
Exploitation of GPUs for the Parallelisation

of Probably Parallel Legacy Code

Zheng Wang1, Daniel Powell2, Björn Franke2, and Michael O’Boyle2

1 School of Computing and Communications, Lancaster University, United Kingdom
z.wang@lancaster.ac.uk

2 School of Informatics, University of Edinburgh, United Kingdom
d.c.powell@sms.ed.ac.uk, {bfranke,mob}@inf.ed.ac.uk

Abstract General purpose Gpus provide massive compute power, but
are notoriously difficult to program. In this paper we present a complete
compilation strategy to exploit Gpus for the parallelisation of sequential
legacy code. Using hybrid data dependence analysis combining static and
dynamic information, our compiler automatically detects suitable paral-
lelism and generates parallel OpenCl code from sequential programs.
We exploit the fact that dependence profiling provides us with parallel
loop candidates that are highly likely to be genuinely parallel, but can-
not be statically proven so. For the efficient Gpu parallelisation of those
probably parallel loop candidates, we propose a novel software specu-
lation scheme, which ensures correctness for the unlikely, yet possible
case of dynamically detected dependence violations. Our scheme oper-
ates in place and supports speculative read and write operations. We
demonstrate the effectiveness of our approach in detecting and exploit-
ing parallelism using sequential codes from the Nas benchmark suite.
We achieve an average speedup of 3.2x, and up to 99x, over the sequen-
tial baseline. On average, this is 1.42 times faster than state-of-the-art
speculation schemes and corresponds to 99% of the performance level
of a manual Gpu implementation developed by independent expert pro-
grammers.

Keywords: GPU, OpenCL, Parallelization, Thread Level Speculation.

1 Introduction

Gpus have become ubiquitous in a wide range of computing devices and con-
sumer electronics appliances. They provide a powerful resource for parallel pro-
cessing and can deliver great performance improvements for suitably mapped
algorithms. Realising this potential, however, is challenging due to the complex-
ity of their programming.

Auto-parallelisation technology can greatly reduce the barrier for Gpu pro-
gramming by automatically generating parallel code from sequential programs.
However, one of the main problems is the static undecidability of the underly-
ing data dependence problem [9]. Static analysis attempts to determine if two
memory references are dependent, in which case their sequential order needs to

A. Cohen (Ed.): CC 2014, LNCS 8409, pp. 154–173, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

Exploitation of GPUs for the Parallelisation 155

be retrained for correctness, limiting the amount of parallelism, which can be
exploited. Static analysis is necessarily conservative and despite large research
efforts, frequently fails to deliver, e.g. for complex, pointer-based C code [25].

Off-line profile-guided parallelisation is a recent development, which seeks to
complement static analysis with profiling information [8,7,24,30]. Using such a
scheme, a program is profiled with different input data sets and dependencies
are determined using dynamic memory traces. Although correctness cannot be
guaranteed, given enough input data sets, the probability of correctly identifying
a genuinely parallel loop increases. In this paper, we seek to exploit such probably
parallel loops. In addition, we want to avoid generating potentially unsafe code
or asking the user for final approval. This means, we have to rely on speculative
parallelisation [19].

Current speculation schemes are designed to deal with the occasional depend-
ence violation and, consequently, provide efficient rollback capabilities. In our
case, we can rely on profiling information and we only attempt to speculatively
parallelise loops, where there is almost no chance of misspeculation. We require
speculation support purely as a safety net, which might not be used at all. Hence,
we can afford a more expensive rollback mechanism in favour of faster checks.

In this paper we combine profile-guided parallelisation, OpenCl code gen-
eration and software thread level speculation (Sw-Tls) to exploit highly-likely
parallelism on the Gpu. Our compiler uses static and profile-based dynamic de-
pendence analysis to detect parallelism and to automatically generate parallel
OpenCl code with in place dependence checking. We exploit that parallel loop
candidates are “almost always” genuinely parallel, but escape static analysis.

To provide safety we concurrently execute a sequential version of the program
alongside our speculatively parallelised one. In the unlikely case of a dependence
violation we abort parallel execution and rely on the results of the sequential
program. This simple mechanism enables us to design a simple, yet efficient
dependence checking mechanism for Gpus while at the same time, providing
correctness for speculative parallel executions.

We have implemented our scheme using the Llvm compiler framework and
have evaluated its effectiveness in detecting and exploiting parallelism in bench-
marks, which are known to be manually parallelisable, but present a challenge
to automatic parallelisation approaches. On an Nvidia Gpu platform, our ap-
proach achieves an average speedup of 3.2x (up to 99x), which is 1.42 times
faster than its nearest competitor and delivers 99% of the performance level of
a manual Gpu implementation.

2 Motivation

Consider the code fragment in figure 1 (a). This loop is extracted from the se-
quential version of the BT benchmark from theNas benchmark suite. While con-
servative, static analysis fails to parallelise this loop due to the inter-procedural
call to function binvcrhs at line 14 where an output dependence (i.e. write after
write) to array lhs has to be assumed (inlining of binvcrhs would not elimin-
ate the possible aliasing problem). Without further information, this loop would

156 Z. Wang et al.

1 void b invcrhs (double l h s [5] [5] ,
2 double c [5] [5] , double r [5])
3 {
4 . . .
5 l h s [1] [1] = lh s [1] [1] − c o e f f ∗ l h s [0] [1] ;
6 c [1] [1] = c [1] [1] − c o e f f ∗c [0] [1] ;
7 . . .
8 }
9 . . .

10 void y s o l v e c e l l () {
11 . . .
12 for (j =1; j<g r i d p o i n t s [1] −1 ; j++){
13 for (k=1;k<g r i d p o i n t s [2] −1 ; k++){
14 b invcrhs (l h s [i] [0] [k] [BB] ,
15 l h s [i] [0] [k] [CC] ,
16 rhs [i] [0] [k]) ;
17 }
18 }
19 }

0.0

0.5

1.0

1.5

2.0

2.5

3.0

S
pe

ed
up

 Static provable
 State-of-the-art
 Our approach

(a) source code of an example loop (b) speedups obtained for the program

Fig. 1. An example that static analysis fails to discover parallelism. No speedups were
observed by only exploring statically provable parallelism. Profiling-based analysis, on
the other hand, can provide us with additional information: no dependencies have been
encountered in any trial run. By exploiting this information, we can use the GPU to
execute both statically and probably parallel loops (with speculation support) and to
achieve speedups rather than a slowdown. Our approach gives a speedup of 2.9x which
is 2 times faster than a speedup of 1.45x given by the state-of-the-art GPU speculation
scheme.

have to be executed in sequential on the Cpu (as it is too expensive to do so
on the Gpu). Although we can still execute statically provable, parallel parts of
the loops on the Gpu, we will have to introduce additional synchronisation and
communication between the sequential Cpu and parallel Gpu computation. The
additional overhead, however, could be expensive and can outweigh the benefit
of parallel Gpu execution. In fact, as can be seen from figure 1 (b), doing so
leads to a slowdown of 3.6x over the sequential code on a NVIDIA GTX 580
platform described in section 6.

Profile-based dependence analysis, on the other hand, provides use with the
additional information that no actual data dependence inhibits parallelization
for given sample inputs. While we still cannot prove absence of data depend-
ences for every possible input, we can classify this loop as a highly-likely parallel
candidate. We can then speculatively execute this loop in parallel on the Gpu
with dependence violation checking together with a rollback scheme to ensure
correctness if a true dependence violation is discovered at runtime. This is safe
and potentially fast. As shown in figure 1 (b), a state-of-the-artGpu speculation
scheme, Paragon [21], gives a speedup of 1.45x for this particular benchmark.
Though the result of using Paragon is encouraging, it can be further improved.
Paragon requires a large buffer to record the speculative accessing addresses,
which will be used in a separate dependence checking procedure to check the

Exploitation of GPUs for the Parallelisation 157

Static & Profile-
based Analysis

OpenCL Code
Generation Code Merge

Fig. 2. Our compiler framework first uses static and profiled-based analysis to identify
parallel candidates. Those parallel candidates are then translated into OpenCL kernels.
Dependence checking code is added to perform dependence checking for those candid-
ates that cannot be statically proven to be parallelizable but no dependence violation
was discovered during profiling. Finally, the generated parallel OpenCL program is
merged with the original sequential program as output.

potential violations of speculative accesses. This, however, can result in expens-
ive indirect memory accessing overhead on the Gpu. We would like to avoid this
overhead.

As described later in this paper, our novel in-place dependence checking ap-
proach does not require a buffer to store the speculative accesses. It results in
a speedup of 2.9x, two times faster than Paragon. With a novel dependence
checking scheme, we then build a compiler framework to automatically generate
parallel OpenCL code from sequential code using dependence profiling inform-
ation and without user interaction, allowing us to exploit Gpu parallelism for
highly-likely parallel legacy code.

This example demonstrates that static analysis is overly conservative. Profil-
ing based analysis, by contrast, opens up opportunities to exploit Gpu paral-
lelism for highly-likely parallel code.In the following three sections, we will first
provide an overview of our compiler framework and then describe our parallelism
detection and speculation schemes in details.

3 Overview

Our compiler uses both static and profile-driven dynamic analyses to automatic-
ally discover parallelism from sequential code and to generate parallel OpenCl
code. For this, we also perform loop and array layout optimisations. At runtime,
a safety net is provided for probably parallel loops that require dependence vi-
olation checking. Our prototype compiler is implemented using Llvm.

3.1 Compile Time

Figure 2 depicts our compilation framework. Our compiler uses three steps to
generate parallel Gpu code: parallelism detection, OpenCl code generation and
code merging.

Parallelism Detection. We currently target loop-level parallelism. In particu-
lar, we use static analysis to separate definitely sequential and definitely parallel

158 Z. Wang et al.

loops from other loops, which may or may not be parallel. For these possibly par-
allel loops we rely on dependence profiling [24,26] to extract those loops, which
are probably parallel. We mark a loop as probably parallel if no cross-iteration
dependences have been observed during any profiled execution using different
data inputs. These loops are candidates for speculative parallel execution. The
output of this stage is a program with OpenMp-like annotations to parallel and
probably parallel loops, which include privatisable variables.

OpenCL Code Generation. The annotated program is passed to an OpenCl
code generator [5], which automatically converts data-parallel loops and parallel
reduction loops into OpenCl kernels. Each data-parallel loop is translated to
a separate kernel using the OpenCl Apis, where each iterator of the loop is
replaced by a global work-item Id. Checking code is added to speculative ref-
erences, which may lead to a dependence violation in probably parallel loops.
The details of our speculative checking scheme are described in section 5. Fur-
thermore, as the currently OpencCL implementation does not support I/O op-
erations, our approach does not speculatively parallelize any loops with I/O
operations.

Code Merging. The last compilation stage merges the generated parallelOpenCl
code with the original, sequential program into a single program. As such, the
output program consists of both the original, safe implementation in addition
to the generated OpenCl parallel code. Additional code will be automatically
generated to spawn two processes to run both versions and validate results at
runtime with the support a lightweight library.

3.2 Runtime

The combined use of static analysis and dependence profiling provides us with
sufficient confidence that no data dependences exist in probably parallel loops,
although this cannot be proven. The low expected probability of encountering
any future dependences motivates us to speculatively execute such loops in par-
allel, without provisions for rollback to an earlier, safe state. Instead, we speed up
what we expect to be the common case, i.e. parallel execution without depend-
ence violation. In particular, we do not maintain rollback state or memory write
buffers. Obviously, such as scheme will make the occurrence of a data dependence
expensive to resolve, however, we do not expect this to happen frequently.

Runtime Dependence Checking. Inspired by a Cpu-based Sw-Tls scheme [16],
we propose a in place dependence checking scheme for Gpus. Checking only
needs to be applied to speculative memory references in probably parallel loops.
Statically provable parallel loops do not require any runtime checking at all.
For every access to a speculative variable (i.e. a variable of which a read and
write access may cause an dependence violation with speculative parallel execu-
tion), our compiler automatically converts the memory reference to a speculative
read/write operation. Dependences are checked in place and on the fly, and any

Exploitation of GPUs for the Parallelisation 159

1 void b invc rh s sp e c (g l o b a l double (∗ lhs) [5] ,
2 g l o b a l int (∗ rd log lhs) [5] ,
3 g l o b a l int (∗wr log lhs) [5] ,
4 . . . ,
5 g l o b a l int∗ s p e c f l a g ,
6 g l o b a l int i t e r i d)
7 {
8 . . .
9 r v a l 0 = specLD double(& lhs [1] [1] ,

10 &wr log lhs [1] [1] ,& rd log lhs [1] [1] ,
11 i t e r i d , s p e c f l a g) ;
12
13 r v a l 1 = specLD double(& lhs [0] [1] , . . .) ;
14
15 // sp e cu l a t i v e l y s to re the r e su l t to l h s [1] [1]
16 specST double ((rva l 0−c o e f f ∗ r v a l 1) , &lhs [1] [1] ,
17 &wr log lhs [1] [1] , &rd log lhs [1] [1] ,
18 i t e r i d , s p e c f l a g) ;
19 . . .
20 }
21
22 k e r n e l void y s o l v e c e l l L 0 (. . .)
23 {
24 . . .
25 i t e r i d = g e t g l o b a l i d (1) ∗ g e t g l o b a l s i z e (0)
26 + g e t g l o b a l i d (0) + in i t i t e r n um ;
27 . . .
28 b invc rh s sp e c (lhs , rd log lhs , wr log lhs ,
29 lhs , rd log lhs , wr log lhs ,
30 rhs , rd log lhs , wr log lhs ,
31 s p c f l a g , i t e r i d) ;
32 }

Fig. 3. A simplified OpenCL-based code for the statically undecidable parallel loop
shown in figure 1. A speculative version of the original function binvcrhs is generated
in which every access to the speculative variable lhs is replaced with a speculative
load/store operation.

violation will be reported to the control thread on the Cpu. An example of the
generated code can be found in figure 3, where reads and writes to the spec-
ulative variable lhs are replaced with a speculative load and store operations,
respectively.

Recovery from Dependence Violations. We use competitive scheduling to deal
with unexpected, but possible dependence violations. For this, we launch both
the parallel and the original, sequential program simultaneously. Each version
runs as a separated process which has its own memory space. We immediately
terminate the parallel version on detection of a dependence violation. Otherwise,
if no dependence violations have been observed, the version first to finish kills the
slower competitor. The speculative execution will only commit if no violation is
detected through all speculative execution. Maximum execution time is capped
to time of sequential execution.

160 Z. Wang et al.

Sequential Code

Static
Analysis

Instrumentation

Instrumented
Code

Instrumented
Binary

Program
inputs

Trace File

Dependence
Analysis

Annotated
Parallel Code

Fig. 4. The process of profile-based dependence analysis. Our compiler only uses
profile-guided analysis for code regions where static analysis has bailed out.

4 Compile Time: Parallelism Detection and Code
Generation

4.1 Parallelism Detection

To determine whether or not speculate we use the following hybrid approach: (i)
use static analysis wherever possible and results are conclusive, (ii) use profile-
guided analysis only for dependence checking where static analysis has bailed
out, and (iii) identify parallel loop candidates using combined static and dynamic
dependence information.

Figure 4 illustrates our hybrid static and dynamic parallelism detection ap-
proach. We use a customised memory dependence analysis path from Llvm v3.4
for static analysis. We then perform profile-guided analysis with similar capab-
ilities as [24], but we only instrument memory operations, which previous static
analysis could not resolve with certainty. The instrumented sequential application
is recompiled and executed with several different inputs in sequential to generate
traces of memory operations. Different program inputs are provided by the user.
Each loop will be profiled once during trace collection. Loop traces are further
analysed to determine if data dependences occurred during execution. Any loop
that does not contain cross-iteration data dependences is then marked as probably
parallel. Additionally, traces can be used to support static reduction recognition.

Speculative Variables. Tracking of speculative memory accesses is expensive,
hence it is desirable that we only track those accesses that can potentially
cause a dependence violation. Here we rely on static analysis to generate a
list of variables that require speculative tracking, i.e. those which are subject
to may-dependences. In particular, we do not track the accesses to read-only
and thread-private variables. For the remaining speculative accesses we insert
suitable wrappers, which invoke the appropriate checking functions.

4.2 Code Generation

Definitely parallel and probably parallel loops are treated similarly except prob-
ably parallel loops have references to arrays replaced with speculative loads and
stores. Parallel loops are translated in a straightforward manner into kernels. A
standard two-stage algorithm [3] is used to translate a parallel reduction loop.
Each parallel loop is translated to a separate kernel using the OpenCl APIs
where each iterator is replaced by a global work-item ID.

Exploitation of GPUs for the Parallelisation 161

1 double specLD double (global double ∗a , global int ∗wr log ,

2 global int ∗ rd l og , int i t e r i d , global int ∗ f l a g)
3 {
4 double value ;
5 atom max(rd l og , i t e r i d) ;

6 value = a [0] ;
7 i f (∗ wr log > i t e r i d) /∗Condit ion 1∗/
8 ∗ f l a g = FAIL ;
9 return value ;

10 }
11
12 double specST double (global double ∗a , global int ∗wr log ,

13 global int ∗ rd l og , int i t e r i d , global int ∗ f l ag , double value)
14 {
15 atom max(wr log , i t e r i d) ;
16 i f (∗wr log > i t e r i d) { /∗Condit ion 2∗/
17 ∗ f l a g = FAIL ;
18 }
19 a [0] = value ;
20 i f (∗ rd l og > i t e r i d) { /∗Condit ion 3∗/
21 ∗ f l a g = FAIL ;
22 }
23 return value ;
24 }

Fig. 5. The OpenCL implementation of our speculative load and store. Dependence
checking is combined with speculative loads and stores.

5 Runtime: Safe Speculative Execution

5.1 Runtime Dependence Checking

Dependence checking is combined with speculative loads and stores. Hence, we
only need to check dependence violations for addresses that are actually accessed
at runtime. Figure 5 shows the OpenCl implementation of speculative load and
store operations. Dependence checking is performed in place. For each specu-
latively accesses address, we create a suitable entry in either a read or write
log, i.e. the rd log and wr log variables in figure 5. The read and write logs
are created on the GPU global memory, which are used to store the Id of the
highest iteration that has read/written to the corresponding memory address a
(lines 5 and 15). As OpenCl does not support barriers for Gpu threads across
work groups, we use the atom max operation provided by OpenCl to make sure
only the highest iteration Id is stored in the log. The value in the log entry will
be monotonically increasing1 over time. Using the logs, we can simply determine
whether a speculative load/store is successful.

5.2 Violation Detection

Speculative Load. A speculative load is successful if there have been no spec-
ulative store to the same memory location by a Gpu thread that executes a

1 For a program with multiple Gpu kernels, the iteration Id passed to the speculative
load and store functions starts from the maximum iteration number of the previ-
ous probably parallel loop. Therefore, the number is monotonically increasing for
multiple speculative kernels.

162 Z. Wang et al.

(a) flow dependence

Sequential

tim
e

Runtime Violation

(b) anti dependence (c) output dependence

i=0:

i=1:

Wp

Rp

Thread 1Thread 0

*rd_log=1

*wr_log=0
Wp

Rp

Sequential

tim
e

Runtime Violation

i=0:

i=1:

Rp

Wp

Thread 1Thread 0

*wr_log=1

*rd_log=0
Rp

Wp

Sequential

tim
e

Runtime Violation

i=0:

i=1:

Wp

Wp

Thread 1Thread 0

*wr_log=1

*wr_log=0
Wp

Wp

Fig. 6. Three cross-iteration dependence and the possible runtime violations due to
Gpu thread scheduling. All the three violations can be successful detected by our
dependence checking scheme with the read (rd log) and write (wr log) buffers as
shown in figure 5.

later loop iteration. This condition is checked in line 7. If the memory location is
written in a later iteration, i.e. (*wr log>iter id), a violation will be reported
(line 8).

Speculative Store. Conversely, a speculative store is successful as long as there
has been no speculative accesses (either loads or stores) to the same address by
later iterations. This condition is checked in lines 16 and 18. If a later iteration
attempts to write to the same location, i.e., (*wr log>iter id), or read from
it, i.e., (*rd log>iter id), a violation is detected.

We continue the discussion of our violation detection mechanism for all pos-
sible types of runtime dependence violations. It is worth noting that our scheme
is exact and does not report any false positives. In addition, if cross-iteration
dependent accesses are executed in the correct sequential order by virtue of the
Gpu thread scheduler, it will correctly handle this situation and not flag any
violation.

Our OpenCl code generator maps each loop iteration to an OpenCl work
item to be executed by one Gpu thread. Hence, no dependence violations are
possible within one iteration. Though, cross-iteration dependence violations are
possible due to the arbitrary order of thread scheduling on the Gpu. In this case,
Figure 6 enumerates all three possible cross-iteration violations. Here we show
the sequential dependence of two consecutive iterations that must be respected
and the potential violation due to Gpu thread scheduling.

Flow Dependence. Figure 6(a) illustrates a violation of a flow dependence (i.e.
read after write), where the use of p in iteration 1 happens before p is updated by
thread 0, which executes iteration 0. This violation will be detected in function
specST. It is *rd log=1 and iter id=0 and also Condition 3 (line 18) of figure 5
holds, such that a violation will be reported.

Anti Dependence. In figure 6(b), the use of p happens after it has been updated
by the a later iteration. This causes an anti-dependence (i.e. write after read)
violation, which will be captured by function specLD. In this case, it is *wr log=1

and iter id=0 and Condition 1 (line 7) of figure 5 holds, such that a violation
will be reported.

Exploitation of GPUs for the Parallelisation 163

CPU GPU

serial

Sequent ial
process

L1

L2

L3

CPU GPU

serial

Sequen ti al
process

L1

L2

L3

CPU GPU

serial

Sequent i al
process

L1

L2

Violation
detected

L2:
Probably
Parallel

Serial
L1:
Parallel

L3:
Sequential

(a) (b) (c) (d)

Fig. 7. Three different parallel execution scenarios for the sequential program shown
in (a) : speculative execution runs faster with no conflict (b) , sequential execution
runs faster (c), violation are found for speculative execution (d)

Output Dependence. Figure 6(c) is an output dependence (i.e. write after write)
violation. After thread 1 has updated p, this memory location is overwritten by
thread 0, which executes a previous iteration. In this case, it is *wr log=1 and
iter id=0 and Condition 2 (line 16) in figure 5 holds, such that a violation will
be reported.

5.3 Recovery from Dependence Violations

Speculative parallel executions can fail despite prior dependence profiling. We use
a competitive scheduling scheme where we simultaneously execute a sequential
version of the program alongside the parallelised program on a spare core of the
host Cpu. If a dependence violation is reported, we simply abort speculative
parallel execution and use the result produced by the safe, sequential run as the
output of the program. Competitive scheduling caps the maximum execution
time to that of the sequential program.

Figure 7 depicts our competitive scheduling scheme. This example contains
three loops: a statically proven parallel loop L1, a probably parallel loop L2,
and a statically proven sequential loop L3. In our scheme, loops L1 and L2 will
be executed on the Gpu and the sequential loop L3 will be executed on the host
Cpu. There are three possible scenarios. If the speculative version finishes first
and does not observe any dependence violations, it terminates the sequential
version (figure 7(b)). If the sequential version finishes first, it will abort the par-
allel speculative version (figure 7(c)). Finally, if the speculative version detects a
dependence violation, it aborts and the sequential version will eventually finish
(figure 7(d)) successfully.

5.4 Comparison to other Approaches

Our speculative checking scheme has several advantages when compared to other
state-of-the-art Gpu thread level speculative schemes, e.g. Paragon [21]. Unlike

164 Z. Wang et al.

Table 1. Hardware platform

Intel CPU NVIDIA GPU

Model Core i7 GTX 580
Core Clock 3.6 GHz 1544 MHz
Core Count 6 (12 w/HT) 512
Memory 12 GB 1.5 GB
Peak Performance 122 GFLOPS 1581 GFLOPS

Paragon, our scheme does not explicitly record addresses of speculative memory
accesses. It is an integral part of the speculative accesses and perform checking
on the fly. As such, our scheme does not have the indirect memory access over-
head resulting from the address bookkeeping buffer, a problem which hampers
Paragon’s performance. Our scheme is particularly well suited for sparse data
applications (e.g. using sparse matrices) where only a small number of the total
index space is accessed by the program. Unlike Paragon, load and store logs (i.e
rd log and wr log) can be re-used between multiple speculative kernels without
the need for clearing them in-between. Finally, Paragon uses a naive violation
detection scheme where an output dependence violation will be reported if there
is more than one write to the same memory address. This naive scheme may
cause false positives (i.e. a successful speculative execution is reported as viol-
ation) when an address has been updated multiple times within the same loop
iteration or a write dependence is honoured. By contrast, our precise violation
detection scheme is exact and does not suffer from this problem.

6 Experimental Setup

Platform. We evaluate our approach on a CPU-GPU mixed system with an
Intel Core i7 CPU and an NVIDIA GTX 580 GPU. The system runs with a
openSUSE 12.3 with Linux kernel 3.7.10. Table 1 gives detailed information of
our platform.

Benchmarks. We have used the sequential NAS benchmark v.2.3 suite for which
manually parallelised Cpu and Gpu implementations are available. To parallel-
ise the code, we use a profiling-based auto-parallelisation tool to analyze data
dependences and generate parallel OpenCL code. The tool parallelises loops with
speculative checking, which are found to be parallelisable during profiling but
cannot proven statically. For all loops that can be statically proven to be safe to
parallelise, the tool parallelises them straightforward. The compiler parallelises
up to three-level of a nested loops to create as many Gpu threads as possible.
Whenever possible, we try to avoid the CPU-GPU communications and syn-
chronisation by running a parallel loop on the Gpu. We avoid to parallelize a
loop that accounts for less than 1% of the whole-program execution time unless
there is a consecutive parallel or probably parallel loop candidate after it (so
that we can remove a Cpu-Gpu synchronisation point).

Exploitation of GPUs for the Parallelisation 165

BT CG EP FT IS LU MG SP Geo-Mean0
1
2
3
4
5
6
7
8

S
pe

ed
up

99x

Fig. 8. Speedups over the sequential execution of our approach. We achieve on average a
speedup of 3.2x and has never significantly slowed down the program over the sequential
execution.

Compiler and Evaluation Runs. All programs have been compiled using GCC
4.4.7 with the -O3 option. Each experiment was repeated 5 times and the average
execution time was recorded. All the benchmarks were profiled using the smallest
input (class S) and evaluated with a larger input class (class A).

Comparison. Our approach is evaluated against Paragon [21], the closest com-
petitor. In Paragon, probably parallel loops are discovered at program runtime
by profiling those statically undecidable loops. However, we found doing so is
very expensive. To provide a fair comparison, we make offload the profiling stage
offline and provide Paragon with the same probably parallel code so it is specu-
late on exactly the same loops as our approach. We therefore only evaluate the
efficiency of speculation rather than accuracy of parallelism discovery and pro-
filing overhead. The Paragon scheme relies on OpenCL code generation. Again,
we use the same OpenCL code generator to provide a fair evaluation. In addition
to Paragon, we also compare our approach to two manually parallelised imple-
mentations of the Nas benchmark suite: an OpenMp version and an OpenCl
implementation (SNU NPB [22]). Both versions were implemented by independ-
ent programmers. The two manual implementations provide a good estimation
of the upper bound performance with the help of user assistance.

7 Experimental Results

In this section we first evaluate our approach against the sequential baseline.
We then compare our approach to a scheme that only parallelises statically
decidable loops on Gpus. This is followed by comparisons to a state-of-the-art
Gpu speculation scheme and manually parallelised implementations. Finally,
we take a closer look at the limitations of static analysis and our speculation
overhead, and discuss of dependence violations.

166 Z. Wang et al.

BT CG LU SP
0

1

2

3

4

5

6

7

8

S
pe

ed
up

Statically Safe
Our Approach

Fig. 9. Comparisons of Paragon and our in-place Gpu speculation scheme. Our scheme
achieves higher speedups on more benchmarks when compared to Paragon.

7.1 Overall Results

Figure 8 shows the speedups achieved by our scheme. The performance numbers
presented are speedups over the sequential execution on the Cpu. On average
our scheme achieves a speedup of 3.2x. Furthermore, by co-running the original
sequential program alongside the parallelised Gpu program, our scheme has
never significantly slowed down the program.

As can be seen from figure 8, great performance improvement can be observed
by exploiting Gpu parallelism for probably parallel loops. This is exemplified by
the embarrassing parallel benchmark EP where a speedup of 99x was observed.
Parallel Gpu execution can benefit for other benchmarks too. For benchmarks
BT, CG and SP, we achieved a speedup of at least 2.6x and up to 7x. For
benchmarks FT and MG, we only achieved modest speedups due to the available
parallelism and cost of speculation. For benchmarks LU and IS, no speedups were
observed on our platform. For LU, a new algorithm is required to get improved
performance on the Gpu [22,5]. For IS, the parallel loop only accounts for 27%
of the sequential execution and it is not worth to parallelise it on the Gpu.
Nonetheless, our competitive scheduling scheme caps the execution time to the
time of the sequential run if the parallel Gpu execution is not profitable.

7.2 Comparison with the Statically Safe Approach

We compare our approach to a conservative approach that only parallelises those
statically proved parallel loops on the Gpu and runs the rest part in sequential
on the Cpu. Obviously, no speculation is needed for such a scheme but data
transfers and synchronisation are required to synchronise between the Cpu and
the Gpu threads.

Figure 9 compare our approach with such a statically safe scheme. Here, some
of the benchmarks are omitted because static analysis fails to discover parallelism

Exploitation of GPUs for the Parallelisation 167

BT CG EP FT IS LU MG SP
0

1

2

3

4

5

6

7

8 99x

S
pe

ed
up

Paragon
Our Scheme

83x

Fig. 10. Comparison of Paragon and our in-place Gpu speculation scheme. Our ap-
proach achieves higher speedups on more benchmarks when compared to Paragon.

of them. As can be seen from this figure, no speedups were observed for the
conservative, safe scheme. This is due to the communication and synchronisation
overhead associated with the switch between theCpu andGpu executions, where
shared variables have to be synchronized among the two devices. This comes
at the cost of expensive communications and synchronisation which outweigh
the benefit of Gpu parallel executions. Our approach, by contrast, avoids this
overhead by running two consecutive static and probably parallel loops on the
Gpu so that we can keep the data on the Gpu and avoid the otherwise required
Cpu-Gpu data transfers. Unlike the disappointing results of the static scheme,
our profiled-based, Gpu speculation scheme is able to achieve speedups for all
the four programs except LU where a change of algorithms is require to achieve
speedups on the Gpu [22].

Overall, the static parallelisation technology is too conservative to exploitGpu
parallelism despite the abundant available parallelism for the majority bench-
marks. By contrast, our approach outperforms the static parallelisation approach
by a factor of 7.

7.3 Comparison with Paragon

Figure 10 compares ourGpu speculation scheme with Paragon.We factor out the
performance achieved by co-running of the sequential code and focus solely on the
quality of the Gpu speculation scheme. Note that we applied the same OpenCl
code optimization to both approaches; therefore, the performance variations are
mainly down to the difference of the speculation schemes.

This figure clearly demonstrates the advantages of our approach. As can be
seen from this diagram, the overhead of Paragon can be significant for some
benchmarks. For example, Paragon is not able to achieve speedups for SP while
our approach gives a speedup of over 7x. For this benchmark, the indirect

168 Z. Wang et al.

BT CG EP FT IS LU MG SP Geo-Mean
0
1
2
3
4
5
6
7
8
9

10
11
12 102

S
pe

ed
up

 OpenMP
 Our approach
 SNU NPB

99

Fig. 11. Performance of the manual OpenMP and OpenCl implementation of the Nas
benchmark suite and our automatically generated parallelised code

memory accessing and initialization overhead of Paragon clearly outweighs the
benefit of Gpu parallel execution. Besides SP, our scheme also outperforms Par-
agon on benchmarks BT and FT, with a speedup up to 2 times higher. For
benchmarks CG, EP and MG, speculative checking only needs to be performed
on a few speculative variables and both approaches deliver similar performance.
Finally, for benchmarks IS and LU, none of the two schemes achieve performance
improvement due to the restriction of the program and the Gpu architecture as
explained in section 7.1. Overall, our scheme outperforms Paragon by achieving
higher speedups whenever it is profitable to exploit Gpu parallelism.

7.4 Comparison to Manually Parallelized Code

We also compare our approach to two manually parallelised implementations
developed by independent programmers: (1) the OpenMP version of the Nas
benchmark suite [1] for the Cpu and (2) SNU NPB [22], an OpenCl imple-
mentation of the Nas benchmark suite for the Gpu. The SNU NPB provides a
good estimation of the up-bound performance that our Gpu speculation scheme
can achieve. The results are shown in figure 11.

As can be seen from this diagram, exploiting Gpu parallelism for highly-likely
parallel code can be beneficial. Example benchmarks include BT, CG, EP and
SP where Gpu execution significantly outperforms the OpenMP Cpu execution
by a factor up to 10. It is not supervised that a manually parallelisedGpu imple-
mentation without speculation overhead outperforms our automatic scheme, but
our approach is able to achieve a level of performance close to the manual im-
plementation. For benchmarks CG and SP, our approach even outperforms the
manual Gpu implementation with advanced Gpu memory optimizations such as
dynamic index reordering applied by ourOpenCl code translator [5]. For bench-
marks FT and MG, our approach is not as good as the OpenMP implementation.
This is restricted by the programs themselves as the Cpu-Gpu communications

Exploitation of GPUs for the Parallelisation 169

Table 2. Numbers of statically decidable and undecidable parallel loops of the manual
OpenMP implementation

Benchmark Manual Statically Decidable Statically Undecidable

BT 54 23 31
CG 19 17 2
EP 1 0 1
FT 6 0 6
IS 1 0 1
LU 29 12 17
MG 12 5 7
SP 70 41 29

is relatively high compared to computation. This can be seen from the fact that
the manually parallelised Gpu code only outperforms the OpenMP Cpu code
by a small margin. For benchmark LU, the algorithm in the sequential code has
to be changed to a hyperplane one to achieve speedups on the Gpu [22]. This
is of course out of the scope of our automatic approach. Finally, for IS, none of
the three parallel versions can gain speedups because the execution time of this
program is dominated by serial code.

Overall our automatic approach performs well. The average 3.2x speedup
achieved by our approach is very close to the 3.3x speedup of the manually
parallelised OpenCl implementation. Moreover, our approach also outperforms
the OpenMp implementation on the majority of the benchmarks by exploiting
Gpu parallelism.

7.5 Analysis

Limitation of Static Analysis. Table 2 shows the number of parallelised
loops of the OpenMP implementation and among those how many are statically
decidable and undecidable. For benchmark CG, a considerable number of the
parallelised loops are statically decidable. However, for most of the programs,
merely relying on static analysis is not enough to exploit program parallelism,
which actually misses a significant amount of parallel opportunities. For ex-
ample, for benchmarks EP, FT and IS, static analysis fails to detect any of the
manually parallelised loops. Static analysis fails to explore parallelism for these
three benchmarks including EP where a speedup of 90x is available. Dependence
profiling information, on the other hand, can provide us with additional inform-
ation, enabling us to discover those parallel opportunities. By contrast to static
analysis, our hybrid static and dynamic parallelism detection scheme identifies
all the parallel loops specified in OpenMP implementation. This table shows
that profile-based analysis is a powerful technique that allows us to discover
parallelism for highly-likely parallel legacy code.

Speculation Costs. Figure 12 shows the overhead of the speculation for each
benchmark. In this diagram, the program runtime is broken down into two
parts: speculation overhead and non-speculative Gpu parallel execution. The

170 Z. Wang et al.

BT CG EP FT IS LU MG SP
0

20

40

60

80

100

P
er

ce
nt

an
ge

 to
 th

e
ov

er
al

l e
xe

cu
tio

n
tim

e
(%

)

 Non-speculative GPU execution Speculation Overhead

Fig. 12. Speculation overhead compared to the unsafe parallel execution without spec-
ulation on the Gpu

two breakdowns are shown as the percentage to the overall program runtime.
As can be seen from this diagram, the speculation overhead varies from one
program to the other. Depending on the number of probably parallel loops and
the frequency of speculative accesses, the overhead varies from 60% to 15% rel-
ative to the whole-program execution time. For some benchmarks, such as CG,
FT and SP, the speculation overhead is relatively low, around 20%. This is
because speculation only needs to be applied on a few arrays. For benchmark
LU, the program execution time is dominated by the synchronisation and com-
munication overhead due to the restriction of the program algorithm and thus
the speculation overhead is not significant. For benchmarks IS, MG and BT,
the overhead is more than 30% of the whole-program execution time, because
of the high frequent speculative access to variables. Particularly, benchmark BT
has the highest speculation overhead which accounts for 60% of the total pro-
gram execution time. For this benchmark, 31 out of the 54 parallel loops cannot
be statically determined and speculation has to be performed on those statically
undecidable loops. Despite the speculation overhead, our approach is still able to
achieve a speedup of 2.9x rather than a 3.6x slowdown of a static approach (see
section 2). On average, the speculation overhead is 28% across all benchmarks.

Dependence Violation. Possibly a little surprising, in none of the above exper-
iments dynamic dependence violations have been detected. This indicates that
our profile-guided parallelisation approach correctly identifies probably parallel
loops. Whilst it is easy to construct a counter example, it suggests that many
loops are genuinely parallel even though static analysis is unable to prove this. In
fact, we have compared the loops identified by our analysis with those parallelised
in the manually derived OpenMp reference implementation of the benchmarks
and confirm equivalence (subject to insertion of speculation code).

Exploitation of GPUs for the Parallelisation 171

8 Related Work

Whilst specific pieces of related work have already been discussed earlier on we
will provide a brief overview of Tls and profile-guided parallelisation approaches
as far as relevant for this paper in the following paragraphs.

Thread-Level Speculation (Tls) Padua and Rauchwerger [20] are early pion-
eers of software based Tls. Their framework speculatively executes a loop as a
doall and applies a fully parallel data dependence test to determine if it had any
cross-iteration dependencies; if the test fails, then the loop is re-executed seri-
ally. There are other automatic parallelisation techniques that exploit parallel-
ism in a speculatively execution manner [28,29], some of which require hardware
support [2]. Matthew et al. [4] have manually parallelised the SpecInt-2000
benchmarks with Tls. Their approach relies upon the programmer to discover
parallelism as well as runtime support for parallel execution. Sw-Tls has been
the topic of many research papers, e.g. [14,15,17,12]. All of these papers focus
on individual speculation schemes, but share the assumption that dependence
violations have a significant probability > 0. In fact, it is generally assumed
that speculative parallel code is either generated by a traditional compiler using
static analysis [31] or directly by the programmer [18]. This is different to our
work, where profiling information is available and probably parallel loops have
been identified for speculative execution.

Profile-Guided Parallelisation Static analyses are fundamentally limited by
the undecidability of the underlying data flow problem [9]. This is not only of
theoretical interest, but has practical implications: parallelizing compilers using
static analysis are severely limited in detecting parallelism and fail to provide
speedups across standard industry benchmarks representative of whole classes
of real-world applications [24]. Profile-guided data flow analyses, on the other
hand, have been proven to detect significantly more parallelism than their static
counterparts [7,11,13], but are lacking safety, i.e. critical data dependencies can
be missed. As profile-guided parallelisation has gained popularity in the aca-
demic community, several papers have investigated methods for making profile
collection more efficient [8,27]. Some interactive parallelisation tools incorporate
dynamic information [23], but typically this is restricted to mapping support
and not used for dependence testing.

Automatic Generation of GPU Programs Some of the recent work target
CUDA [10] or OpenCl [5] code generation from an already parallelized pro-
gram, such as OpenMp programs. Unlike these approaches where the program
parallelism needs to be identify and verify by the programmer, our compiler
automatically detects parallelism from sequential code without user assistance.

Speculative Parallel Executions for GPUs The Paragon compiler [21] is the
nearest work. Unlike our approach where profiling is performed off-line, Paragon
uses profiling information at program runtime to determine parallelism of the
statically undecidable loops by recording all the memory access. This approach,
however, can incur significant overhead at program runtime. Furthermore, Par-
agons dependence checking scheme requires a buffer to record the memory access
of speculative variables. This could lead to indirect memory accessing overhead

172 Z. Wang et al.

for a separated checking process and the buffer will need to be initialized be-
fore being used. By contrast to Paragons, our in place dependence checking
scheme does not have this overhead. Finally, Hayashi et al. [6] propose a scheme
to automatically generated OpenCL code for Java parallel constructors and
preserve precise exception semantics.

9 Conclusion

In this paper we have presented a holistic approach to exploit parallelism for
highly-likely parallel legacy code on commodity Gpus. Building on prior work
on profile-guided parallelization, we proposed a novel Gpu-based speculation
scheme to provide correctness guarantees for probably parallel loops. Our scheme
discards expensive check-pointing for rollback that is not suitable for Gpus, but
instead provides faster checking of dependences for speculative parallel execution
regions, which are identified as probably parallel by our profile-guided analysis.
Our novel approach allows dependence checking to be done in place with spec-
ulative accessing operations. We thus only need to perform checking on the
addresses where speculative accesses actually take place. Our approach has been
evaluated on benchmarks that are rich in parallelism, but hard to parallelize
using traditional static analyses. By exploiting Gpu parallel execution, we avoid
the expensive overhead that otherwise would be required for serial CPU execu-
tions. We have demonstrated the effectiveness of our in-place Gpu speculation
scheme by comparing it to a state-of-the-artGpu-based speculation scheme. Ex-
perimental results show that our technique outperforms the state-of-the-art by
a factor of 1.45. This translates to 99% of the performance of a manual OpenCl
implementation without speculation overhead where the probably parallel loops
have been manually verified. Our future work will explore the combination of
CPU and Gpu speculation schemes for auto-parallelisation on heterogeneous
systems.

References

1. NAS parallel benchmarks 2.3, OpenMP C version,
http://phase.hpcc.jp/Omni/benchmarks/NPB/index.html

2. Ahn, W., Duan, Y., Torrellas, J.: Dealiaser: Alias speculation using atomic region
support. In: ASPLOS 2013 (2013)

3. AMD. AMD/ATI Stream SDK, http://www.amd.com/stream/
4. Bridges, M., Vachharajani, N., Zhang, Y., Jablin, T., August, D.: Revisiting the

sequential programming model for the multicore era. IEEE Micro 28(1) (2008)
5. Grewe, D., Wang, Z., O’Boyle, M.: Portable mapping of data parallel programs to

opencl for heterogeneous systems. In: CGO 2013 (2013)
6. Hayashi, A., Grossman, M., Zhao, J., Shirako, J., Sarkar, V.: Speculative execution

of parallel programs with precise exception semantics on gpus. In: LCPC 2013
(2013)

7. Ketterlin, A., Clauss, P.: Profiling data-dependence to assist parallelization: Frame-
work, scope, and optimization. In: MICRO 2012 (2012)

8. Kim, M., Kim, H., Luk, C.-K.: Sd3: A scalable approach to dynamic data-
dependence profiling. In: MICRO 43

http://phase.hpcc.jp/Omni/benchmarks/NPB/index.html
http://www.amd.com/stream/

Exploitation of GPUs for the Parallelisation 173

9. Landi, W.: Undecidability of static analysis. ACM Lett. Program. Lang. Syst. 1(4)
(December 1992)

10. Lee, S., Eigenmann, R.: Openmpc: Extended openmp programming and tuning for
gpus. In: SC 2010 (2010)

11. Mak, J., Faxén, K.-F., Janson, S., Mycroft, A.: Estimating and exploiting potential
parallelism by source-level dependence profiling. In: EuroPar 2010 (2010)

12. Mehrara, M., Hao, J., Hsu, P.-C., Mahlke, S.: Parallelizing sequential applications
on commodity hardware using a low-cost software transactional memory. In: PLDI
2009 (2009)

13. Mishra, V., Aggarwal, S.K.: Partool: A feedback-directed parallelizer. In: Temam,
O., Yew, P.-C., Zang, B. (eds.) APPT 2011. LNCS, vol. 6965, pp. 157–171. Springer,
Heidelberg (2011)

14. Oancea, C.E., Mycroft, A.: A lightweight model for software thread-level specula-
tion (TLS). In: PACT 2007 (2007)

15. Oancea, C.E., Mycroft, A.: Set-congruence dynamic analysis for thread-level spec-
ulation (TLS). In: Amaral, J.N. (ed.) LCPC 2008. LNCS, vol. 5335, pp. 156–171.
Springer, Heidelberg (2008)

16. Oancea, C.E., Mycroft, A., Harris, T.: A lightweight in-place implementation for
software thread-level speculation. In: SPAA 2009 (2009)

17. Oancea, C.E., Mycroft, A., Harris, T.: A lightweight in-place implementation for
software thread-level speculation. In: SPAA 2009 (2009)

18. Prabhu, M.K., Olukotun, K.: Using thread-level speculation to simplify manual
parallelization. In: PPoPP 2003 (2003)

19. Rauchwerger, L.: Speculative parallelization of loops. Springer, Heidelberg (2011)
20. Rauchwerger, L., Padua, D.A.: The LRPD test: Speculative run-time paralleliza-

tion of loops with privatization and reduction parallelization. IEEE Trans. Parallel
Distrib. Syst. 10(2) (1999)

21. Samadi, M., Hormati, A., Lee, J., Mahlke, S.: Paragon: Collaborative speculative
loop execution on gpu and cpu. In: GPGPU 2012 (2012)

22. Seo, S., Jo, G., Lee, J.: Performance characterization of the nas parallel benchmarks
in opencl. In: IISWC 2011 (2011)

23. Thies, W., Chandrasekhar, V., Amarasinghe, S.P.: A practical approach to exploit-
ing coarse-grained pipeline parallelism in C programs. In: MICRO 2007 (2007)

24. Tournavitis, G., Wang, Z., Franke, B., O’Boyle, M.F.: Towards a holistic approach
to auto-parallelization: Integrating profile-driven parallelism detection and machine
-learning based mapping. In: PLDI 2009 (2009)

25. Vandierendonck, H., Rul, S., De Bosschere, K.: The paralax infrastructure: Auto-
matic parallelization with a helping hand. In: PACT 2010 (2010)

26. Vanka, R., Tuck, J.: Efficient and accurate data dependence profiling using software
signatures. In: CGO 2012 (2012)

27. Vanka, R., Tuck, J.: Efficient and accurate data dependence profiling using software
signatures. In: CGO 2012 (2012)

28. Wallace, S., Calder, B., Tullsen, D.M.: Threaded multiple path execution. In: ISCA
1998 (1998)

29. Wu, P., Kejariwal, A., Caşcaval, C.: Compiler-driven dependence profiling to guide
program parallelization. In: Amaral, J.N. (ed.) LCPC 2008. LNCS, vol. 5335,
pp. 232–248. Springer, Heidelberg (2008)

30. Yu, H., Li, Z.: Fast loop-level data dependence profiling. In: ICS 2012 (2012)
31. Zhai, A., Wang, S., Yew, P.-C., He, G.: Compiler optimizations for parallelizing

general-purpose applications under thread-level speculation. In: PPoPP 2008 (2008)

	Exploitation of GPUs for the Parallelisation
of Probably Parallel Legacy Code
	1 Introduction
	2 Motivation
	3 Overview
	3.1 Compile Time
	3.2 Runtime

	4 Compile Time: Parallelism Detection and Code Generation
	4.1 Parallelism Detection
	4.2 Code Generation

	5 Runtime: Safe Speculative Execution
	5.1 Runtime Dependence Checking
	5.2 Violation Detection
	5.3 Recovery from Dependence Violations
	5.4 Comparison to other Approaches

	6 Experimental Setup
	7 Experimental Results
	7.1 Overall Results
	7.2 Comparison with the Statically Safe Approach
	7.3 Comparison with Paragon
	7.4 Comparison to Manually Parallelized Code
	7.5 Analysis

	8 Related Work
	9 Conclusion
	References

