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Abstract. We study models of software systems with variants that stem
from a specific choice of configuration parameters with a direct impact on
performance properties. Using UML activity diagrams with quantitative
annotations, we model such systems as a product line. The efficiency of
a product-based evaluation is typically low because each product must be
analyzed in isolation, making difficult the re-use of computations across
variants. Here, we propose a family-based approach based on symbolic
computation. A numerical assessment on large activity diagrams shows
that this approach can be up to three orders of magnitude faster than
product-based analysis in large models, thus enabling computationally
efficient explorations of large parameter spaces.

1 Introduction

User-configurable parameters of software systems often have a critical impact
on non-functional properties such as performance and energy consumption. For
example, an elastic cloud-based application may dynamically change the number
of active virtual machines depending on the current workload conditions, by
setting appropriate threshold-based rules in the virtualization framework. In
embedded systems, such as those employed in automation, there may be a trade-
off between energy consumption due to increasing speeds and the capability to
process jobs with given time constraints (e.g., [1]).

Run-time analysis can be conveniently employed to find the optimal con-
figuration of parameters to automatically adapt to changing conditions. For
instance, workloads on a web server may be subjected to day/night or week-
day/weekend patterns. In this case, the availability of a software model can be
particularly beneficial: When a new operating condition is detected in the sys-
tem, a mathematical problem can be defined, whose solution gives the values
of the user-tunable parameters that satisfy certain given criteria of optimality
with respect to the current situation, for instance a performace/cost trade off.
Typical solution methods essentially involve repeated analyses using different
feasible configurations. This makes the analysis difficult when the evaluation of
a single configuration is expensive and/or when the parameter space is large. In
particular, applicability of the approach at run-time may be severely hindered if
the time constraints for re-configurations and adaptations are stringent enough.
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This paper proposes a framework for the efficient evaluation of software de-
signs with large parameter spaces. We consider a class of UML activity diagrams
(ADs) to model systems which can be reasonably described as workflow pro-
cesses, such as real-world data-centers [2], service-oriented architectures (e.g.,
[3]), and automation systems [4]. To capture non-functional properties, ADs are
augmented with performance-related annotations (such as the duration to exe-
cute an activity of an activity node) and interpreted as continuous-time Markov
chains, along the lines of established routes in model-driven software performance
engineering; see, for instance, [5] for a review and [6], [7], and [8], for related
work about the automatic extraction of performance models from ADs. Our
performance-annotated ADs (PAADs) are integrated with software product-line
techniques to precisely capture variability aspects. More specifically, we consider
a delta-oriented approach, where possibly many variants can be generated as
a result of applying changes (i.e., deltas) to a core PAAD [9]. This is a novel
application of delta modeling, which has so far been used to represent static
variability of software architectures [10] and Java programs [11].

A straightforward solution technique requires a separate analysis of each
variant—the so-called product-based (PB) evaluation. In this paper, we consider
a family-based (FB) approach [12]. The configurable parameters of the model
under study, inferred by the kinds of delta operations defined on the AD, are
used for obtaining a solution in symbolic form. In this way, performance indices
can be simply obtained by evaluating a polynomial expression that explicitly de-
pends on the configurable parameters. The evaluation may become faster than
the PB analysis, which is based on the numerical inversion of a matrix of size
equal to the number of nodes in the PAAD. By numerical experimentation we
show that our FB approach is up to three orders of magnitude faster than PB
analysis, with a tendency to become increasingly more convenient as the model
size grows. Although family-based product line analyses have been introduced
for type checking [13-15] and model checking [16-18], for the first time this
approach is considered for the efficient performance modeling of product lines.

Related work. This paper is most closely related to [19], where an approach based
on parametric probabilistic model checking of software product lines models as
annotated UML sequence diagrams is proposed. This leads to a symbolic expres-
sion that encodes the dependence of certain properties of interest from variables,
in a manner which is analogous to ours. However, our work is different in that
we consider properties of performance as opposed to reliability /energy. While, in
principle, the model checking algorithm of [19] is also applicable to performance-
related properties, it may not be efficient. This is due to the potentially massive
state space size involved in typical performance models, which generally consider
contention for resources by many users, unlike the single-user model in [19]. Un-
der these conditions, the state space size grows (at worst) exponentially with the
number of users, which can make symbolic computation infeasible. In our work,
instead, this problem is basically circumvented by observing that the classes
of models of our interest admit an efficient solution technique that does not
necessitate state-space enumeration altogether.
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In [20, 21], UML-annotated software product line designs are translated into
layered queueing networks [22] and solved with a PB analysis. While layered
networks are more expressive than our model, as, e.g. they capture simultaneous
resource possession, they do not admit an efficient FB analysis.

Paper outline. Section 2 introduces Performance Annotated Activity Diagrams
(PAADs). In Section 3, PAADs are integrated with the delta modeling approach
to handle variability. In Section 4, we present our FB analysis. The experimental
comparison between the FB and PB evaluation is reported in Section 5, followed
by concluding remarks in Section 6.

2 Foundations

Graphically, a UML AD is visualized as a multipartite directed graph. The ele-
ments of interest in our modeling framework are categorized into three different
groups: action nodes essentially describe the smallest possible event in an ac-
tivity; activity edges connect the nodes, expressing possible paths of execution;
and control flow nodes are used to model, for instance, conditional behavior.
Throughout the paper, we shall use the neutral name of job to indicate an el-
ement (i.e., a token) that circulates through the nodes of an activity diagram.
This is to be interpreted, e.g., as a user, service request, or a physical item,
depending on the context of the specific model under consideration.

The following provides a formal definition of performance-annotated activity
diagrams in a manner that is independent from the actual annotation mechanism
that may be used in an implementation. A concrete realization is feasible, for
instance with the MARTE profile (see [23]) and its PaStep stereotype (e.g., [24]).

Definition 1 (Performance-Annotated Activity Diagram). Let V be the
set of all nodes. A performance-annotated activity diagram (PAAD) is a tuple

PAAD = (V, B, \, 1),

where VCV, ECV xRsoxV, A:V = Rxg, and p: V = Ryy.

This definition specifies a directed graph annotated with three distinct pieces
of information. Each edge e € FE has a non-negative real, giving the probability
with which that path is taken by a job in the source node. Each node v € V'
is associated with a rate, u(v), denoting the average speed at which a job is
processed in v; A\(v), instead, denotes the workload, the speed at which jobs
arrive from the external world. This may model, for instance, users that issue
invocations to the service described by the AD.

We wish to point out that Definition 1 does not explicitly consider initial,
final, and merge nodes. Similarly to previous work [24], we argue that these are
not necessary when an AD is to be interpreted as a performance model. For
instance, Figure 1 shows a sample AD (left diagram), and its representation
in our annotated PAAD format (right diagram), removing the nodes that are
not supported and redirecting the edges appropriately. For instance, the initial
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(a) Sample Activity Diagram (b) Annotated PAAD

Fig. 1. Running example

node, which models the start of the activity, is replaced by a nonzero workload
into node 1. This PAAD will be used as a running example throughout this
paper. For each action node v, the top-left label gives A(v), the top-right label
is u(v), whereas the label in the middle indicates the node itself. The edges are
instead labeled with their associated probabilities. For example, after an element
is processed in node 4, it will return to node 1 with probability 0.5. Thus, with
probability 0.5 it will leave the system. This captures the intended design in the
AD diagram, where one outgoing edge of the decision node leads to a final state.

Of all the elements of UML ADs that are not used in Definition 1, we remark
the absence of fork/join nodes. Unfortunately, their performance interpretation
leads to models that do not enjoy efficient FB solutions. Although we leave
further investigation of this matter to future work, we observe that Definition 1
allows us to capture models considered in the literature such as service-oriented
systems (e.g., [25-27]) and manufacturing job-shops [1, 28].

We now provide conditions to be enjoyed by a PAAD to yield a meaningful
performance model.

Definition 2 (Well-formedness). A PAAD is well-formed if and only if the
following conditions hold:

i) There exists at least one v € V' such that A(v) > 0;

it) For allv € Vit holds that 3, , ,hepp < 1;
iii) For all v,v" € V, for any (v,p,v"), (v,q,v") € E it holds that p = g;
w) There exists at least one v € V' such that 3,  ,nepp < 1.

Assumption i) is required to ensure that the model receives requests starting
at least from one node. Assumption ii) corresponds to the natural interpretation
of edge labels as probabilities. Assumption iii) requires that there is at most
one directed edge between any two nodes, so that the probability with which
node v’ is visited after v is not ambiguously defined. Finally, iv) requires that,
eventually, jobs leave the workflow. This is a necessary condition for a steady-
state behaviour. Otherwise, the system would keep accumulating jobs.

The following definition permits the analysis of a (well-formed) PAAD. We
call this product-based evaluation as it concerns a given, concrete PAAD, unlike
family-based evaluation, which will be introduced later in the paper.
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Definition 3 (Product-based evaluation). The product-based evaluation of
a PAAD is given by the following system of linear equations

(I — PT)y = A, (1)

where I is the identity matriz, X is the (column) vector with elements A(v). This
1s ordered in the same way as nodes appear in the matriz P, which is defined as
P = (py), for all v,v" € V with

_Jp if(v,p,v) € E,
Por = 0 otherwise.

Finally, 7 is the vector of unknowns, with elements denoted by ~(v).

In essence, we are interpreting a PAAD as a continuous-time Markov chain
that underlies a Jackson-type queueing network [28], by giving the following
semantics. A(v) is the rate of arrival of jobs at the node v, which is assumed
to be a Poisson process. Thus, for A(v) > 0, 1/A(v) is the inter-arrival time
between two jobs, which is exponentially distributed. If A(v) = 0, node v does
not have exogenous arrivals and may only process jobs arriving from other nodes,
according to the topology of the workflow. Jobs at action node v are served by
a processing unit with rate p(v) > 0. Therefore, 1/u(v) is the average service
demand of a job at node v. When the node is busy serving a job, the other jobs
accumulate in an unbounded queue and are scheduled according to a first-in first-
out discipline. P is the routing probability matriz, defining with which probability
a job in node v, after being serviced, moves to any other node v’. Finally, v gives
the effective arrival rates, which take into account the actual traffic incoming at
node v due to the exogenous arrival as well as to the feedback from other nodes.
With obvious ordering, in our running example we have

0.0 0.3 0.7 0.0 0.2 15
0.0 0.0 0.0 1.0 0.0 2.0

P=1000.00010 A= 100 H=130 (2)
0.50.0 0.0 0.0 0.1 35

Once the system (1) is solved for ~, the steady-state behavior of the network
is completely characterized (e.g., [29]). Specifically, the following indices can be
computed for any v € V.

— v(v) is the throughput, i.e., the rate at which jobs are served at node v.
— The utilization of node v, denoted by p(v), i.e., the probability that the node
is busy serving jobs, is given by:

p(v) =y(v)/ ().

— The queue length at node v, denoted by L(v), i.e., the number of jobs at
node v including those in service, is given by

L(v) = p(v)/(1 = p(v)). 3)
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— Using Little’s law, the average response time of jobs at node v, denoted by
W (v), is given by
W(v) = L(v)/v(v).

Response times along paths of the PAAD can be computed similarly using
the same law.

In our numerical evaluation in Section 5, we will consider the average queue
length in the network as the metric of interest. This is simply obtained by com-
puting > oy L(v)/|v|. For instance, solving (2) yields

v = [0.50 0.15 0.35 0.60] "

which leads to an average queue length of 0.23 customers in the steady state.

3 Variability of PAADs

In this section, we discuss how to model variability aspects of PAADs using
delta modeling. Delta modeling is a modular, yet flexible variability modeling
approach on the artifact level (in contrast to feature models which live on the
requirements level) and allows capturing closed as well as open variant spaces. We
consider a core PAAD and an associated set of deltas [9]. Each delta contains a
set of basic operations to be performed on a PAAD, such as the addition and the
removal of a node, or the modification of parameters such as the probabilities
of an edge. Thus, applying a delta to the core yields a new PAAD wariant,
which has performance characteristics that can be numerically analyzed using
the product-based evaluation in Definition 3.

In addition, from a core model with an associated set of deltas we generate
a 150%-model. This is an over-saturated variant representing the whole product
line which, in general, does not correspond to a concrete variant of interest to the
modeler. However, we define a solution method based on symbolic computation
yielding an expression that directly relates a performance index (such as the
average queue length) to all the model parameters that are at least altered once
by any of the deltas. When such a symbolic expression is evaluated for the
parameters of a specific variant, it returns the actual performance index for that
variant. This allows the re-use of the same symbolic expression for all variants,
unlike the numerical solution with product-based evaluation.

We start with defining all possible atomic delta operations on a PAAD.

Definition 4 (PAAD deltas). A PAAD delta is a set of delta operations § C
Op, where
Op = {add (vi, Ai, pti) | vi € V, Ay >0, > 0}
U{add (vi,pij,v;) | vi,v; € V,pij >0} U{remv|veV}U{reme|ec &}
U {mod \(v;) by Aj | v; € V,\; >0} U {mod p(v;) by pj | vi € V, pu; > 0}
U{mod (vi, pij,v;) by aij | (vi, pij,v5) € €,q55 > 0}
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When an edge is added, its associated probability must be strictly positive. This
is without loss of generality because an edge with probability zero essentially
corresponds to the case where no edge at all is connecting two nodes. For the
same reason, when a service rate or a probability are modified we require strictly
positive values. This is not the case for arrival rates, so long as there exists at least
a node with a positive arrival rate. The modification of values is a simplification
since it can also be encoded by removing node or edge and adding it with the
desired rate or probability, respectively.

For simplicity, in this paper we only consider a single delta to generate a
PAAD variant. This is without loss of generality, since the effect of a set of
deltas can be combined into a single composite delta by defining an appropriate
delta composition operation. In order to ensure that the application of such a
delta leads to a well-formed PAAD variant, we require that the delta is applicable
and consistent. A delta is applicable to a PAAD if all elements (node, edge, rate
or probability) which should be removed or modified exist and if all elements
which are added do not exist. A delta is consistent if it adds, removes or modifies
each element at most once [9]. Furthermore, a consistent delta ensures that are
no dangling edges in the resulting PAAD. This means that removing a node also
causes the removal of all resulting edges. Edges are never added between nodes
that are removed in the delta. If a node of an added edge does not exist in the
core PAAD, the necessary source and/or target edges are also added in the delta.
However, there may be unreachable nodes in the resulting PAAD variant. This
is not an issue for the well-formedness of the result.

As an example of delta modeling on PAADs, we consider deltas d; and ds,
defined as follows:

01 = {rem (4,0.5,1),add (5,0.1,1.0), add (4,0.5,5),add (5,1.0,1)},
02 = {rem (1,0.3,2),rem (2,1.0,4),rem 2, mod (1,0.7,3) by 1.0}.
The following definition formalizes, in a straightforward way, how to obtain a

variant by applying a delta to a PAAD. Figure 2 illustrates the application of
61 and §2 to the core model in Fig. 1.

0.5

(a) 01 application (b) 02 application

Fig. 2. Deltas applied to the core model in Figure 1
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Definition 5 (PAAD delta application). The application of an applicable
and consistent delta 6 C Op to a PAAD = (V,E,\, 1) is defined by the func-
tion PAAD = apply(PAAD, ), where PAAD = (V',E', XN, /). It is recursively
defined as follows.

1. Case § =0: PAAD = PAAD.
2. Case: § =8 U&" AN §',8" € Op: PAAD = apply(apply(PAAD, "), 8").
3. Case: 6 = add (v;, Ai, pui):

A . i / . iy
V=V U {ui} A’(v)‘{x(v) e Mv)—{ﬁ“’) e

4. Case: § = add (v, pij,vj): B = EU{(vi,pij,v;)}-

5 Case:d=remuv: V' =V \ {v}.

6. Case: § =reme: E' = E\ {e}.

7. Case: § = mod A(v;) by A\j: N (v) = Aw) z‘fv 7 i
Aj if v =,

8. Case: 6 = mod pu(v;) by pj: p'(v) = #(v) z'fv 7 Ui
Hj if v =y,

9. Case: § = mod (vi, pij,v;) by ¢ij: E' = (E\ {(vi, pij,v;)}) U{(vi, qi5,0;)}-
We now consider a core PAAD and a set of deltas A. We define the 150%-
model as a special kind of PAAD which has all nodes and transitions that are
introduced or modified by each 6 € A. As discussed, in general the 150%-model
is not a valid PAAD variant, but it contains all the information to retrieve a
variant resulting from the application of any § € A. The origin of a node or
transition from the core model or a specific delta, where it is added, modified or
removed, is traced by means of a labeling function £, defined as follows.

Definition 6 (150%-model). Let PAAD, = (V,, E¢, A¢, i) be the core model
and A be a set of consistent and applicable deltas. Let L = {C} U {6,10 |
0 € A}, with C ¢ A, be the set of labels. The 150%-model is PAAD 50 =
(Vis0, E150, A150, t150, L), where:

Viso = VeU{v |30 € A add (v, \i, i) € 6},

Ei50 = Ec U{(vs,pij,v;) | 30 : add (v, pij,vj) € 6 V mod (v;, qij,v5) by pi; € 6},
A150 and pisg are partial functions of Visg X L defined as

Ac() fl=CAveEV,

Ai if l=38Nadd (v, \;, ;) €6,
Aj if L =0 A mod \(v;) by \j €6,
0 ifl=16N\remuv € 4,

pe(v) ifl=CAv eV,

i if l=0 A add (v, A\, ;) € 9,
14 if L =6 A mod p(v;) by pij €9,
0 ifl=10ANremuv €9,

M50 : Viso X L = Rxq, Ais0(v,1) =

piso : Viso X L = Rx>o, piso(v,1) =
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Fig. 3. 150%-model of the running example

and L is the labeling function defined as

L: Viso U Eys0 — 2%,

L(v) = {C FOEVer 15 add (v, A, i) € 5} U {16 | rem v € 6.

0 otherwise,

J E.,
L(e) = {C fec 7 U{d|addecdtU{ld|remec i}
0 otherwise,
U{d [ mod (vs,qiz,v;) by pij € 6 A e = (vi,pij,v;)}
U {'6 | mod (Uivqijavj) b_ypz] cdNe= (UZaQZ]aU])}

In order to construct the 150%-model, we consider all nodes Vi59 which are either
part of the core PAAD or are added in a delta. The set of edges E15¢ contains
all edges from the core and all edges added by a delta. Since the probability
of an existing edge can be modified by a delta, we add an edge with the new
probability to the 150%-model. As a result, we have an edge with the previous
probability and an edge with the modified one in the 150%-model. The domain
of the functions Aj59 and pi15¢ are pairs, where the first element indicates the
node or edge that is labelled and the second pair specifies a delta label. The
functions map onto the concrete value of the rate that the element has in that
specific delta. Finally, the labeling function £ is necessary in order to identify
the core and the original PAAD variants in order to map the results of the FB
analysis to the PAAD variants. Nodes have three possible labels: C' means that
the node is part of the core PAAD. Since deltas add or remove nodes, we use §
to denote addition, and !§ for removal. The labeling of edges is done in a similar
way. The 150%-model of the running example is shown in Fig. 3. Nodes and
edges occur only in the core model, e.g., L(v) = {C}, are marked with solid
lines; otherwise, dashed lines are used. The labels of the nodes are shown within
the nodes in the bottom-left part.



Family-Based Performance Analysis of Variant-Rich Software Systems 103

4 Family-Based Evaluation

We now discuss the symbolic evaluation of the 150% model. This is accomplished,
in essence, by taking a 150% model and associating a symbolic variable to each
element that is varied in at least one delta. We use the following convention. We
let S denote the set of all symbolic variables, whose elements are indicated by a
superscript ‘x’.

Definition 7 (Family-based evaluation). Let PAAD;50 be a 150% model.
The FB evaluation is given by the solution of

(I = PL)ys = As, (4)

where:

As : Viso > RUS, As(v) {Mso(%c) if Ale L\{C} : Mso(v,1) is defined.

AS otherwise,

fe : Viso = RUS, 1a(v) {pmo(v,C’) if Ale L\{C} : piso(v,l) is defined.

w otherwise,

q Zf 36 = (Ua Q7v/) c E15O A ‘C(e) = {C}a
Ps = (pf;,v’)v,v’eVmov pf},v’ =40 Zf /Ele = (Ua%vl) € E1507
Dy Otherwise.

Informally, As(v) (and similarly, ps(v)) treats as symbolic all the parameters
that are changed by at least one delta operation. Else, the parameter is simply
the concrete value assigned in the core model. Concrete probabilities p, ./ are
assigned when two nodes are associated only in the core model, or when they are
not associated at all. Otherwise, the symbolic variable Py, 1s used.

For an illustrative explanation, let us consider again our running example in
Fig. 1 as core model and let us take A = {4,, dp, I}, with

0e = {mod (1,0.3,2) by 0.4, mod (1,0.7,3) by 0.6},
0p = {mod A(1) by 0.1}, .= {mod p(4) by 4.0}.
For conciseness, we do not show the actual variants obtained through these

deltas (which will have the same topology, but different concrete labels). By
Definition 7, the FB evaluation is

0.0 pi 2 pi30.0 4 1.5

0.0 0.0 0.0 1.0 0.0 2.0
Ps=1000.0 0.0 1.0 As =100 Ps = |30 (5)

0.5 0.0 0.0 0.0 0.1 w

where S = {p7 5,p7 3, A7, p4}. As discussed in Section 2, Ps, As, and ps charac-
terize the performance of a PAAD. For instance, by using the formula (3), the
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average queue length (AQL) will be given by the following symbolic expression:

200% + 1 P12(20A1 +1)
©80A + 60p} 5 + 60pt 5 — 116 4(21p} 5 + 20 5 + 20A;p 5 — 40)
10)6{]9*1‘,2 + 10)\*1‘p>{’3 +1
205pt o — 40u5 + 2045pF 5 + A0NPE 5 + 40NpE 5 + 4
P} (200 + 1)

_ . (6
4(30p3 5 + 31pi 5 + 20A1p7 5 — 60) ©)

AQL =

Let us observe that assigning pj, = 0.3, pj 3 = 0.7, A = 0.2, and pj = 3.5
in the 150% model (5) corresponds to the model in (2), which is the product-
based evaluation of a specific variant. Now, it holds that evaluating the symbolic
expression (6) with such specific values yields 0.23, consistently with the product-
based evaluation. The average queue lengths for the variants obtained by each
of the deltas 6,, dp, and §., can be computed by evaluating the same symbolic
expression, plugging in the appropriate concrete values related to each variant.
Instead, as discussed, product-based evaluation does not allow the re-use of any
computation because the solution based on matrix inversion is done numerically.

We are now left with showing that the symbolic evaluation with the appropri-
ate concrete parameters of a variant always corresponds to the PB evaluation,
i.e., the non-symbolic numerical analysis of a single variant in isolation. The
following definition concretizes a 150% model with respect to a delta §, i.e., it
isolates the elements of the 150% model that are relevant for 4.

Definition 8 (Concretization). Let PAAD150 be a 150% model from a core
PAAD. with a set of deltas A and with symbolic FB evaluation (4). A con-
cretization of PAAD5 for 6 € A is given by (I — PL)yx = \i, where

A1s0(v,0)  if defined,
Ak = (A6 (V))vevises Ak(V) = < Aiso(v,C)  if defined and As0(v,d) is not defined,

0 otherwise,
p"zs),v’ ifpzs,v,v’ g Sa

Pk = (p'lzc),v’)'u,'u’EV15oa p"zc),v’ = p Zf EI@ = (U7p7U/) S E150 N 6 S E(@),
0 otherwise.

The concretization yields a system of equations of the size of the 150% model.
The next theorem is the desired, crucial result of consistency of this paper.
It states that the FB symbolic solution, restricted to those nodes that are in
the variant given by apply(PAAD,,?¢), corresponds to the PB evaluation of
apply(PAAD,, §) itself.

Theorem 1 (Consistency). Let (I — PL)y, = A, denote the PB evaluation of
(Va, Bay Aay tta) = apply(PAAD,,§), for § € A, and let (I — Pl)yx = M\ be the
concretization of the 150% model PAAD1so for §. Furthermore, we define

VO ={veViso: (CE€LW)ANISE L)) VEELK)}.
It holds that i) VO = V@ and i) 7. (v) = v (v) and pa(v) = pg(v), for allv € V2.
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5 Numerical Experiments

We compared the FB symbolic analysis against the PB approach, where each
configuration is solved numerically for a given concrete set of parameter values.
Our experimental set-up was as follows. We considered randomly generated
150% PAAD models with different numbers of nodes and different number of
variables (i.e., the set of elements from S) for their symbolic evaluation. This
is motivated by the fact that, while PB evaluation has a cost which is at best
quadratic with the number of nodes [29], the FB approach requires the evalua-
tion of a polynomial expression. Thus, we wish to test the hypothesis that FB
analysis is increasingly more convenient with larger networks, and to assess the
impact of the number of variables on the length of such polynomials and thus
on their evaluation time. Clearly, a trade-off must be struck between the degrees
of freedom and the effectiveness of the FB approach, as the cost of such form
of symbolic computation is clearly dependent on the number of variables [30].
Notice, however, that each symbol represents a parameter that takes values in
the reals. Thus, even a single variable may represent infinitely many variants.

Let n denote the total number of nodes in the FB evaluation, i.e., n = [Vi50],
p be the number of variables in the routing probability matrix (i.e., the number
of symbols in Ps), m the number of variables in the service rates (the symbols
in the range of the function in ug), and g the number of variables in the ex-
ogenous arrival rates (the symbols in the range of A;). For any given choice of
(n,p,m, g), all the other parameters were randomly generated, with the service
rates drawn uniformly at random in [1.0;20.0], and the arrival rates in the range
[0.0; 3.0]. For instance, the symbolic evaluation (5) corresponds to a configura-
tion (n,p,m,g) = (4,2,1,1), where the remaining concrete values shown in Pk,
As and pg would be generated randomly. In particular, the routing probability
matrices generated in this way led to network topologies with densely connected
nodes.

For each tuple (n,p,m,g), we considered 200 randomly generated variants
which we analyzed with both the FB and the PB approach. We did so by ran-
domly generating 200 tuples, each of length p+m+ g, corresponding to a specific
instantiation of the symbolic parameters. For the FB approach, each tuple was
used to evaluate a symbolic expression of the average queue length such as (6);
for the PB approach instead, the parameters were used to numerically solve the
system of equations (1) for each variant.

We measured the wall-clock execution times for both FB and PB evaluation,
repeated 5 times in order to reduce the noise in the measurements. The tests were
implemented in Matlab version 7.9.0 (R2009b) using the Symbolic Math Toolbox
for the FB evaluation, and the built-in functions for the solutions of systems of
linear equations for the PB evaluation. The measurements were conducted on a
machine with an Intel Core i7 2.66 GHz with 8 GB RAM.

Each line in Table 1 shows the overall execution times, averaged over the 5
tests, of both FB and PB across the 200 random variants, which represent the
whole family for each configuration (n,p,m,g). We report the average speedup
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Table 1. Numerical results
Variables Runtimes (s) Variables Runtimes (s)
npmg FB PB PB/FB PC n pmg FB PB PB/FB PC
410 00.011 0.049 4.47 0.545 1421 0 00.016 6.540 397.34 5.425
401 00.004 0.043 10.78 0.185 1420 1 00.005 8.107 1664.28 4.908
40 0 1 0.0090.045 4.92 0.190 1420 0 10.015 10.808 726.41 4.836
411 10.011 0.046 4.13 0.214 1421 1 10.017 10.069 601.51 5.113
42 2 20.014 0.049 3.60 0.319 142 2 2 20.019 10.052 526.50 4.936
44 4 4 0.020 0.049 2.43 0.310 1420 6 00.007 7.802 1191.79 5.137
241 0 0 0.011 0.066 5.96 1.141 1424 4 4 0.026 10.985 429.83 4.942
240 1 0 0.004 0.063 14.60 1.124 3021 0 00.019 19.186 1007.95 11.026
240 0 1 0.011 0.067 6.29 1.152 3020 1 00.006 13.680 2292.46 11.192
241 1 1 0.013 0.068 5.04 1.244 3020 0 10.018 13.399 728.73 11.050
242 2 2 0.016 0.068 4.31 1.100 3021 1 10.021 19.520 909.12 11.591
240 6 0 0.007 0.065 9.94 1.004 3022 2 20.024 19.459 820.30 11.214
244 4 4 0.099 0.070 0.70 1.904 3020 6 00.006 13.896 2258.21 11.089
3024 4 40.030 14.879 495.06 11.718

PB/FB. The last column shows the pre-computation (PC) time taken to sym-
bolically solve (4). These results allow us to make the following observations.

— We confirm that for any fixed choice of p, m, and g that we considered,

larger values of n make FB increasingly more convenient, with speedups
up to over 2000; see, for instance, the configurations (4,0, 1,0), (24,0, 1,0),
(142,0,1,0), (4,1,0,0), and (302,1,0,0). This is because of the increasing
cost of the solution of the system of linear equations for PB, while FB solves
it symbolically only once and off-line.

For fixed n, varying p, m, and g has an impact on speedup, since the higher
the number of variables the larger the closed-form polynomial expression
derived by the FB approach.

For fixed n, not all other parameters affect the speedup in the same manner.
In particular, compare the two cases p=m =g =2 and p=g =0, m = 6,
for every given n. Both have the same number of variables (i.e., six), but
the latter case consistently enjoys a better speedup. This is because the m
variables do not appear in (1), thus for m = 6 the symbolic expressions of
the solution (1) can be greatly simplified because it consists of only scalars.
(The m variables will appear in the calculation for the queue lengths L,.)
FB evaluation is not always more effective than PB evaluation. In our study,
this has occurred in smaller models (i.e., n = 24) with relatively high number
of variables. In these cases, the polynomial expression turned out to be more
difficult to analyze than the linear system of equations (for which Matlab is
well-known to be optimized).

The pre-computation time behaves well with the number of variables, in
particular with respect to the p variables that are used in the solution of (1).
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6 Conclusion

We have presented an efficient technique for model-based performance analysis
of software product lines using a class of UML activity diagrams annotated with
quantitative information. Our approach enables a family-based evaluation by
means of symbolic computation, which has been shown to be up to three orders
of magnitude faster than product-based analysis in large models.

Regarding future work, this paper can be extended in two directions. From
a theoretical viewpoint, we will study extensions to other kinds of performance
models that are amenable to analogous closed-form symbolic solutions. From
a practical viewpoint, we plan an implementation integrated with UML CASE
tools and an experimentation with run-time optimization of automation
systems.
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