings of the 5th ACM Symposium on Information, Computer and
Communications Security, ASTACCS 2010, pp. 250-260. ACM, New York (2010),
http://doi.acm.org/10.1145/1755688.1755719

Nurse, J.R.C., Creese, S., Goldsmith, M., Rahman, S.S.: Supporting human
decision-making online using information-trustworthiness metrics. In: Marinos, L.,
Askoxylakis, I. (eds.) HAS/HCII 2013. LNCS, vol. 8030, pp. 316-325. Springer,
Heidelberg (2013)

Riegelsberger, J., Sasse, M.A., McCarthy, J.D.: The mechanics of trust: A frame-
work for research and design. Int. J. Hum.-Comput. Stud. 62(3), 381-422 (2005)
Schwoon, S., Jha, S., Reps, T.W., Stubblebine, S.G.: On generalized authorization
problems. In: CSFW, pp. 202-218. IEEE Computer Society (2003)

Shapiro, R., Bratus, S., Smith, S.W.: “Weird Machines” in ELF: A Spotlight on
the Underappreciated Metadata. In: Proceedings of the 7th USENIX Workshop on
Offensive Technologies (WOOT 2013), 12 pages. USENIX (2013)

http://doi.acm.org/10.1145/1755688.1755719

	PEALT: An Automated Reasoning Tool
for Numerical Aggregation of Trust Evidence

	1 Introduction
	2 Background
	3 Workflow and Input Language of PEALT
	4 Z3 Code Generation
	5 Validation
	6 Related Work
	7 Conclusions
	References

