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Abstract. TouchDevelop is a novel programming environment and lan-
guage for mobile devices. These applications are typically developed by
non-expert users, rather small, and published on the cloud. In this paper,
we introduce TouchCost, a new static analysis that infers the cost of
loops in TouchDevelop programs. TouchCost (i) infers numerical in-
variants through an existing generic analyzer, (ii) extracts cost relation
systems, and (iii) solves them using an existing upper bound solver.

TouchCost has been applied to all TouchDevelop scripts that are
currently published on the cloud. Experimental results show that this
tool is both scalable and precise. Studying the outputs of TouchCost,
we glimpse two major applications: (i) establishing at runtime the cost
of a loop, and in case move its execution, and (ii) helping non-expert
developers to debug their programs.

1 Introduction

In 2012 more mobile devices than personal computers and laptops have been
sold [1,23]. The main characteristics of modern mobile devices are (i) an almost
continuous connection to the cloud, (ii) relatively limited resources (e.g., compu-
tational power and battery), and (iii) various sensors and capabilities (e.g., GPS
and camera). This technology shift has important consequences on programming
languages and execution environments. In particular, they should take into ac-
count (i) novel input devices (e.g., touchscreens) when developing programs, and
(ii) a runtime environment with limited local resources, but with (almost) con-
tinuous access to an extremely resourceful cloud infrastructure.

Microsoft TouchDevelop1 [24] is a novel development environment and program-
ming language for mobile applications. The main design principle of TouchDevelop
is to allow one to develop mobile applications directly on mobile devices. In addi-
tion, TouchDevelop applications can be shared through the cloud infrastructure.
Since its release in August 2011, more than 20.000 TouchDevelop scripts have been
shared. Some of them became quite popular, and they have been downloaded and
ran by thousands of users. Usually, TouchDevelop users are not expert developers,
and the most part of the scripts are small [20].
1 http://www.touchdevelop.com
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Static cost analysis [3] has been deeply studied, and it achieved significant
results. The main goal of cost analysis is to compute statically (i.e., at compile
time) and automatically (i.e., without any user annotation or interaction) the
cost of a program. Its applications are extremely diverse.

Given this scenario, the main contribution of this work is TouchCost, the
application of static cost analysis to all existing TouchDevelop scripts to infer
the cost of loops. As far as we know, TouchCost is the first cost analysis
that has been applied to a huge set (several thousands) of real programs. Given
a TouchDevelop script, we apply an existing numerical domain [19] to infer
numerical invariants. We then build up cost relation systems and pass them to
PUBS [2], an up-to-date upper bound solver, obtaining loops’ bounds.

TouchDevelop represents an ideal target for cost analysis since (i) TouchDe-
velop scripts are usually written by non-professional developers , and therefore
debugging and optimizing them may improve significantly the quality and the
efficiency of these programs, and (ii) these scripts run on mobile devices with
limited resources and continuous access to an extremely resourceful cloud infras-
tructure, and therefore the information inferred by cost analysis may be adopted
at runtime to reduce the amount of local resources consumed by the execution.

The analysis has been implemented and applied to all TouchDevelop scripts
on the cloud containing loops. The experimental results show that the overall
analysis is both scalable and precise. TouchCost proves that existing engines
for cost analyses are mature enough to be applied to real programs on a large
scale. We have also investigated the results obtained by TouchCost to pro-
pose possible applications of the inferred information. First of all, since mobile
devices have limited local resources and often access to a resourceful cloud, the
costs inferred by TouchCost could be used to decide at runtime to move the
execution to the cloud if there is a shortage of some local resources. In addi-
tion, TouchDevelop scripts are developed by novices, and particularly high or
low costs expose bugs or possible misunderstandings of the developer. Therefore,
we found out several published programs in which TouchCost results can be
useful for debugging.

The rest of the paper is structured as follows. In the rest of this Section,
we will discuss some related work. Sections 2, 3, and 4 will recall the main
existing components adopted by TouchCost, that is, TouchDevelop, Sample,
and PUBS, respectively. Section 5 will present the technical core of TouchCost,
while Section 6 will discuss the experimental results.

1.1 Related Work

Various tools performing cost and termination analyses have been formalized
and developed. As far as we know, the COSTA system [3] represents the most
advanced tool in the field of automatic cost analysis for object-oriented program-
ming languages, and it includes the implementation of some recent research re-
sults on finding linear ranking functions [5]. This tool analyzes Java bytecode,
and it relies on PUBS [2] to solve cost relation systems produced by extracting
some numerical constraints from a Java bytecode program. TouchCost relies
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on PUBS as well, but we deal with TouchDevelop code, and we apply a sound
and relatively precise heap abstraction to the program. Instead, COSTA ap-
proximates the heap with the maximal length of the paths reachable from local
variables. This approach is not precise enough for TouchDevelop programs since
these heavily rely on the mobile environment approximated by the heap analysis.
In particular, COSTA’s heap abstraction would approximate the length of all
the collections with their maximal length. For instance, it would not distinguish
between the number of songs and the number of pictures in the mobile device.

Worst case execution time analyses (WCET) have been widely studied, imple-
mented, and applied to industrial software [25]. WCET is focused on deriving
realistic, platform-dependent timing information, and usually loop bounds are
manually provided by the user [12]. Therefore, various analyses targeted the in-
ference of loop bounds [17], but they target a specific platform, or type of loops,
and in general they cannot straightforwardly applied to TouchDevelop scripts
that heavily interact with the mobile environment.

Other work has been focused on the analysis of memory consumption [8], and
on functional [6] and logic [11] programming. Instead, TouchCost is aimed at
targeting various types of costs, and it deals with TouchDevelop code, that is,
with a language that mixes imperative and object-oriented constructs.

As far as we know, TouchCost is the first automatic static cost analysis that
has been applied to a wide set of mobile programs. Therefore, it represents the
first extensive study on the application of cost analysis, and the experimental
results (i) show that existing engines for these analyses can be applied to real
programs on a large scale, and (ii) open new insights about possible applications
of static cost analysis for mobile programs.

2 TouchDevelop

The core of TouchDevelop is a structured programming language designed to
develop mobile applications directly on a mobile device. This language mainly
mixes imperative and object-oriented features. A TouchDevelop program consists
of a set of actions. Intuitively these correspond to methods in object-oriented
programming languages. One of the most important design principles is to al-
low the developer to access all the main components of the mobile device (e.g.,
GPS sensors) through some standard libraries. Therefore, the API offers various
predefined classes to access these components. The target audience of TouchDe-
velop is “everyone who might traditionally have been able to write a BASIC
program on a regular keyboard and ordinary PC. This includes students and
hobbyist programmers”[22]. In addition, TouchDevelop scripts can be shared
through the cloud infrastructure. Currently, more than 20.000 scripts developed
by more than 2.000 users have already been published.
Loops: The TouchDevelop programming language defines three distinct types
of loops: while expr do block, for 0 ≤ index < expr do block, and foreach l in coll
do block. The first type is a standard while loop. The for loop defines an index
variable, and it increments this variable from 0 to expr. expr is evaluated only once
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at the beginning of the execution of the loop. The index variable is modified only
by the implicit increment, and it cannot be changed in any other way. Finally,
the foreach loop iterates over all elements which are part of a collection before
starting the execution of the loop. Semantically, this is equivalent to taking a
snapshot of the collection just before the execution of the loop, and to iterate
over the elements of this snapshot.

action showPics() {
foreach pic in media→pictures do {

pic→post_to_wall;
time→sleep(1);

}
}

Fig. 1. The running example

Running Example: The program in Fig-
ure 1 is the running example we will adopt
to explain how TouchCost works. It con-
tains a simple foreach loop, that iterates over
all the pictures in the mobile device, prints
them on the screen, and waits 1 second be-
fore showing the next picture. The loop is
iterated n times, where n is the number of
pictures contained in the mobile device. Note
that we explicitly kept this example simple
and minimal, since it will be used to show
how TouchCost works step by step in details.

3 Sample

Sample (Static Analyzer of Multiple Programming LanguagEs) [13,14] is a generic
static analyzer based on the abstract interpretation theory [10]. Relying on com-
positional analyses, Sample combines various heap abstractions and value (e.g.,
numerical) domains. It has already been applied to various value analyses (e.g.,
strings [9], types [13], access permissions [15], and data leaking [26]). It supports
some common numerical analyses through Apron [18], which is a library dedicated
to the static analysis of the numerical variables. Additionally, some heap analyses
are already part of Sample. In particular, [15] adopts a standard abstraction that
binds each abstract reference to its allocation site, while [14] plugs a TVLA-based
shape analysis.

First of all, Sample compiles source code to Simple, the internal language based
on Control Flow Graphs (CFG). Sample contains compilers for Java, Scala, and
TouchDevelop. The Simple program is then passed to the fixpoint engine together
with a heap and a value analysis. This produces an abstract result over the CFG,
that is, an entry and exit state for each statement of the program. This result
is passed to a property checker that produces some alarms if the given property
is not statically proved, or to an inference engine that produces some invariants
(e.g., the access permissions required or guaranteed by a method [15]).

The TouchDevelop compiler was built both for TouchCost, and to apply var-
ious reliability analyses to TouchDevelop scripts.
Simple: Simple contains a minimal set of statements (mainly, variable’s and
field’s assignments and accesses, object instantiations, and method calls), while
conditional statements and loops are represented directly on the CFG. Each
node in a CFG contains a list of (concatenated) statements, while edges may be
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weighted with a Boolean value or not. In particular, there is an edge from n1 to
n2 if the first statement in n2 may be executed directly after the last statement
in n1. We call an edge from n to some other node an out-edge of n. Weighted
edges represents a conditional jump: the edge is traversed only if the expression
evaluated by the last statement of the block is true or false depending on the
edge’s weight. Therefore, the out-edges of a block can be (i) one edge without
any weight, (ii) two weighted edges (one with weight true and the other one
false), or (iii) none to represent an exit point of the current action.
Loops: In Simple, the different TouchDevelop loops (namely, while, for, and
foreach) are translated into specific CFG structures.

A while expr do block loop is translated to (i) an initial block where expr is
evaluated with two out-edges, (ii) the true edge points to a node containing block,
and this points back to the block evaluating expr, (iii) the false edge points to
the block representing what is after the while loop.

for loops are translated in a similar way, initializing the counter to 0 before
entering the loop, evaluating once the bound of the for loop before entering it,
and incrementing the counter by one inside the loop body.

The foreach loop is equivalent to (i) taking a snapshot of the collection just
before the execution of the loop, and (ii) iterating over the elements of this

Fig. 2. The CFG of our running
example

snapshot. The iterations are performed by
incrementing a counter and accessing the
elements contained in the snapshot of the
collection.
Running Example: The code introduced in
Figure 1 is compiled to the CFG in Figure
2. In particular, we can see that (i) the first
block initializes i to zero and copies the col-
lection, (ii) the block in the middle contains
the loop guard, (iii) the block representing
the body of the loop extracts the i-th element
from the copy of the collection, execute the
body of the foreach loop (that is, it prints
the current picture), and increments i by one,
and (iv) the false evaluation of the Boolean
condition of the guard leads to exit of the
action.

4 PUBS

TouchCost adopts PUBS [2] to infer upper bounds on loops. In this Section,
we briefly recall the main ingredients of PUBS. PUBS takes as input a cost
relation system, and it returns an upper bound of the cost of this system.

Fist of all, we define the basic ingredients of cost relations. A linear expres-
sion has the form

∑n
i=1 ai ∗ xi + b. A linear constraint is defined as l1 ≤ l2
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where l1 and l2 are both linear expressions. A guard is a set of linear constraints,
and it represents their conjunction. Basic cost expression e are then defined as
follows:

e ::= r | nat(l) | e1 + e2 | e1 * e2 | logn(e) | ne | max(S) | e-r

where l is a linear expression, r is a real positive number, S is a set of basic cost
expressions, nat(l) returns max(0, l).

These expressions are the basic blocks to define cost relations. A cost relation
is a pair 〈C(x) = exp+

∑k
i=1 Di(yi), φ〉 where C and Di are cost relation symbols

(that is, symbols representing the costs of an action or a loop), exp is a basic
cost expression, x and yi are distinct variables, and φ is a guard. C(x) = exp +
∑k

i=1 Di(yi) will be called the cost body in the rest of this paper. Finally, a cost
relation system is a set of cost relations.
Running Example: Consider now the running example we introduced in Figure
1, and in particular its CFG in Figure 2. For the sake of simplicity, let us suppose
that the cost of one iteration of the loop body is 1. In addition, the cost relation
system about this block should represent the fact that i is incremented by one,
and in order to execute this block i < ccoll.count() must hold. All these facts are
represented by the following cost relation:〈

C(old_i, pics_count) = 1 + C(i, pics_count),
{i == old_i + 1, old_i < pics_count}

〉

where C represents the cost of the foreach loop in terms of the initial value of
i, pics_count the initial number of pictures in the mobile device, and old_i the
initial value of i and i its final value. Instead, if i < ccoll.count() does not hold,
the cost of the execution of the loop is zero: 〈C(old_i, pics_count) = 0, {old_i ≥
pics_count}〉. Finally, we represent that, before entering the loop, i is equal to
zero: 〈Cl(pics_count) = C(0, pics_count), {pics_count ≥ 0}〉 where Cl represents
the cost of the whole loop.

The goal of TouchCost is to apply Sample to infer automatically these cost
relations starting from the program in Figure 2. PUBS then solves these cost
relations leading to the cost nat(pics_count), that is exactly the cost of our loop.

5 TouchCost

This Section presents the components developed in TouchCost to effectively ap-
ply the approach presented in the previous sections to TouchDevelop scripts.

Given a TouchDevelop action, TouchCost (1) compiles it and augments its
CFG, (2) applies Sample to this augmented CFG, (3) extracts from the abstract
results a cost relation system for each loop, and (4) pass these cost relation
systems to PUBS, obtaining their upper bounds.

5.1 Augmented Control Flow Graph (1)

Identifying Loops: First of all, given a control flow graph we have to identify
the structures that represent loops. We traverse the control flow graph and we
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consider the edges that have two deterministic (that is, non-weighted) in-edges
and two weighted out-edges (one true and one false). Such node is potentially
the initial node of the loop. Then, starting from the out-edge labeled true, we
check if there is a cyclic path coming back to this node. If this is the case, we
have found a loop.
Augmenting the CFG: We need to infer relations between the entry and
the exit values of variables. Unfortunately, a numerical domain usually does
not infer such information, since the old value of a variable once this has been
assigned. For instance, in the running example of Figure 1, once we increment
i by one, we do not know that the value at the end of the loop is equal to
the value at the beginning incremented by one. We have then to make a copy

Fig. 3. The augmented CFG

of all the variables modified inside a loop at the be-
ginning of the loop body. For instance, the running
example requires a cost relation that tells us that
i at the end of the loop is equal to its initial value
plus 1. So we introduce a variable old_i to represent
the value of i at the beginning of the loop’s body.

Therefore, for each loop in the CFG, we find all
variables V that are assigned inside the loop, and we
add a new assignment old_v := v at the beginning
of the loop for each variable v ∈ V.
Running Example: Figure 3 depicts the aug-
mented CFG we obtain for the CFG our running
example of Figure 2.

5.2 Sample’s Analysis (2)

In order to run Sample on the augmented control flow graph, we have to instan-
tiate the analysis with a heap and a numerical analysis.
Heap Analysis: Since TouchDevelop programs do not usually perform signif-
icant computation over the heap, and this rarely influences how many times
loops are iterated, we apply a standard and efficient allocation-site based heap
abstraction [4]. In addition, we build a precise model of the collections and the
mobile environment (e.g., to distinguish the number of elements in the songs’
collection from the pictures’ collection).
Numerical Analysis: Sample has already been applied to various value analy-
ses. Apron [18] is a library that provides a standard interface to various numerical
domains, and it is plugged into Sample. In our analysis, we apply Linear equal-
ities [19] to infer input-output relations that will be used to build up the cost
relation system that is passed to PUBS.
Running Example: Consider the running example introduced in Figure 1. The
heap analysis translates the method call ccoll.count() to the symbolic identifier
we use to represent the number of elements in ccoll (represented by ccoll_count).
This allows us to infer that the loop guard is i < ccoll_count. In addition, the
heap semantics infers that ccoll_count == pics_count (where pics_count rep-
resents the number of pictures in the mobile device at the beginning of the
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execution), since ccoll is a copy of media.pictures, and the linear equalities do-
main infers that, inside the loop body after the increment of i, the constraint
i == old_i + 1 holds.

Note that, even on this simple running example, we need a sound static anal-
ysis that defines the semantics of TouchDevelop APIs, and in particular of its
data structures. For instance, we need to semantically track that when we copy
media.pictures and we assign it to ccoll we have that ccoll_count == pics_count.

5.3 Extracting Cost Relation Systems (3)

At the end of the analysis, Sample returns an abstract entry and exit state
for each statement in the program. Using this information, we extract the cost
relation systems that will be passed to PUBS.

First of all, we identify all the loops in the CFG as described in Section 5.1.
Then for each loop we build up a cost relation system that is aimed at computing
how many times the loop is iterated.

Cost Relations of Loops: We introduce two cost relation symbols for each
loop: Cl represents the whole loop, while C represents the loop’s iterations start-
ing from a given state (e.g., after i iterations). The parameters of these two
symbols are the variables involved in the guard of the loop, or in its body.

For the cost symbol C, the cost body adds the cost of one iteration of the
loop body to the cost of the following iterations. The body of the loop could
contain four different patterns of CFG structures, and they will be discussed in
the following of this Section. For now, we suppose that the cost symbol repre-
senting block is provided by cost(block). Formally, the cost body is then defined
by C(old_x) = cost(block) + C(x), where old_x and x represent a sequence of
variables old_x and x, respectively. For all the variables that are not assigned
in the loop body, we have that old_x = x. For all the other variables, we try
to extract an update rule from the information inferred by the linear equality
domain after the last statement in the loop body.

Through the analysis introduced in Section 5.2 on the augmented CFG de-
scribed in Section 5.1, the state inferred by Sample after the last statement in
the loop body contains all the relations between the values of the variables at
the beginning and at the end of the execution of one iteration of the loop. Since
we have applied the linear equalities domain, we represent this state as a set of
linear equalities. We want to extract from this set only the constraints that in-
volve variables relevant to compute the cost of the loop. We also want to extract
information that is (i) strong enough to infer the cost of the loop, and (ii) as
little as possible to preserve the efficiency of the analysis. This means that we
consider only the variables that influence how many times a loop is iterated.

We start from all the variables appearing in the loop guard. Then, for each of
these variables, we try to find an update rule involving this variable. By update
rule of variable x we mean a constraint that contains both x and old_x. Then,
given a variable v, we consider all the equalities involving v and old_v. As a first
try, we consider only the linear constraints that are fully described by v and
old_v, that is, constraints of the form v == a ∗ old_v + b. Such constraints are
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often strong enough to infer the cost of the loop. If PUBS fails to compute the
cost of the loop using these constraints, we consider all linear constraints of the
form v == expr, where expr is a linear expression containing old_v.

These update rules are plugged in the cost relation of C together with the loop
guard b. Formally, the cost relation for C is defined by 〈C(old_x) = cost(block)+
C(x),UR ∪ {b}〉 where UR represents the set of update rules we extracted, and
cost represents the cost symbol or variable of the loop body. This cost relation
represents one iteration of the while loop. We add then a cost relation to represent
when we exit from the loop. Formally, 〈C(x) = 0, {!b}〉.

Finally, we have to introduce a cost relation to represent the whole execution of
the loop. This is done by a cost relation that represents that the cost of the whole
loop Cl is equal to the cost of the loop C when the parameters are the values
of the variable before entering the loop for the first time. Therefore, for each
variable v involved in the loop, we look at all linear constraints IV containing v
that the numerical analysis inferred at the program point just before the loop.
We then build up a cost relation 〈Cl(x) = C(x), {IV}〉.
Cost Relations of Other CFG Structures: Inside the loop body, we could
have (i) one block, (ii) a sequence of blocks, (iii) a nested loop, or (iv) a
conditional.

In the first case, we represent the cost of a single block with a cost variable
(that is, the block at program point p is represented by a symbol cp). A sequence
of blocks is represented by the summation of the cost symbols of each block. For
a nested loop, we extract the cost relations of the inner loop, and we use the
cost symbol Cl to represent the whole inner loop in the body of the outer loop.

Finally, if we have a conditional, we introduce Ct to represent the true branch,
and Cf for the false branch. Then we add (i) 〈Ct(x) = cost(block1), {b}〉 to
represent the true branch, (ii) 〈Cf (x) = cost(block2), {!b}〉 to represent the false
branch, and (iii) 〈Ci(x) = Ct(x)+Cf (x), {}〉 to represent the whole if statement.
Boolean Conditions: Up to now, we have simplified the presentation by using
b and !b in the guards when dealing with loops and conditionals. Indeed, PUBS
allows only linear relations in these guards. Therefore, we consider only the
Boolean conditions of the following form:

c ::= true | false | e1 <op> e2 | ! c | c1 AND c2 | c1 OR c2

where e1 and e2 are linear expressions, and < op > ∈ {! =, ==, ≥, ≤}. All
these conditions have to be translated into linear integer expressions to fulfill
PUBS’ syntax. true is translated to 1 == 1, and false to 0 == 1. expr1 <op>
expr2 is already a linear expression, while ! c is translated to a positive form
by using the De Morgan’s laws if c is an AND or OR expression, by negating
true or false, or by modifying <op> if the condition is a comparison of linear
expressions. Linear integer conditions with < or > as comparison operators are
translated to equivalent conditions with ≥ or ≤ as operators.

AND and OR conditions lead to several cost relations, since we cannot represent
a conjunction or disjunction directly in PUBS guard. These are semantically
equivalent to translate the conditions into equivalent CFG structures, and the
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cost relations for these structures are obtained as described in this Section pre-
viously.

Note that we may not be able to translate the original Boolean condition to
integer linear relations that are supported by PUBS (e.g., if the original condition
was not linear). In these cases, we simply omit the Boolean condition and its
negation from the guards. In this way, we introduce some approximation (that
is, the fact that a particular part of the code is executed only if the condition
holds), but we preserve the soundness of the analysis.
Running Example: Consider now the running example of Figure 1. First of
all, we have 〈C(old_i, ccoll_count) = 0, {old_i ≥ ccoll_count}〉. This represents
the situation in which the execution exit the loop. Instead, one iteration of the
loop is represented by〈

C(old_i, ccoll_count) = cb + C(i, ccoll_count),
{i = old_i + 1, old_i ≤ ccoll_count − 1}

〉

In fact, the linear equalities domain infers that i = old_i + 1, and cb rep-
resents symbolically the cost of the loop body. In addition, the loop guard
old_i < ccoll_count is translated to old_i ≤ ccoll_count − 1. Finally, the cost
of the whole loop is〈

Cl(i, ccoll_count) = C(i, ccoll_count),
{i == 0, ccoll_count == pics_count}

〉

The numerical domain infers that initially i==0 and ccoll_count==pics_count.

5.4 Using PUBS (4)

The last step of TouchCost is to pass the cost relation systems we inferred for
each loop to PUBS. The output of PUBS could be: (i) a sound upper bound of
the given cost relation system, or (ii) a failure. In the second case, we do not
know if this failure was due to some information that is not precisely tracked by
PUBS, or if the analyzed loop may not terminate.
Running Example: PUBS returns nat(pics_count) when we apply it to the
cost relation system we inferred for our running example in Section 5.3. This is
the exact cost of the loop, since it is iterated a number of times equal to the
number of pictures we have in our mobile device (that is, pics_count).

6 Experimental Results

Table 1 reports the experimental results. We ran the experiments on an Intel
Core 2 2.83Ghz QUAD CPU with 4GB RAM running Ubuntu 12.04. Column
Type reports the script category we target. In particular, all denotes all the
scripts published on the cloud before May, 16th 2013 containing loops, while the
other categories refer to the scripts (always containing loops) that are tagged
with the given name. Tags are used to categorize different types of scripts, and
we used them to investigate how TouchCost behaves when dealing with dif-
ferent types of scripts. Column #scr. reports the number of scripts, LOC the
number of lines of code, #loops the number of loops, Comp. the number of
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Table 1. Experimental results

Type #scr. LOC #loops Comp. Prec. St TCt Avg.LOC Avg.St Avg.TCt
all 5 405 1 222 250 19 035 13 403 70.4% 10 153 4 293 226 1.88 0.79
entertainment 164 42 485 553 419 75.8% 459 145 259 2.80 0.88
games 161 54 754 973 764 78.5% 749 274 340 4.65 1.70
libraries 129 23 548 405 236 58.3% 314 94 183 2.43 0.73
tools 82 22 460 374 132 35.3% 200 48 274 2.44 0.59
lifestyle 78 23 903 179 126 70.4% 135 55 306 1.73 0.70
music 59 9 163 149 100 67.1% 44 29 155 0.74 0.49
education 56 9 710 158 131 82.9% 71 25 173 1.27 0.45
gamelibraries 47 8 002 189 101 53.4% 237 47 170 5.04 1.00
Sample root 73 8 964 233 167 71.7% 94.4 56.9 123 1.29 0.78

loops for which TouchCost computed the cost, Prec. the precision rate (that
is, Comp./#loops), St the time spent by Sample to perform the heap and
numerical analysis, TCts the time spent by TouchCost to build up the cost
relation systems and use PUBS to solve them, Avg.LOC the average number of
lines of code per scripts, and Avg.St and Avg.TCt the average time of Sample
and TouchCost analysis per script, respectively. All the times are in seconds.

In this Section, we refer to the ratio Comp./#loops as the precision of the
analysis. We have manually inspected the cost estimation inferred on the sample
scripts (167 estimations on 230 loops, see Section 6.2), and we found out that we
always inferred the most precise estimation for the loop. Therefore, we believe
that this ratio is a good estimation of the precision of our analysis.

6.1 Global Performances and Precision

We first perform a quantitative analysis considering row all in Table 1. This
benchmark consists of 5 405 scripts, and more than 1 million LOC. In terms of
performances, the overall analysis (that is, S t.+TC t.) took 4h00’06" to analyze
1.222 KLOC (about 2.5 seconds per script). In terms of precision, TouchCost
inferred the cost of about 70% of the existing loops. On the one hand, this
result underlines that, on average, TouchCost automatically infers the cost
of the most part of existing loops. On the other hand, different categories of
scripts expose different levels of precision. For instance, games scripts are usually
relatively big, and TouchCost compute the cost of almost the 80% of the loops
in these scripts. Instead, tools scripts seem to be more challenging, since the
precision rate for this category is around 35%. In addition, one could expect
that bigger scripts contain more complex code, and therefore TouchCost is less
precise on such scripts. Indeed, our experimental results show that there is no
correlation between the length of the script and the precision of TouchCost. For
instance, gamelibraries scripts are smaller than the average, but the precision
of TouchCost is around 50%.

6.2 Precision on TouchDevelop Sample Scripts

We now inspect manually the precision of TouchCost when dealing with
TouchDevelop sample root scripts containing loops. TouchDevelop samples
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action main() {
// Initialize the board
while true do {
// Update the board
time→sleep(0.01);

}
}

(a) Script iuks

data _board : Board
data _bubbles : Sprite Set
data _touch : Sprite
action pop bubbles () {

var p := _board→touch current
_touch→set pos(p→x, p→y)
foreach bubble in _touch→overlap

with(_bubbles) do
...

}

(b) Script uigca

action TouchList (...) {
var count := 0
var b := true
while b do {
//Perform some computation
count := count + 1
if count = 5 then

b := false
}

}

(c) Script vrgt

action show(board: Board) {
duration := 5;
dt := time→now;
while time→now→subtract(dt) < duration do {
//Show something to the user

}
}

(d) Script jhyg

action getConfCalls (s : DateTime, e : DateTime) {
app := social →

search_appointments(s, e );
foreach a1 in app
do {
//Extracts information

}
//Build up the conference call
//Call the people

}

(e) Script mpuj

action main() {
b := true ;
while b do {

code→play_round;
b := wall→
ask_boolean("Try␣again?", " ... " );

}
}

(f) Script avpm

action b () {
for 0 ≤ i < 999999 do {

if i / 2 = math → floor(i / 2) then {
wall →

set background(colors → white)
time → sleep(1) }

else {
wall →

set background(colors → black)
time → sleep(1) }

}
}

(g) Script lypy

var len := 0
while len ≥ 0 do {

...
len := len − 1

}

(h) Script hyax

Fig. 4. Case studies

(https://www.touchdevelop.com/pboj) contain a significant set of scripts de-
veloped by the TouchDevelop team to show the main features of this language.
Row sample root in Table 1 reports the experimental results we obtained on
these scripts. We analyzed 73 scripts (about 9.000 LOC). All together, these
scripts contain 233 loops, and we failed to compute the cost of 66 loops.
Non-terminating Loops: First of all, we noticed that some of the loops are
not necessarily terminating, and therefore the results of TouchCost are precise.
We have identified three main reasons of non-terminating loops.
User inputs: Some loops are iterated until the user provides a “good” input.
Consider for instance script avpm2 in Figure 4f. Action main iterates a while
loop until the user says that he wants to stop. Statically, this loop may be non-
terminating, since we do not know when the user will decide to stop.
while true loops: Another type of loops for which TouchCost cannot compute
their cost is represented by script iuks in Figure 4a. TouchDevelop provides a
specific gameloop action that “is triggered by a timer approximately every 50
2 The code of <script> is available at https://www.touchdevelop.com/<script>

https://www.touchdevelop.com/pboj
https://www.touchdevelop.com/<script>


TouchCost: Cost Analysis of TouchDevelop Scripts 121

milliseconds”3. Nevertheless, several users prefer to implement their own game
loop iterators. In this way, they can establish exactly the triggering rate by
adding a time→sleep statement inside the while loop.
Time constraints: Another recurrent pattern is exposed by script jhyg in Figure
4d. In this case, a loop is iterated during a given amount of time (e.g., 5 seconds).
This is obtained by (i) recording the time just before entering the loop (variable
dt), (ii) checking how much time is passed each time the loop is iterated, and
(iii) exiting the loop if this subtraction exposes that that enough time (that is,
at least duration seconds) has passed. Even though in this case we know that the
loop will eventually terminate (since the time is always strictly increasing), we
cannot know statically how many times the loop is iterated.
Approximation: There are some cases in which we fail to infer an upper bound
on the number of iterations because of a too rough approximation. In particular,
we identified two main sources of imprecision.
Collections: Figure 4b reports an excerpt of action popbubble of script uigca.
This action is aimed at popping a bubble that is touched by the user. There-
fore, it contains a foreach loop that iterates over the bubbles that overlaps with
the existing bubbles. Unfortunately, the abstract semantics of Sprite.overlap in
Sample is too imprecise, and we fail to infer any upper bound on this loop. Our
experience shows that this situation is common to various scripts, and it is the
main source of imprecision of TouchCost. Therefore, we are currently working
on more refined analyses for TouchDevelop analyses [7], and we expect it will
fix this issue. Nevertheless, it will slow down the analysis, and we will have to
study in which cases it is worth to apply more refined analysis.
Disjunctive information: In few cases TouchCost fails to compute the cost of
a loop because of complicated disjunctive invariants. One of these cases is the
action TouchList of script vrgt sketched in Figure 4c. The loop is iterated 5
times, but this is obtained by (i) a Boolean flag b as loop guard, (ii) counting
the number of iterations through a variable count, and (iii) setting b to true when
count = 5. In order to compute that this loop is iterated 5 times, we would need
to track disjunctive information through trace partitioning [21] that is already
supported by Sample[16], and translate this information to a cost relation system.

6.3 Applications of TouchCost

Finally, we inspect the results of the analysis investigating some particular cases
to study possible applications of TouchCost. In particular, since TouchDevelop
scripts are executed on mobile devices usually connected to the cloud, this in-
formation can be used at runtime to decide to move the execution to the cloud
if the application is too expensive w.r.t. the available resources. In addition,
TouchCost provides useful information to debug programs of novice users.
Moving the Execution: We start by considering script mpuj in Figure 4e. This
is the most popular script on the cloud: on May, 2013 it counted more than 2300
users and 40.000 runs. In addition, it is the evolution of slji, that counted more
3 https://www.touchdevelop.com/help/events

https://www.touchdevelop.com/help/events
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than 450 users and 10.000 runs. This script extracts the conference calls from the
calendar of the mobile device, and on request it dials the numbers of the people
involved in the conference calls. It consists of 15 actions, and only getConfCalls
contains a loop. Figure 4e sketches the main components of this action. The body
of the loop extracts the subject and the location of the conference calls, and it
builds up some strings to represent this information. TouchCost infers that the
loop is iterated a number of times equal to the number of elements contained
in the collection returned by social→search_appointments(start, end). At compile
time, the number of elements depends on start and end, two parameters of the
action whose value is unknown. Instead, at runtime, when the action is called, we
know the actual values of these two parameters. Then we can use this information
to establish exactly how many times the loop is iterated when the action is called.
So the runtime environment could decide to move the computation to the cloud
if the loop requires (e.g., computational) resources that are not locally available.
Wrong Implementations and Bugs: We then investigate some extreme costs.
Since many TouchDevelop users are novices, they sometimes implement a func-
tionality in the wrong way. A quite common example is a loop that is iterated an
enormous number of times. Consider for instance the snippet of code in Figure
4g of lypy. This script is relatively popular, with more than 1000 runs and 100
users. Action b iterates 999 999 times a loop that changes the color of the back-
ground, and put the device to sleep for 1 second. The user intended to write an
endless loop, and the cost analysis infers that the loop is iterated 999 999 times.

Finally, the cost information can expose some bugs as well. Script hyax con-
tains three actions (Generate, Generate2, Generate3) that follow the pattern
sketched in Figure 4h. TouchCost correctly infers that the loop is iterated only
once. This is definitely a bug, and even the various versions of this script (see
scripts fosieeps, nlqo, and lwnlb) are all bugged. Generally, when TouchCost
infers that the loop is iterated only once, we may issue an alarm and ask the
developer to check if this behavior is intended, or if it is a bug.

7 Conclusion

In this paper we presented TouchCost, an automatic tool that combines a
generic static analyzer (Sample) and an upper bound solver (PUBS) to automat-
ically compute the cost of loops in TouchDevelop scripts. TouchCost represents
the first extensive application of automatic static cost analysis to real programs.
The experimental results show that TouchCost is both scalable and precise,
and we envision possible applications of the inferred cost information. Mobile
programs are a particularly appealing target for cost analysis, since they run on
devices with limited local resources, but with a continuous access to the cloud.

Acknowledgments. Special thanks go to Samir Genaim for his support with
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