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Abstract In recent years, General Purpose Graphics Processors (GPUs)
have been successfully applied in multiple application domains to drasti-
cally speed up computations. Model checking is an automatic method to
formally verify the correctness of a system specification. Such specifica-
tions can be viewed as implicit descriptions of a large directed graph or
state space, and for most model checking operations, this graph must be
analysed. Constructing it, or on-the-fly exploring it, however, is compu-
tationally intensive, so it makes sense to try to implement this for GPUs.
In this paper, we explain the limitations involved, and how to overcome
these. We discuss the possible approaches involving related work, and
propose an alternative, using a new hash table approach for GPUs. Ex-
perimental results with our prototype implementations show significant
speed-ups compared to the established sequential counterparts.

1 Introduction

General Purpose Graphics Processing Units (GPUs) are being applied success-
fully in many areas of research to speed up computations. Model checking [1] is
an automatic technique to verify that a given specification of a complex, safety-
critical (usually embedded) system meets a particular functional property. It
involves very time and memory demanding computations. Many computations
rely on on-the-fly state space exploration. This incorporates interpreting the spec-
ification, resulting in building a graph, or state space, describing all its potential
behaviour. Hence, the state space is not explicitly given, but implicitly, through
the specification. The state space size is not known a priori.

GPUs have been successfully applied to perform computations for probabilis-
tic model checking, when the state space is given a priori [2–4]. However, no
attempts as of yet have been made to perform the exploration itself entirely
using GPUs, due to it not naturally fitting the data parallel approach of GPUs,
but in this paper, we propose a way to do so. Even though current GPUs have
a limited amount of memory, we believe it is relevant to investigate the possibil-
ities of GPU state space exploration, if only to be prepared for future hardware
� This work was sponsored by the NWO Exacte Wetenschappen, EW (NWO Physical

Sciences Division) for the use of supercomputer facilities, with financial support
from the Nederlandse Organisatie voor Wetenschappelijk Onderzoek (Netherlands
Organisation for Scientific Research, NWO).

E. Ábrahám and K. Havelund (Eds.): TACAS 2014, LNCS 8413, pp. 233–247, 2014.
c© Springer-Verlag Berlin Heidelberg 2014



234 A. Wijs and D. Bošnački

developments (for example, GPUs are already being integrated in CPUs). We
also believe that the results reported in this paper can be relevant for solving
other on-the-fly graph problems. In this paper, we describe several options to im-
plement basic state space exploration, i.e. reachability analysis, for explicit-state
model checking on GPUs. We focus on CUDA-enabled GPUs of NVIDIA, but
the options can also be implemented using other interfaces. We experimentally
compare these options, and draw conclusions. Where relevant, we use techniques
from related work, but practically all related implementations are focussed on
explicit graph searching, in which the explicit graph is given, as opposed to
on-the-fly constructing the graph. The structure of the paper is as follows: in
Section 2, the required background information is given. Then, Section 3 con-
tains the description of several implementations using different extensions. In
Section 4, experimental results are shown, and finally, Section 5 contains conclu-
sions and discusses possible future work.

2 Background and Related Work

2.1 State Space Exploration

The first question is how a specification should be represented. Most descrip-
tions, unfortunately, are not very suitable for our purpose, since they require the
dynamic construction of a database of data terms during the exploration. GPUs
are particularly unsuitable for dynamic memory allocation. We choose to use a
slightly modified version of the networks of LTSs model [5]. In such a network,
the possible behaviour of each process or component of the concurrent system
design is represented by a process LTS, or Labelled Transition System. An LTS
is a directed graph in which the vertices represent states of a process, and the
edges represent transitions between states. Moreover, each edge has a label indi-
cating the event that is fired by the process. Finally, an LTS has an initial state
sI . A network of LTSs is able to capture the semantics of specifications with
finite-state processes at a level where all data has been abstracted away and
only states remain. It is used in particular in the CADP verification toolbox [6].
Infinite-state processes are out of the scope here, and are considered future work.

In the remainder of this paper, we use the following notations: a network
contains a vector Π of n process LTSs, with n ∈ N. Given an integer n > 0,
1..n is the set of integers ranging from 1 to n. A vector v of size n contains n
elements indexed by 1..n. For i ∈ 1..n, v[i] denotes element i in v, hence Π [i]
refers to the ith LTS.

Besides a finite number of LTSs, a network also contains a finite set V of
synchronisation rules, describing how behaviour of different processes should
synchronise. Through this mechanism, it is possible to model synchronous com-
munication between processes. Each rule 〈t, α〉 consists of a vector t of size n,
describing the process events it is applicable on, and a result α, i.e. the system
event resulting from a successful synchronisation. As an example, consider the
first two LTSs from the left in Figure 1, together defining a network with n = 2
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Fig. 1. Exploring the state space of a traffic light specification

of a simple traffic light system specification, where process 0 represents the be-
haviour of a traffic light (the states representing the colours of the light) and pro-
cess 1 represents a pedestrian. We also have V = {(〈start, continue〉, crossing)},
meaning that there is only a single synchronisation rule, expressing that the start
event of process 0 can only be fired if event continue of process 1 is fired at the
same time, resulting in the event crossing being fired by the system as a whole.

In general, synchronisation rules are not required to involve all processes; in
order to express that a rule is not applicable on a process i ∈ 1..n, we use a
dummy value • indicating this, and define t[i] = •.

State space exploration now commences as follows: first, the two initial states
of the processes (indicated by an incoming transition without a source state) are
combined into a system state vector s = 〈R, 0〉. In general, given a vector s, the
corresponding state of Π [i], with i ∈ 1..n, is s[i]. The set of outgoing transitions
(and their corresponding target states or successors of s) can now be determined
using two checks for each transition s[i]

a−→ pi , with pi a state of process i:

1. ¬∃〈t, α〉 ∈ V .t[i] = a =⇒ s
a−→ s′ with s′[i] = pi ∧ ∀j ∈ 1..n \ {i}.s′[j] = s[j]

2. ∀〈t, α〉 ∈ V .t[i] = a ∧ (∀j ∈ 1..n \ {i}.t[j] 
= • =⇒ s[j]
t[j]−−→ pj) =⇒ s

α−→ s′

with ∀j ∈ 1..n.(t[j] = • ∧ s′[j] = s[j]) ∨ (t[j] 
= • ∧ s′[j] = pj)

The first check is applicable for all independent transitions, i.e. transitions on
which no rule is applicable, hence they can be fired individually, and therefore
directly ‘lifted’ to the system level. The second check involves applying synchro-
nisation rules. In Figure 1, part of the system state space obtained by applying
the defined checks on the traffic network is displayed on the right.

2.2 GPU Programming

NVIDIA GPUs can be programmed using the CUDA interface, which extends the
C and Fortran programming languages. These GPUs contain tens of streaming
multiprocessors (SM) (see Figure 2, with N the number of SMs), each containing
a fixed number of streaming processors (SP), e.g. 192 for the Kepler K20 GPU,
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and fast on-chip shared memory. Each SM employs single instruction, multiple
data (SIMD) techniques, allowing for data parallelisation. A single instruction
stream is performed by a fixed size group of threads called a warp. Threads in
a warp share a program counter, hence perform instructions in lock-step. Due
to this, branch divergence can occur within a warp, which should be avoided:
for instance, consider the if-then-else construct if (C) then A else B. If a
warp needs to execute this, and for at least one thread C holds, then all threads
must step through A. It is therefore possible that the threads must step together
through both A and B, thereby decreasing performance. The size of a warp is
fixed and depends on the GPU type, usually it is 32, we refer to it as WarpSize.
A block of threads is a larger group assigned to a single SM. The threads in
a block can use the shared memory to communicate with each other. An SM,
however, can handle many blocks in parallel. Instructions to be performed by
GPU threads can be defined in a function called a kernel. When launching a
kernel, one can specify how many thread blocks should execute it, and how many
threads each block contains (usually a power of two). Each SM then schedules all
the threads of its assigned blocks up to the warp level. Data parallelisation can
be achieved by using the predefined keywords BlockId and ThreadId, referring
to ID of the block a thread resides in, and the ID of a thread within its block,
respectively. Besides that, we refer with WarpNr to the global ID of a warp, and
with WarpTId to the ID of a thread within its warp. These can be computed as
follows: WarpNr = ThreadId/WarpSize and WarpTId = ThreadId %WarpSize.

Multiprocessor 1

SP SP

SP SP

SP SP

SP SP

Shared memory

Multiprocessor N

SP SP

SP SP

SP SP

SP SP

Shared memory

· · ·

L1 & L2 cache

Texture cache

Global memory

128B 128B

Fig. 2. Hardware model of CUDA GPUs

Most of the data used by a
GPU application resides in global
memory or device memory. It em-
bodies the interface between the
host (CPU) and the kernel (GPU).
Depending on the GPU type, its
size is typically between 1 and 6
GB. It has a high bandwidth, but
also a high latency, therefore mem-
ory caches are used. The cache
line of most current NVIDIA GPU
L1 and L2 caches is 128 Bytes,
which directly corresponds with
each thread in a warp fetching a
32-bit integer. If memory accesses
in a kernel can be coalesced within
each warp, efficient fetching can be
achieved, since then, the threads in a warp perform a single fetch together, nicely
filling one cache line, instead of different fetches, which would be serialised by
the GPU, thereby losing many clock-cycles. This plays an important role in the
hash table implementation we propose.

Finally, read-only data structures in global memory can be declared as tex-
tures, by which they are connected to a texture cache. This may be beneficial if
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access to the data structure is expected to be random, since the cache may help
in avoiding some global memory accesses.

2.3 Sparse Graph Search on GPUs

In general, the most suitable search strategy for parallelisation is Breadth-First
Search (BFS), since each search level is a set of vertices that can be distributed
over multiple workers. Two operations dominate in BFS: neighbour gathering,
i.e. obtaining the list of vertices reachable from a given vertex via one edge,
and status lookup, i.e. determining whether a vertex has already been visited
before. There exist many parallelisations of BFS; here, we will focus on GPU
versions. Concerning model checking, [7] describes the only other GPU on-line
exploration we found, but it uses both the CPU and GPU, restricting the GPU
to neighbour gathering, and it uses bitstate hashing, hence it is not guaranteed
to be exhaustive. In [8], explicit state spaces are analysed.

The vast majority of GPU BFS implementations are quadratic parallelisa-
tions, e.g. [9, 10]. To mitigate the dependency of memory accesses on the graph
structure, each vertex is considered in each iteration, yielding a complexity of
O(|V |2 + |E|), with V the set of vertices and E the set of edges. In [11], entire
warps are used to obtain the neighbours of a vertex.

There are only a few linear parallelisations in the literature: in [12], a hierar-
chical scheme is described using serial neighbour gathering and multiple queues
to avoid high contention on a single queue. In [13], an approach using prefix sum
is suggested, and a thorough analysis is made to determine how gatherings and
lookups need to be placed in kernels for maximum performance.

All these approaches are, however, not directly suitable for on-the-fly explo-
ration. First of all, they implement status lookups by maintaining an array, but
in on-the-fly exploration, the required size of such an array is not known a pri-
ori. Second of all, they focus on using an adjacency matrix, but for on-the-fly
exploration, this is not available, and the memory access patterns are likely to
be very different.

Related to the first objection, the use of a hash table seems unavoidable.
Not many GPU hash table implementations have been reported, but the ones
in [14, 15] are notable. They are both based on Cuckoo-hashing [16]. In Cuckoo
hashing, collisions are resolved by shuffling the elements along to new locations
using multiple hash functions. Whenever an element must be inserted, and hash
function h1 refers it to a location l already populated by another element, then
the latter element is replaced using the next hash function for that element, i.e.
if it was placed in l using hash function hi, then function hi+1mod kc, with kc
the number of hash functions, is used. In [15], it is suggested to set kc = 4.

Finally, in [14,15], a comparison is made to radix sorting, in particular of [17].
On a GPU, sorting can achieve high throughput, due to the regular access pat-
terns, making list insertion and sorting faster than hash table insertion. Lookups,
however, are slower than hash table lookups if one uses binary searches, as is
done in [14,15]. An alternative is to use B-trees for storing elements, improving
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Fig. 3. Encodings of a network, a state vector and a transition entry

memory access patterns by grouping the elements in warp-segments.1 Although
we have chosen to use a hash table approach (for on-the-fly exploration, we expe-
rience that the sorting approach is overly complicated, requiring many additional
steps), we will use this idea of warp-segments for our hash table.

3 GPU Parallelisation

Alg. 1 provides a high-level view of state space exploration. As in BFS, one can
clearly identify the two main operations, namely successor generation (line 4),
analogous to neighbour gathering, and duplicate detection (line 5), analogous to
status lookup. Finally, in lines 6-7, states are added to the work sets, Visited
being the set of visited states and Open being the set of states yet to be explored
(usually implemented as a queue). In the next subsections, we will discuss our
approach to implementing these operations.

3.1 Data Encoding

Algorithm 1. State space exploration
Require: network 〈Π,V〉, initial state sI

Open,Visited ← {sI}
2: while Open �= ∅ do

s ← Open;Open ← Open \ s
4: for all s′ ∈ constructSystemSuccs(s) do

if s′ �∈ Visited then
6: Visited ← Visited ∪ {s′}

Open ← Open ∪ {s′}

As mentioned before, memory ac-
cess patterns are usually the main
cause for performance loss in GPU
graph traversal. The first step to
minimise this effect is to choose ap-
propriate encodings of the data. Fig-
ure 3 presents on the left how we
encode a network into three 32-bit
integer arrays. The first, called ProcOffsets, contains the start offset for each of
the Π [i] in the second array. The second array, StateOffsets, contains the offsets
for the source states in the third array. Finally, the third array, TransArray, actu-
ally contains encodings of the outgoing transitions of each state. As an example,
let us say we are interested in the outgoing transitions of state 5 of process LTS
8, in some given network. First, we look at position 8 in ProcOffsets, and find
that the states of that process are listed starting from position 67. Then, we look
at position 67+5 in StateOffsets, and we find that the outgoing transitions of
state 5 are listed starting at position 201 in TransArray. Moreover, at position
67+6, we find the end of that list. Using these positions, we can iterate over the
outgoing transitions in TransArray.

1 See http://www.moderngpu.com (visited 18/4/2013).

http://www.moderngpu.com
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One can imagine that these structures are practically going to be accessed
randomly when exploring. However, since this data is never updated, we can
store the arrays as textures, thereby using the texture caches to improve access.

Besides this, we must also encode the transition entries themselves. This is
shown on the right of Figure 3. Each entry fills a 32-bit integer as much as possi-
ble. It contains the following information: the lowest bit (Ts) indicates whether
or not the transition depends on a synchronisation rule. The next log2(ca) num-
ber of bits, with ca the number of different labels in the entire network, encodes
the transition label (Ta). We encode the labels, which are basically strings, by
integer values, sorting the labels occurring in a network alphabetically. After
that, each log2(cs) bits, with cs the number of states in the process LTS own-
ing this transition, encodes one of the target states. If there is non-determinism
w.r.t. label Ta from the source state, multiple target states will be listed, possibly
continuing in subsequent transition entries.

In the middle of Figure 3, the encoding of state vectors is shown. These are
simply concatenations of encodings of process LTS states. Depending on the
number of bits needed per LTS state, which in turn depends on the number of
states in the LTSs, a fixed number of 32-bit integers is required per vector.

Finally, the synchronisation rules need to be encoded. To simplify this, we
rewrite networks such that we only have rules involving a single label, e.g.
(〈a, a〉, a). In practice, this can usually be done without changing the meaning.
For the traffic light system, we could rewrite start and continue to crossing. It
allows encoding the rules as bit sequences of size n, where for each process LTS,
1 indicates that the process should participate, and 0 that it should not partic-
ipate in synchronisation. Two integer arrays then suffice, one containing these
encodings, the other containing the offsets for all the labels.

3.2 Successor Generation

At the start of a search iteration, each block fetches a tile of new state vectors
from the global memory. How this is done is explained at the end of Section 3.3.
The tile size depends on the block size BlockSize.

On GPUs, one should realise fine-grained parallelism to obtain good speedups.
Given the fact that each state vector consists of n states, and the outgoing
transitions information needs to be fetched from physically separate parts of the
memory, it is reasonable to assign n threads to each state vector to be explored.
In other words, in each iteration, the tile size is at most BlockSize/n vectors.
Assigning multiple threads per LTS for fetching, as in [11], does not lead to
further speedups, since the number of transition entries to fetch is usually quite
small due to the sparsity of the LTSs, as observed before by us in [4].

We group the threads into vector groups of size n to assign them to state
vectors. Vector groups never cross warp boundaries, unless n > 32. The positive
effect of this is that branch divergence can be kept to a minimum, since the
threads in a vector group work on the same task. For a vector s, each thread
with ID i w.r.t. its vector group (the VGID) fetches the outgoing transitions
of s[i + 1]. Each transition entry T with Ts = 0 can directly be processed, and
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the corresponding target state vectors are stored for duplicate detection (see
Section 3.3). For all transitions with Ts = 1, to achieve cooperation between
the threads while limiting the amount of used shared memory, the threads it-
erate over their transitions in order of label ID (LID). To facilitate this, the
entries in each segment of outgoing transitions belonging to a particular state in
TransArray are sorted on LID before exploration starts.

TransArray

· · · 1 1. . . 2. . . 1. . . 3. . . · · ·

cnt th0 th1 th2 th3

Fig. 4. Fetching transitions

Successors reached through synchronisa-
tion are constructed in iterations. In each it-
eration, the threads assigned to s fetch the
entries with lowest LID and Ts = 1 from their
list of outgoing transitions, and store these in
a designated buffer in the shared memory. The
size of this buffer can be determined before exploration as n times the maximum
number of entries with the same LID and Ts = 1 from any process state in the
network. Then, the thread with VGID 0, i.e. the vector group leader, determines
the lowest LID fetched within the vector group. Figure 4 illustrates this for a
vector with n = 4. Threads th0 to th3 have fetched transitions with the lowest
LIDs for their respective process states that have not yet been processed in the
successor generation, and thread th0 has determined that the next lowest LID to
be processed by the vector group is 1. This value is written in the cnt location.
Since transitions in TransArray are sorted per state by LID, we know that all
possible transitions with LID = 1 have been placed in the vector group buffer.
Next, all threads that fetched entries with the lowest LID, in the example threads
th0 and th2, start scanning the encodings of rules in V applicable on that LID.
We say that thread i owns rule r iff there is no j ∈ 1..n with j < i and r[j] 
= •.
If a thread encounters a rule that it owns, then it checks the buffer contents to
determine whether the rule is applicable. If it is, it constructs the target state
vectors and stores them for duplicate detection. In the next iteration, all entries
with lowest LID are removed, the corresponding threads fetch new entries, and
the vector group leader determines the next lowest LID to be processed.

3.3 Closed Set Maintenance

Local State Caching. As explained in Section 2, we choose to use a global memory
hash table to store states. Research has shown that in state space exploration,
due to the characteristics of most networks, there is a strong sense of locality, i.e.
in each search iteration, the set of new state vectors is relatively small, and most
of the already visited vectors have been visited about two iterations earlier [18,
19]. This allows effective use of block local state caches in shared memory. Such
a cache, implemented as a linear probing hash table, can be consulted quickly,
and many duplicates can already be detected, reducing the number of global
memory accesses. We implemented the caches in a lockless way, apart from using
a compare-and-swap (CAS) operation to store the first integer of a state vector.

When processing a tile, threads add successors to the cache. When finished,
the block scans the cache, to check the presence of the successors in the global
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hash table. Thus, caches also allow threads to cooperatively perform global du-
plicate detection and insertion of new vectors.

Global Hash Table. For the global hash table, we initially used the Cuckoo hash
table of [15]. Cuckoo hashing has the nice property that lookups are done in
constant time, namely, it requires kc memory accesses, with kc the number of
hash functions used.

However, an important aspect of Cuckoo hashing is that elements are relo-
cated in case collisions occur. In [15], key-value pairs are stored in 64-bit integers,
hence insertions can be done atomically using CAS operations. Our state vectors,
though, can encompass more than 64 bits, ruling out completely atomic inser-
tions. After having created our own extension of the hash table of [15] that allows
for larger elements, we experienced in experiments that the number of explored
states far exceeded the actual number of reachable states, showing that in many
cases, threads falsely conclude that a vector was not present (a false negative).
We concluded that this is mainly due to vector relocation, involving non-atomic
removal and insertion, which cannot be avoided for large vectors; once a thread
starts removing a vector, it is not present anymore in the hash table until the
subsequent insertion has finished, and any other thread looking for the vector
will not be able to locate it during that time. It should however be noted, that
although the false negatives may negatively influence the performance, they do
not affect the correctness of our method.

To decrease the number of false negatives, as an alternative, we choose to
implement a hash table using buckets, linear probing and bounded double hash-
ing. It is implemented using an array, each consecutive WarpSize 32-bit integers
forming a bucket. This plays to the strength of warps: when a block of threads
is performing duplicate detection, all the threads in a warp cooperate on check-
ing the presence of a particular s. The first hash function h1, built as specified
in [15], is used to find the primary bucket. A warp can fetch a bucket with one
memory access, since the bucket size directly corresponds with one cache line.
Subsequently, the bucket contents can be checked in parallel by the warp. This is
similar to the walk-the-line principle of [20], instead that here, the walk is done
in parallel, so we call it warp-the-line. Note that each bucket can contain up to
WarpSize/c vectors, with c the number of 32-bit integers required for a vector. If
the vector is not present and there is a free location, the vector is inserted. If the
bucket is full, h2 is used to jump to another bucket, and so on. This is similar
to [21], instead that we do not move elements between buckets.

The pseudo-code for scanning the local cache and looking up and inserting
new vectors (i.e. find-or-put) in the case that state vectors fit in a single 32-bit
integer is displayed in Alg. 2. The implementation contains the more general case.
The cache is declared extern, meaning that the size is given when launching the
kernel. Once a work tile has been explored and the successors are in the cache,
each thread participates in its warp to iterate over the cache contents (lines 6,
27). If a vector is new (line 8, note that empty slots are marked ‘old’), insertion
in the hash table will be tried up to H ∈ N times. In lines 11-13, warp-the-line is
performed, each thread in a warp investigating the appropriate bucket slot. If any
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Algorithm 2. Hash table find-or-put for single integer state vectors
extern volatile shared unsigned int cache []

2: < process work tile and fill cache with successors >
WarpNr ← ThreadId / WarpSize

4: WarpTId ← ThreadId % WarpSize
i ← WarpNr

6: while i < |cache| do
s ← cache[i]

8: if isNewVector(s) then
for j = 0 to H do

10: BucketId ← h1(s)
entry ← Visited[BucketId+ WarpTId]

12: if entry = s then
setOldVector(cache[i])

14: s ← cache[i]
if isNewVector(s) then

16: for l = 0 to WarpSize do
if Visited[BucketId+ l] = empty then

18: if WarpTId = 0 then
old = atomicCAS(&Visited[BucketId+ l], empty, s)

20: if old = empty then
setOldVector(s)

22: if ¬isNewVector(s) then
break

24: if ¬isNewVector(s) then
break

26: BucketId ← BucketId+ h2(s)
i ← i+ BlockSize/WarpSize

thread sets s as old in line 13, then all threads will detect this in line 15, since s is
read from shared memory. If the vector is not old, then it is attempted to insert
it in the bucket (lines 15-23). This is done by the warp leader (WarpTId = 0,
line 18), by performing a CAS. CAS takes three arguments, namely the address
where the new value must be written, the expected value at the address, and
the new value. It only writes the new value if the expected value is encountered,
and returns the encountered value, therefore a successful write has happened if
empty has been returned (line 20). Finally, in case of a full bucket, h2 is used
to jump to the next one (line 26).

As discussed in Section 4, we experienced good speedups and no unresolved
collisions using a double hashing bound of 8, and, although still present, far fewer
false negatives compared to Cuckoo hashing. Finally, it should be noted that
chaining is not a suitable option on a GPU, since it requires memory allocation
at runtime, and the required sizes of the chains are not known a priori.

Recall that the two important data structures are Open and Visited. Given
the limited amount of global memory, and that the state space size is unknown
a priori, we prefer to initially allocate as much memory as possible for Visited.
But also the required size of Open is not known in advance, so how much mem-
ory should be allocated for it without potentially wasting some? We choose to
combine the two in a single hash table by using the highest bit in each vector
encoding to indicate whether it should still be explored or not. The drawback is
that unexplored vectors are not physically close to each other in memory, but
the typically large number of threads can together scan the memory relatively
fast, and using one data structure drastically simplifies implementation. It has
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the added benefit that load-balancing is handled by the hash functions, due to
the fact that the distribution over the hash table achieves distribution over the
workers. A consequence is that the search will not be strictly BFS, but this is
not a requirement. At the start of an iteration, each block gathers a tile of new
vectors by scanning predefined parts of the hash table, determined by the block
ID. In the next section, several possible improvements on scanning are discussed.

3.4 Further Extensions

On top of the basic approach, we implemented the following extensions. First
of all, instead of just one, we allow a variable number of search iterations to be
performed within one kernel launch. This improves duplicate detection using the
caches due to them maintaining more of the search history (shared memory data
is lost once a kernel terminates). Second of all, building on the first extension,
we implemented a technique we call forwarding. When multiple iterations are
performed per launch, and a block is not in its final iteration, its threads will
add the unexplored successors they generated in the current iteration to their
own work tile for the next one. This reduces the need for scanning for new work.

4 Implementation and Experiments

We implemented the exploration techniques in CUDA for C.2 The implemen-
tation was tested using 25 models from different sources; some originate from
the distributions of the state-of-the-art model checking toolsets CADP [6] and
mCRL2 [22], and some from the BEEM database [23]. In addition, we added two
we created ourselves. Here, we discuss the results for a representative subset.

Sequential experiments have been performed using Exp.Open [5] with Gen-
erator, both part of CADP. These are highly optimised for sequential use.
Those experiments were performed on a machine with an Intel Xeon E5520
2.27 GHz CPU, 1TB RAM, running Fedora 12. The GPU experiments were
done on machines running CentOS Linux, with a Kepler K20 GPU, an Intel
E5-2620 2.0 GHz CPU, and 64 GB RAM. The GPU has 13 SMs, 6GB global
memory (realising a hash table with about 1.3 billion slots), and 48kB (12,288
integers) shared memory per block. We chose not to compare with the GPU tool
of [7], since it is a CPU-GPU hybrid, and therefore does not clearly allow to
study to what extent a GPU can be used by itself for exploration. Furthermore,
it uses bitstate hashing, thereby not guaranteeing exhaustiveness.

We also conducted experiments with the model checker LTSmin [24] using
the six CPU cores of the machines equipped with K20s. LTSmin uses the most
scalable multi-core exploration techniques currently available.

Table 1 displays the characteristics of the models we consider here. The first
five are models taken from and inspired by those distributed with the mCRL2
toolset (in general ’.1’ suffixed models indicate that we extended the existing
2 The implementation and experimental data is available at
http://www.win.tue.nl/~awijs/GPUexplore.

http://www.win.tue.nl/~awijs/GPUexplore
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Fig. 5. Performance with varying nr. of blocks (iters=10)

models to obtain larger state spaces), the next two have been created by us, the
seven after that originate from CADP, and the final five come from the BEEM
database. The latter ones have first been translated manually to mCRL2, since
our input, network of LTSs, uses an action-based representation of system be-
haviour, but BEEM models are state-based, hence this gap needs to be bridged.

Table 1. Benchmark characteristics

Model #States #Transitions
1394 198,692 355,338

1394.1 36,855,184 96,553,318

acs 4,764 14,760

acs.1 200,317 895,004

wafer stepper.1 4,232,299 19,028,708

ABP 235,754,220 945,684,122

broadcast 60,466,176 705,438,720

transit 3,763,192 39,925,524

CFS.1 252,101,742 1,367,483,201

asyn3 15,688,570 86,458,183

asyn3.1 190,208,728 876,008,628

ODP 91,394 641,226

ODP.1 7,699,456 31,091,554

DES 64,498,297 518,438,860

lamport.8 62,669,317 304,202,665

lann.6 144,151,629 648,779,852

lann.7 160,025,986 944,322,648

peterson.7 142,471,098 626,952,200

szymanski.5 79,518,740 922,428,824

An important question is how the ex-
ploration should be configured, i.e. how
many blocks should be launched, and
how many iterations should be done per
kernel launch. We tested different config-
urations for 512 threads per block (other
numbers of threads resulted in reduced
performance) using double hashing with
forwarding; Figure 5 shows our results
launching a varying number of blocks
(note the logscale of the right graph),
each performing 10 iterations per kernel
launch. The ideal number of blocks for
the K20 seems to be 240 per SM, i.e.
3120 blocks. For GPU standards, this
is small, but launching more often nega-
tively affects performance, probably due
to the heavy use of shared memory.

Figure 6 shows some of our results on
varying the number of iterations per ker-
nel launch. Here, it is less clear which
value leads to the best results, either 5
or 10 seems to be the best choice. With

a lower number, the more frequent hash table scanning becomes noticable, while
with higher numbers, the less frequent passing along of work from SMs to each
other leads to too much redundancy, i.e. re-exploration of states, causing the
exploration to take more time.
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Fig. 6. Performance with varying nr. of iterations per kernel (blocks=3120)

Fig. 7. Runtime results for various tools

For further experimentation, we opted for 10 iterations per launch. Figure 7
shows our runtime results (note the log scale). The GPU extension combinations
used are Double Hashing (DH), DH+Forwarding (DH+F), and DH without local
caches (NC). The smaller state spaces are represented in the left graph. Here, DH
and NC often do not yet help to speed up exploration; the overhead involved can
lead to longer runtimes compared to sequential runs. However, DH+F is more
often than not faster than sequential exploration. The small differences between
DH and NC, and the big ones between NC and DH+F (which is also the case in
the right graph) indicate that the major contribution of the caches is forwarding,
as opposed to localised duplicate detection, which was the original motivation
for using them. DH+F speeds up DH on average by 42%.

It should be noted that for vectors requiring multiple integers, GPU explo-
ration tends to perform on average 2% redundant work, i.e. some states are
re-explored. In those cases, data races occur between threads writing and read-
ing vectors, since only the first integer of a vector is written with a CAS. However,
we consider these races benign, since it is important that all states are explored,
not how many times, and adding additional locks hurts the performance.

The right graph in Figure 7 includes results for LTSmin using six CPU cores.
This shows that, apart from some exceptions, our GPU implementation on
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average has a performance similar to using about 10 cores with LTSmin, based
on the fact that LTSmin demonstrates near-linear speedups when the number of
cores is increased. In case of the exceptions, such as the ABP case, about two orders
of magnitude speedup is achieved. This may seem disappointing, considering that
GPUs have an enormous computation potential. However, on-the-fly exploration
is not a straightforward task for a GPU, and a one order of magnitude speedup
seems reasonable. Still, we believe these results are very promising, and merit fur-
ther study. Existing multi-core exploration techniques, such as in [24], scale well
with the number of cores. Unfortunately, we cannot test whether this holds for our
GPU exploration, apart from varying the number of blocks; the number of SMs
cannot be varied, and any number beyond 15 on a GPU is not yet available.

Concluding, our choices regarding data encoding and successor generation seem
to be effective, and our findings regarding a new GPU hash table, local caches and
forwarding can be useful for anyone interested in GPU graph exploration.

5 Conclusions

We presented an implementation of on-the-fly GPU state space exploration, pro-
posed a novel GPU hash table, and experimentally compared different configu-
rations and combinations of extensions. Compared to state-of-the-art sequential
implementations, we measured speedups of one to two orders of magnitude. We
think that GPUs are a viable option for state space exploration. Of course, more
work needs to be done in order to really use GPUs to do model checking. For fu-
ture work, we will experiment with changing the number of iterations per kernel
launch during a search, support LTS networks with data, pursue checking safety
properties, and experiment with partial searches [25, 26].
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