
Automatic Program Repair by Fixing Contracts�

Yu Pei, Carlo A. Furia, Martin Nordio, and Bertrand Meyer

Chair of Software Engineering, ETH Zurich, Switzerland
firstname.lastname@inf.ethz.ch

Abstract. While most debugging techniques focus on patching implementations,
there are bugs whose most appropriate corrections consist in fixing the specifica-
tion to prevent invalid executions—such as to define the correct input domain of
a function. In this paper, we present a fully automatic technique that fixes bugs by
proposing changes to contracts (simple executable specification elements such as
pre- and postconditions). The technique relies on dynamic analysis to understand
the source of buggy behavior, to infer changes to the contracts that emend the
bugs, and to validate the changes against general usage. We have implemented
the technique in a tool called SpeciFix, which works on programs written in Eif-
fel, and evaluated it on 44 bugs found in standard data-structure libraries. Manual
analysis by human programmers found that SpeciFix suggested repairs that are
deployable for 25% of the faults; in most cases, these contract repairs were pre-
ferred over fixes for the same bugs that change the implementation.

1 Introduction

A software bug is the manifestation of a discrepancy between specification and im-
plementation: program behavior (implementation) deviates from expectations (specifi-
cation). Correcting a bug may thus require changing implementation, specification, or
both. In fact, there is a significant number of bugs [3] whose most appropriate correc-
tion is changing the specification to rectify the expectations about what the implemen-
tation ought to do. For example, a function max computing the maximum value of a set
of integers is undefined if the set is empty; we could change max’s implementation to
return a special value when called on an empty set, but the best thing to do is disallow-
ing such calls altogether by specifying them invalid. However, since specifications are
often informal or implicit at best, debugging techniques normally modify implementa-
tions rather than specifications. In particular, fully automatic fixing—which has made
substantial progress in recent years [13, 20, 21] (see Section 5 for more references)—
has focused on suggesting repairs to implementations, thus failing to provide the best
corrections in cases where the ultimate source of failure is incorrect specification.

This paper presents a fully automatic technique that fixes bugs by rectifying specifi-
cations. Our technique targets programs with contracts—simple specification elements
in the form of executable assertions. A program execution that violates some contract
reveals a bug; to fix it, the technique suggests changes to the contracts that prevent
the violation from being triggered. We have prototyped the technique in a tool called

� Work partially supported by ERC grant CME/291389; by SNF grants LSAT/200020-134974
and ASII/200021-134976; and by Hasler-Stiftung grant #2327.

S. Gnesi and A. Rensink (Eds.): FASE 2014, LNCS 8411, pp. 246–260, 2014.
c© Springer-Verlag Berlin Heidelberg 2014



Automatic Program Repair by Fixing Contracts 247

SpeciFix, which works on programs with contracts written in Eiffel. (However, the same
technique is implementable in any language supporting some form of contracts.) Speci-
Fix is completely automatic: its only required input are programs with simple contracts.
In an experimental evaluation, we applied SpeciFix to 44 bugs of Eiffel’s standard data-
structure libraries. SpeciFix suggested repairs for 42 of these bugs; more significant,
11 of the bug repairs are genuine corrections of quality sufficient to be deployable. A
small trial with human programmers confirmed this assessment and often found the
fixes produced by SpeciFix preferable to fixes for the same bugs that modified the im-
plementation rather than the contracts.

Fixing contracts relies on extracting specification elements based on the actual be-
havior of the implementation. This is superficially similar to the problem of inferring
(or mining) specifications—a well-established research area that produced numerous
landmark results (e.g., [4, 8]; see Section 5 for more references). While SpeciFix uses
inference techniques as one of its components, suggesting changes to an existing spec-
ification to correct a bug is more delicate business than just inferring specifications.
Changing contracts is changing the design of an API as experienced by its clients. In
the example of max, adding a precondition that requires that the set be non empty makes
all client code of max responsible for satisfying the requirement upon calling max. There-
fore, we must make sure that the suggested contract changes have a limited impact on
a potentially infinite number of clients.

The SpeciFix technique presented in this paper uses a combination of heuristics to
validate possible specification fixes with respect to their impact on client code. It dis-
cards fixes that invalidate previously passing test cases; to avoid overfitting, it runs every
candidate fix through a regression testing session that generates (completely automati-
cally, using our testing framework AutoTest) new executions; and it ranks all fixes that
pass regression by preferring those that are the least restrictive. The empirical evalua-
tion in Section 4 indicates that these heuristics work well in practice for the bugs we
considered. Notably, there is a significant fraction of bugs whose appropriate fix is a
change to the specification; in those cases, SpeciFix can often generate useful fixes.

Section 2 demonstrates the idea of fixing specifications by means of an actual ex-
ample from the standard Eiffel implementation of array-based circular lists. Section 3
presents the technique implemented in SpeciFix, starting with an overview of its com-
ponents (Figure 3) followed by a detailed description of each of them. For brevity, we
use the name “SpeciFix” to denote both the fixing technique presented in this paper and
its prototype implementation. The evaluation in Section 4 presents experiments where
we applied SpeciFix to 44 faults in standard data-structure libraries. Section 5 discusses
the essential related work; and Section 6 concludes and outlines future work.

2 SpeciFix in Action

Let us briefly demonstrate how SpeciFix works using an example from the experimental
evaluation of Section 4. The example targets a bug of routine (method) duplicate in
class CIRCULAR, which is the standard Eiffel library implementation of circular array-
based lists.

To understand the bug, Figure 1 illustrates a few details of CIRCULAR’s API. Lists
are numbered from index 1 to index count (an attribute denoting the list length), and



248 Y. Pei et al.

A

1

list: B

2

C

3

cursor

D

4

count

(a) A circular list of class CIRCULAR:
the internal cursor points to the ele-
ment C at index 3.

1 class CIRCULAR [G]
2

3 make (m: INTEGER)
4 require m ≥ 1
5 do ... end

6

7 duplicate (n: INTEGER): CIRCULAR [G]
8 do

9 create Result.make (count)
10 ...
11 end

12

13 count: INTEGER -- Length of list

(b) Some implementation details of CIRCULAR.

Fig. 1. Example and some API details of circular lists in Eiffel

include an internal cursor that may point to any element of the list. Routine duplicate

takes a single integer argument n, which denotes the number of elements to be copied;
called on a list object list, it returns a new instance of CIRCULAR with at most n ele-
ments copied from list starting from the position pointed to by cursor. Since we are
dealing with circular lists, the copy wraps over to the first element. For example, calling
duplicate (3) on the list in Figure 1a returns a fresh list with elements 〈C,D,A〉 in
this order.

The implementation of duplicate is straightforward: it creates a fresh CIRCULAR

object Result (line 9 in Figure 1b); it iteratively copies n elements from the current list
into Result; and it finally returns the list attached to Result. The call to the creation
procedure (constructor) make on line 9 allocates space for a list with count elements;
this is certainly sufficient, since Result cannot contain more elements than the list that
is duplicated. However, CIRCULAR’s creation procedure make includes a precondition
(line 4 in Figure 1b) that only allows allocating lists with space for at least one element
(require m ≥ 1). This sets off a bug when duplicate is called on an empty list: count
is 0, and hence the call on line 9 triggers a violation of make’s precondition. Testing
tools such as AutoTest detect this bug automatically by providing a concrete test case
that exposes the discrepancy between implementation and specification.

How should we fix this bug? Figure 2 shows three different possible repairs, all
of which we can generate completely automatically. An obvious choice is patching
duplicate’s implementation as shown in Figure 2a: if count is 0 when duplicate is
invoked, allocate Result with space for one element; this satisfies make’s precondition
in all cases. Our AutoFix tool [17, 20] targets fixes of implementations and in fact sug-
gests the patch in Figure 2a.

The fix that changes the implementation is acceptable, since it makes duplicate run
correctly, but it is not entirely satisfactory: CIRCULAR’s implementation looks perfectly
adequate, whereas the ultimate source of failure seems to be incorrect or inadequate
specification. A straightforward fix is then adding a precondition to duplicate that



Automatic Program Repair by Fixing Contracts 249

make (m: INTEGER)
require m ≥ 1

duplicate (n: INTEGER):
CIRCULAR [G]

do

if count > 0 then

create Result.make (count)

else

create Result.make (1)

end

(a) Patching the implementa-
tion.

make (m: INTEGER)
require m ≥ 1

duplicate (n: INTEGER):
CIRCULAR [G]

require count > 0

do

create Result.make (count)

(b) Strengthening the specifi-
cation.

make (m: INTEGER)

require m ≥ 0

duplicate (n: INTEGER):
CIRCULAR [G]

do

create Result.make (count)

(c) Weakening the specifica-
tion.

Fig. 2. Three different fixes for the bug of Figure 1. Changed or added lines are highlighted.

only allows calling it on non-empty lists. Figure 2b shows such a fix, which strength-
ens duplicate’s precondition thus invalidating the test case exposing the bug. The
strengthening fix has the advantage of being textually simpler than the implementation
fix, and hence also probably simpler for programmers to understand. However, both
fixes in Figures 2a and 2b are partial, in that they remove the source of faulty behavior
in duplicate but they do not prevent similar faults—deriving from calling make with
m = 0—from happening. A more critical issue with the specification-strengthening fix
in Figure 2b is that it may break clients of CIRCULAR that rely on the previous weaker
precondition.1 There are cases—such as when computing the maximum of an empty
list—where strengthening produces the most appropriate fixes; in the running example,
however, strengthening arguably is not the optimal strategy.

A look at make’s implementation (not shown in Figure 1b) would reveal that the cre-
ation procedure’s precondition m ≥ 1 is unnecessarily restrictive, since the routine body
works as expected also when executed with m = 0. This suggests a fix that weakens
make’s precondition as shown in Figure 2c. This is arguably the most appropriate cor-
rection to the bug of duplicate: it is very simple, it fixes the specific bug as well as
similar ones originating in creating an empty list, and it does not invalidate any clients
of CIRCULAR’s API. The SpeciFix tool described in this paper generates both specifica-
tion fixes in Figures 2b and 2c but ranks the weakening fix higher than the strengthening
one. More generally, SpeciFix outputs specification-strengthening fixes only when they
do not introduce bugs in available tests, and it always prefers the least restrictive fixes
among those that are applicable.

3 How SpeciFix Works

SpeciFix works completely automatically: its only input is an Eiffel program annotated
with simple contracts (pre- and postconditions and class invariants) which constitute its

1 Note that this strengthening does not introduce new bugs; it just shifts the responsibility for
the fault from duplicate to its clients.



250 Y. Pei et al.

specification. After going through the steps described in the rest of this section, Speci-
Fix’s final output is a list of fix suggestions for the bugs in the input program.

Figure 3 gives an overview of the components of the SpeciFix technique. SpeciFix
is based on dynamic analysis, and hence it characterizes correct and incorrect behavior
by means of passing and failing test cases (Sections 3.1 and 3.2). To provide full au-
tomation, we use the random testing framework AutoTest to generate the tests used by
SpeciFix. The core of the fix generation algorithm applies two complementary strate-
gies (Section 3.3): weaken (i.e., relax) a violated contract if it is needlessly restrictive;
or strengthen an existing contract to rule out failure-inducing inputs. SpeciFix produces
candidate fixes using both strategies, possibly in combination (Section 3.4). To deter-
mine whether the weaker or stronger contracts remove all faulty behavior in the pro-
gram, SpeciFix runs candidate fixes through a validation phase (Section 3.5) based on
all available tests. To avoid overfitting, some tests are generated initially but used only
in the validation phase (and not directly to generate fixes). If multiple fixes for the same
fault survive the validation phase, SpeciFix outputs them to the user ordered according
to the strength of their new contracts: weaker contracts are more widely applicable, and
hence are ranked higher than more restrictive stronger contracts (Section 3.5).

Program
with

Contracts

Test
Cases

Weakening
Fixes

Strengthening
Fixes

Valid Fixes
AutoTest Fix

Generation
Validation
& Ranking

Fig. 3. An overview of how SpeciFix works. Running AutoTest on an input Eiffel program with
contracts produces a collection of test cases that characterize correct and incorrect behavior. With
the goal of correcting faulty behavior, the fix generation algorithm builds candidate fixes using
two strategies: weakening and strengthening the existing contracts. The candidate fixes enter a
validation phase where they must pass all valid test cases; valid fixes are ranked—the weaker the
new contracts the higher the ranking—and presented as output.

3.1 Test Cases

A test case (or just “test”) t consists of a call of some routine r with actual arguments
a1, . . . , an on a target object a0, written t : a0.r(a1, . . . , am); we refer to r as t’s
outermost routine. For instance, if list is the list of Figure 1a and emp is an instance of
empty CIRCULAR list, list.duplicate(3) and emp.duplicate(1) are two tests.

Let S be a set of program states. The execution of a test t starts with routine r’s body
executing from an initial state s0 ∈ S. In general, r’s body may call another routine r1
from a state s1, which in turn calls another r2 from a state s2, and so on until the test
terminates.2 Therefore, a test t uniquely defines a trace ρt as the sequence

ρt = s0 r0 s1 r1 · · · sn−1 rn−1 sn rn (1)

2 To avoid dealing with nonterminating programs, we forcibly terminate tests that are still run-
ning after a timeout.



Automatic Program Repair by Fixing Contracts 251

of state snapshots when nested routines are called or return. Precisely, for j = 0, . . . , n,
a pair sjrj denotes either that routine rj begins execution from state sj , that is sj is
the pre-state of a nested call; or that routine rj returns to the caller from state sj , that
is sj is the post-state of a nested call. Since t is a call to r at the outermost level,
r0 = r; call traces ignore intermediate states other than pre- and post-states. The
sequence κt = r0 r1 · · · rn−1 rn containing only routine names in ρt is the call se-
quence determined by t. For example, the test emp.duplicate(1) determines the trace
x0 duplicate x1 make where x0 is the initial state and x1 is the state when calling make

on line 9 in Figure 1b; the test terminates then with a contract violation. The other test
list.duplicate(3) determines the trace y0 duplicate y1 make y2 make y3 duplicate

where y0 is the initial state, y1 is the state when calling make, y2 is the state when
make returns, and y3 is the state when duplicate and the whole test terminates.

In SpeciFix, we generate test cases automatically using AutoTest—Eiffel’s random
test generator. However, if manually-written test cases are available, they can also be
supplied to SpeciFix to supplement the automatically generated tests; the extra input
may improve the quality of the final output.

3.2 Contracts, Correctness, and Faults

Contracts are simple specification elements made of assertions including preconditions
(require), postconditions (ensure), and class invariants (invariant). We denote by
Pr and Qr the pre- and postcondition of a routine r. In this work, we focus on changing
pre- and postconditions only; thus, we use the term specification to collectively denote
pre- and postconditions, and use the terms “specification” and “contracts” as synonyms.

Given an assertion A (pre- or postcondition) and a program state s ∈ S, we say that
A holds at s (or, equivalently, that s satisfies A) if A evaluates to True under state s; if
this is the case, we write s |= A. Since contracts are executable, we can evaluate any
assertion at any program state reached during a concrete execution.

Contracts provide an operational criterion to classify test cases into invalid, passing,
and failing. A test case t is valid if the initial state s0 of the trace ρt is such that it
satisfies r’s precondition, that is s0 |= Pr; otherwise t is invalid. An invalid test case
for routine r does not tell us anything about r’s correctness, since every invocation
of r should satisfy r’s precondition to be acceptable. A valid test case t is passing
if, for every j = 1, . . . , n, state sj in t’s trace ρt satisfies the following: if sj is the
pre-state of a call to rj then sj |= Prj ; and if sj is the post-state of a call to rj then
sj |= Qrj . In words, every nested call performed during the computation of r starts
in a state that satisfies the called routine’s precondition and terminates in a state that
satisfies the called routine’s postcondition when it returns. A valid test case is failing
if it is not passing, that is if it eventually reaches a state that violates some pre- or
postcondition; the violation terminates test case execution. The test list.duplicate(3)
is passing because the call to duplicate terminates without violating any contract (and
produces the correct result). The other test emp.duplicate(1) is valid but failing: the
nested call to make does not satisfy make’s precondition m ≥ 1 on line 4 in Figure 1b
because count = 0 <1 in an empty list.

A failing test case t reveals a fault (informally called bug in the introduction) in
routine r, namely a discrepancy between implementation and specification (the violated



252 Y. Pei et al.

contract). Conversely, a passing test case documents a legitimate usage of routine r with
respect to its specification. Two failing test cases t1, t2 identify the same fault if their
call sequences κ1, κ2 are the same (and hence they violate the same assertion).

3.3 Weakening vs. Strengthening

Let t be a failing test case with trace ρt as in (1); r = r0 is the outermost routine
of t, and rn is the routine whose contract violation triggers the fault. Assuming the
implementation of all routines r0, . . . , rn is correct, we should change the contracts of
r0, r1, . . . , rn to fix the fault exposed by t. There are two ways to do that:

Strengthening: strengthen r’s precondition to disallow t’s input. Strengthening makes
t invalid and thus prevents the call sequence that led to the violation of rn’s contract.

Weakening: weaken rn’s contract to allow t’s execution to continue past rn. If the
execution can continue without triggering other errors, weakening makes t passing.

If applicable, weakening is in principle preferable to strengthening, because the for-
mer does not risk breaking clients by introducing more stringent conditions for cor-
rectly calling r. Strengthening is, however, always applicable, whereas weakening may
not work if rn’s correct execution depends on the weakened contract. Even in the cases
where weakening makes t passing without triggering any new fault, it may be that the
absence of new faults is just a result of the rest of the specification being inaccurate
or incomplete. For example, weakening the precondition of a function max to work on
lists of any size (including empty lists) may not trigger any faults simply because max

has no postcondition, and hence there is no automatic way of finding out that the value
returned for empty lists is inconsistent.

In practice, SpeciFix prefers the least restrictive fixes (i.e., weakening) but always
tries both weakening and strengthening in combination. Another observation is that
strengthening only the outermost routine’s precondition often is too ad hoc, since it
corresponds to a partial change of API assumptions which may be inconsistent with
the way other routines are used. Therefore, SpeciFix tries to collectively strengthen
all routines r0, . . . , rn−1 to disallow fault-inducing input at every call site. Indeed, the
experiments of Section 4 show that strengthening leads to many useful and correct fixes
in practice.

3.4 Fix Generation

A run of SpeciFix targets a specific fault of some routine r. This is characterized by
a set Fr of failing test cases all of which have r as outermost routine and identify
the same fault—the violation of contract An (pre- or postcondition) of routine rn. To
characterize correct behavior, SpeciFix also inputs a set Pr of passing test cases which
have r as outermost routine. Based on this, SpeciFix builds a set Φ of candidate fixes
through the following steps, illustrated on the running example.

Build weakening assertions Ω for rn. Let r̃n be rn with An relaxed to True.
Generate fresh sets ˜P and ˜F of passing and failing test cases for r̃n. Based on them,
determine the sets I ˜P and I ˜F of dynamic invariants respectively holding in all passing



Automatic Program Repair by Fixing Contracts 253

tests ˜P and in all failing tests ˜F (Section 3.6 describes the dynamic invariant detection
process). Let Ω = {ω | ω ∈ I ˜P and ¬ω ∈ I ˜F} be a set of weakening assertions, which
characterize the minimal requirements for a test of r̃n to be passing and not failing. In
the example, make works without errors when m ≥ 0, whereas it fails when m < 0; thus
Ω = {m ≥ 0}.

Build weakening fixes W . For each ω ∈ Ω ∪ {False}, build the weakening fix f
obtained by replacing An with An ∨ w in rn. Add f to the set W of weakening fixes.
Adding False to Ω determines a dummy fix which is used to build purely strengthening
fixes in the next step. In the example, W contains a weakening fix fw corresponding to
the one in Figure 2c, and a dummy fix f0 where make’s precondition has been “weak-
ened” with False (hence it is unchanged).

Validate weakening fixes. For each f ∈ W , if f passes all tests in Pr∪Fr then add
f to the set Φ of candidate fixes without modifications, and remove it from W . In the
example, fw passes validation and is added to Φ. f0 is instead the unchanged program
in Figure 1b, and hence it stays in W .

Build strengthening assertions Σk for rk . For each f ∈ W that did not pass
validation, determine the sets IP

k and IF
k of dynamic invariants currently holding in all

pre-states of the calls to rk respectively in the passing tests Pr and in the failing tests
Fr; k ranges over the subset of {0, . . . , n− 1} for which sk is a pre-state (skrk appears
in the traces). Let Σk = {σ | σ ∈ IP

k and ¬σ ∈ IF
k } be the corresponding sets of

strengthening assertions, which characterize the minimal additional requirements for a
test to pass through rk without failing. In the example, duplicate correctly calls make

precisely when count > 0; thus, Σ0 = {count > 0}.
Build strengthening fixes. For each combination 〈σ0, . . . , σn−1〉 ⊆ Σ0 × · · · ×

Σn−1 of strengthening assertions, build the strengthening fix φ obtained by replacing
each precondition Prk of routine rk with Prk ∧ σk, for all applicable k. Add φ to the
set Φ of candidate fixes. In the example, the dummy fix f0 is turned into a valid fix φ0

by strengthening duplicate’s precondition as count > 0.
Candidates. The output of the fix generation phase is a set Φ of fix candidates. The

candidates are filtered and ranked as explained in the following section.

3.5 Fix Validation and Ranking

Validation. The purpose of the validation phase is to ascertain which of the candidate
fixes in Φ remove the fault under analysis. To this end, SpeciFix runs every fix candidate
f ∈ Φ through all available tests for r; f is valid if it still passes all originally passing
tests, and it also passes all originally failing tests that have not become invalid.

The dual risk of unsoundness for validation based on a finite number of test cases
is overfitting: a fix may pass validation but be unusable in a general context, because
it introduces specification changes that harm usages of the API different from those
exercised by the test cases used to generate the fix. To reduce the risk of overfitting,
SpeciFix uses only half of the originally generated test cases to generate the candidate
fixes. Then, the validation phase uses all available tests for the routine under analysis,
not only those in Pr and Fr used to generate fixes. This increases the likelihood that
the validated fixes are applicable beyond the specific cases that drove fix generation.



254 Y. Pei et al.

Ranking. Not all valid fixes are equally desirable: all else being equal, we prefer
those that introduce the least changes to the specification, and that make invalid the
fewest test cases. SpeciFix ranks valid fixes to reflect these criteria, and only reports the
top five fixes for each fault. This approach is a good compromise between the contrast-
ing needs of exposing programmers to a limited number of fixes—which they have to
understand and validate—and of retaining fixes that fall behind in the ranking even if
they are of high quality, due to the imperfect precision of the ranking heuristics.

The ranking heuristics is based on two elements: number of invalidated tests and
the strength of the new contracts. A fix f consists of a collection 〈A0, . . . , An〉 of new
contracts for the routines r0, . . . , rn; each Ak (0 ≤ k ≤ n) is either a pre- or a postcon-
dition and may be weaker, stronger, or unchanged with respect to the original program.
Given two valid fixes f1, f2, let A1

k, A
2
k be their new contracts for the same routine

rk. We say that A1
k is not stronger than A2

k, written A1
k � A2

k, if A1
k holds whenever

A2
k holds; precisely, we determine strength based on executing all available tests for r:

A1
k � A2

k iff every test that is valid for A1
k (i.e., a test that leads to executions where

A1
k is evaluated and holds) is also valid for A2

k (i.e., A2
k is evaluated and holds). This

generalizes to an ordering between fixes by lexicographic generalization of � on tuples
〈A0, . . . , An〉. The ordering is partial because the sets of valid test cases for f1 and for
f2 may be non-comparable. The final ranking orders fixes according to the � relation
and, for incomparable fixes, ranks higher those that determine the higher number of
valid (and hence passing) tests.

In the running example, the weakening fix in Figure 2c ranks higher than the
strengthening fix in Figure 2b: all test cases with count >0 are equivalent for the two
fixes, but the test cases with count = 0 are valid only for the weakening fix.

3.6 Dynamic Invariants and State Abstraction

SpeciFix infers invariants at program states dynamically by observing the behavior dur-
ing concrete executions. Dynamic invariant inference (see Section 5) has become a
standard technique of dynamic analysis. Using the notation of Section 3.1, we can de-
fine an invariant at the entry of routine rk as an assertion I such that sk |= I for every
test t whose trace ρt includes the snapshot sk rk where sk is a pre-state; the invariant at
routine exit is defined similarly with respect to post-states.

Invariant inference in SpeciFix must cater to the specific needs of fixing contracts. To
this end, we abstract the concrete program state by a number of predicates that include
public queries (i.e., routines or attributes giving a value characterizing object state) as
well as any subexpressions of the available contracts.

4 Experimental Evaluation

We performed a preliminary evaluation of the behavior of SpeciFix by applying it to 44
bugs of production software. The overall goal of the evaluation is corroborating the ex-
pectation that, for bugs whose “most appropriate” correction is fixing the specification,
SpeciFix can produce repair suggestions of good quality. A more detailed evaluation
taking into account aspects such as robustness and readability of the produced fixes
belongs to future work.



Automatic Program Repair by Fixing Contracts 255

4.1 Experimental Setup
We selected 10 of the most widely used data-structure classes of the EiffelBase
(rev. 92914) and Gobo (rev. 91005) libraries—the two major Eiffel standard libraries.
While these are the same classes used in the experimental evaluation of AutoFix [20],
we did not attempt a direct comparison for different reasons. First, some of the bugs
used in AutoFix have been fixed in the latest library versions, and hence they are not
reproducible. Second, AutoFix and SpeciFix are complementary approaches: our expe-
rience with AutoFix suggested that there is a substantial fraction of bugs whose most
appropriate correction is fixing the specification, and it is precisely on those that we
expect SpeciFix to work successfully. Third, running SpeciFix on the very same input
as AutoFix would limit the generalizability of the evaluation results; instead, we want
to evaluate the behavior of SpeciFix in standard conditions and avoid overfitting.

All the experiments ran on a Windows 7 machine with a 2.6 GHz Intel 4-core CPU
and 16 GB of memory. We ran AutoTest for one hour on each of the 10 classes in
Table 4. This automatic testing session found 44 unique faults consisting of pre- or
postcondition violations. We ran SpeciFix on each of these faults individually, using
only half of the test cases (randomly picked among those generated for each fault in
the one-hour session) to generate the fixes and all of them in the validation phase (Sec-
tion 3.5). The right-hand side of Table 4 reports, for each class, the total number of
test cases used by SpeciFix, and the total time for testing (the initial one-hour sessions
plus additional calls to AutoTest to generate tests for relaxed routines used to infer the
weakening assertions Ω, as described in Section 3.4) and fixing. The average figures
per fault are: 106.4 minutes of testing time and 7.2 minutes of fixing time (minimum:
4.1 minutes, maximum: 30 minutes, median 6.2 minutes). The testing time dominates
since AutoTest operates randomly and thus generates many test cases that will not be
used (such as passing tests of routines without faults).

Table 4. Classes used in the experiments; for each class we report: lines of code LOC, number #R
of routines, number #P of assertions in preconditions, number #Q of assertions in postconditions,
and number #C of assertions in the class invariant. In the right-hand side, we report the number
#F of faults targeted by the experiments, the total number of test cases (passing #P and #F
failing) used by SpeciFix, the Tt minutes spent running AutoTest on routines of the class, and the
Tf minutes spent running SpeciFix (net of testing time) on faults of the class.

CLASS LOC #R #P #Q #C #F #P #F Tt Tf

ACTIVE_LIST 2165 139 91 121 25 2 212 210 240 23
ARRAY 1474 101 70 110 10 9 850 555 900 72
ARRAYED_CIRCULAR3 1907 133 80 92 23 3 320 234 360 17
ARRAYED_SET 2346 146 118 131 26 6 554 432 720 34
DS_ARRAYED_LIST 2862 168 219 173 15 3 132 89 240 15
DS_HASH_SET 3159 171 154 140 20 1 14 60 120 5
DS_LINKED_LIST 3497 162 207 166 13 3 360 25 360 25
LINKED_LIST 1995 109 70 91 23 0 – – 60 –
LINKED_SET 2347 122 99 101 26 4 416 70 480 22
TWO_WAY_SORTED_SET 2856 141 118 118 31 13 1260 655 1260 106
TOTAL 24608 1392 1226 1243 212 44 4118 2330 4680 319

3 Shortened to CIRCULAR in Section 2.



256 Y. Pei et al.

4.2 Results

Evaluating the effectiveness of repairs that modify contracts is a somewhat subtle issue,
since it ultimately involves what is a design choice: changing API specification. Related
work on automatic repair (see Section 5) has rarely, if ever,4 assessed the quality and
acceptability for human programmers of the produced fixes beyond running standard
regression test suites. To this end, in previous work [17,20] we introduced the notions of
valid and proper fix: any fix that passes all the available tests is valid (and hence every
fix output by SpeciFix is valid), but only those that manual inspection reveals to satis-
factorily remove the real source of failure without introducing other bugs are classified
as proper. Even if the line between proper and improper might be fuzzy in some corner
cases, we could normally confidently classify fixes into proper and improper based on
our familiarity with the code base under analysis.

We use the same classification criterion in the evaluation of fixes produced by Speci-
Fix: Table 5 lists the total number of faults for which SpeciFix generated valid or
proper fixes (and ranked them in the top 5 positions: we ignore fixes that rank lower).

For 25% of the faults, SpeciFix produced fixes that manual inspection revealed
to satisfactorily remove the real source of failure.

Table 5. Fixes built by SpeciFix. For each TYPE of fault, the left-hand side of the table reports
the number #F of faults of that type input to SpeciFix, and for how many of those faults Speci-
Fix built (at least one) VALID or PROPER fixes. The right-hand side reports the total number of
fixes produced in each category; the same fault may have multiple valid or proper fixes. Columns
ALL list all fixes in each category, followed by a breakdown into purely weakening (WEAK),
purely strengthening (STRONG), and mixed (involving BOTH strengthening of some contract and
weakening of some other).

TYPE OF FAULT #F VALID PROPER VALID FIXES PROPER FIXES

ALL WEAK STRONG BOTH ALL WEAK STRONG BOTH

Precondition violation 22 22 7 77 23 30 24 13 1 12 0

Postcondition violation 22 20 4 71 56 13 2 7 3 4 0

TOTAL 44 42 11 148 79 43 26 20 4 16 0

The percentage of proper fixes (25% of faults) is similar to that obtained in the
work with AutoFix; but the high percentage of valid fixes (over 90%) requires some
explanation. Obtaining valid contract fixes is easy if only poor-quality tests are avail-
able. One can always strengthen preconditions to invalidate failing test cases (or, con-
versely, weaken failing postconditions to trivially pass tests): since SpeciFix validates
fixes based on the available test cases, which in turn are only as good as the contracts
of the class (beyond those directly targeted by the fix), such straightforward fixes yield
valid repairs for classes equipped with very weak and incomplete contracts. This does
not mean that such fixes are always improper; in fact, 80% of all proper fixes strengthen
preconditions: it is only when it is combined with very poor specification (especially
class invariants) that fixing may lead to improper fixes. Furthermore, despite being not

4 The only exception we are aware of is [13].



Automatic Program Repair by Fixing Contracts 257

directly deployable, the valid but improper fixes produced by SpeciFix are still very
valuable as debugging aids, since they clearly highlight the failure-inducing inputs.

Acceptability Trial. In order to get more confidence in the capability of SpeciFix
to produce proper, acceptable fixes from a programmer’s perspective, we conducted
a small trial involving 4 PhD students (henceforth, the “subjects”) in our group. The
subjects were quite familiar with the Eiffel language and its standard libraries, but had
not been involved in the work on SpeciFix or AutoFix. To keep the workload small,
we randomly selected only 8 out of the 11 faults for which SpeciFix produced proper
fixes, and submitted them to the subjects: for each fault, we produced one failing test
case (randomly picked among those produced by AutoTest) and up to 3 fixes produced
by SpeciFix. In order to compare the acceptability of specification and implementation
fixes, we also included up to 2 proper implementation fixes for each of 5 faults (out of
8) produced using AutoFix. For each fault, the subjects: (1) declared which fixes they
considered acceptable (i.e., they “correct the fault while not introducing new faults”, as
in our definition of “proper”); and (2) ordered the fixes in decreasing order of quality.

See the extended version of this paper for detailed results. The highlights: all subjects
but one agreed with our assessment of proper fixes; the subjects unanimously preferred
a contract fix over an implementation fix for 3 of the 5 faults that had both kinds of fix.
The subject who disagreed about proper fixes still agreed that the contract fixes for 6 out
of 8 faults are proper. With the proviso that its small scale does not warrant arbitrary
generalizations, the trial demonstrates substantial agreement with our assessment of
proper fixes; and suggests that, if a fault can be fixed with a contract fix, SpeciFix has a
chance of building a high-quality one.

Programmers found most proper fixes produced by SpeciFix acceptable and often
preferable to fixes for the same bugs that change the implementation.

4.3 Limitations and Threats to Validity

Limitations. The main limitation to the applicability of SpeciFix is that it requires con-
tracts. On the one hand, it requires a language where contracts are expressible; this is an
obvious consequence of the technique’s goals and is not severely restrictive since many
languages support some form of notation for contracts (e.g., JML for Java and Code-
Contracts for C#). On the other hand, SpeciFix works well only on classes that come
already equipped with some contracts of decent quality. Class invariants (which Speci-
Fix does not change but only assumes) are particularly useful to ensure that the test
cases generated represent reasonable usage, so that validation (Section 3.5) is precise.
Despite being often weak and largely incomplete, the kinds of contracts Eiffel pro-
grammer write have been sufficient to get good experimental results; but in future work
we will investigate how SpeciFix performance improves if it is given more expressive
contracts [18].

Threats to Validity. The most significant threat to external validity—concerning the
generalizability of our experimental results—comes from limiting the experiments to
data-structure classes. This is a limitation partly inherited from the usage of AutoTest to



258 Y. Pei et al.

generate test cases; AutoTest is meant for unit testing and hence works more easily with
classes with a clearly defined interface such as data structures. In future work, we plan
to experiment with other kinds of program (as we already did successfully with Auto-
Fix [17]) and possibly with manually-written test cases. Another threat comes from the
small number of subjects used in the trial (Section 4.2), and the fact that they all were
graduate students. We acknowledge that the trial only gives a preliminary assessment,
and more user studies are needed to ensure generalizability.

Threats to internal validity—concerning the proper execution of our experiments—
include repeatability. Since SpeciFix uses AutoTest to generate test cases, and the per-
formance of AutoTest is affected by chance, different runs may yield different results.
Based on our previous extensive experience with using AutoTest’s test cases for dy-
namic analysis [17–20], we expect AutoTest behavior to be predictable over the testing
time allotted in our experiments; therefore, this threat is unlikely to be significant. Since
SpeciFix produces many valid but not proper fixes, an issue is how much effort is re-
quired to identify the improper fixes. While we have no hard evidence about this, even
improper fixes succinctly characterize the failure-inducing inputs, and hence they are
still useful as debugging aids. Furthermore, contract fixes are normally quite simple, ar-
guably easier to read than implementation fixes; all subjects in the trial spent on average
around two minutes to classify each contract fix, which seems to indicate an acceptable
overhead. More experiments are also needed to determine the sensitivity of SpeciFix to
what fraction of the tests are used for generation vs. validation.

5 Related Work

SpeciFix is a novel technique in the recently emerging area of automatic program repair,
whose most important contributions we briefly review below. Dynamic invariant infer-
ence is one of the specific techniques used in SpeciFix; we also discuss fundamental
related work in this area.

Automatic Program Repair. Source-code repair aims to remove buggy behavior
from a program by changing its implementation. GenProg [21] is one of the first and
most successful techniques for source-code repair. It uses genetic programming to mu-
tate a faulty program into one that satisfies a given set of test cases. GenProg has been
evaluated [14] using various open-source programs, showing that it can produce many
non-trivial fixes. GenProg works on programs without annotations; however, it requires
a regression test suite as part of its input.

Other work has applied different techniques to the problem of source-code repair,
with the goal of improving the applicability and acceptability of the produced repairs;
for example, by deploying machine-learning techniques [2, 12, 13], constraint-based
approaches [10, 16], and finite-state abstractions [7]. These techniques also normally
require a regression test suite as part of their input.

In previous work, we developed AutoFix [17, 20], an automatic tool that suggests
fixes of implementations written in Eiffel and annotated with simple contracts. Con-
tracts dispense with the need for a regression test suite, as one can be generated as
needed through automatic testing. SpeciFix’s technique can be seen as the dual to Au-
toFix’s: the latter assumes contracts correct to fix implementations, whereas the former
assumes implementations correct to fix contracts.



Automatic Program Repair by Fixing Contracts 259

Invariant Inference. Invariant inference techniques learn assertions that hold for a
given implementation. These techniques are naturally classified in static and dynamic.
Static techniques analyze the source code to infer specification elements. Since inferring
all but the simplest classes of properties is undecidable, static techniques are usually
sound but incomplete. Abstract interpretation is a fundamental framework for static
invariant inference [4], which has been applied in many different contexts.

SpeciFix relies instead on dynamic techniques for invariant inference. These summa-
rize properties that are invariant over multiple runs of a program; their advantage over
static techniques is that dynamic approaches do not require a sophisticated analytical
framework and are applicable to the whole programming language: they work on any-
thing that can be executed. While dynamic techniques provide no guarantees of sound-
ness or completeness, they work quite well in practice. Dynamic invariant inference
has been pioneered by the Daikon tool [8]. Daikon uses a pre-defined set of templates
describing common relations among program variables. Much work has been done to
extend and improve the Daikon approach; for example to support object-oriented fea-
tures [5], and to infer complex and often complete postconditions [19]. The dynamic
approach has also been applied to other kinds of specifications such as finite-state be-
havioral specifications [1, 6, 15, 22] and algebraic specifications [9, 11].

6 Conclusions and Future Work

We presented an automatic technique that fixes programming bugs by rectifying spec-
ifications in the form of simple contracts (pre- and postconditions). In an experimental
evaluation, we ran SpeciFix on 44 bugs of Eiffel standard data-structure libraries. An
evaluation by human programmers indicates that SpeciFix produced fixes of quality
sufficient to be deployed for 25% of the bugs.

We now have complementary techniques to fix bugs either by changing the imple-
mentation (such as in our previous work on AutoFix [17, 20]) or by changing the spec-
ification (using SpeciFix presented in this paper). Therefore, the main goal of future
work is to apply both fixing approaches in combination, and in particular to develop
automatic heuristics to decide whether the “best” fix for a given bug involves changing
implementation, specification, or both.

Availability. The SpeciFix source code, and all data and results cited in this article,
are available at: http://se.inf.ethz.ch/research/specifix/ .

Acknowledgments. Thanks to Alexey Kolesnichenko, Nadia Polikarpova, Andrey
Rusakov, and Julian Tschannen for participating in the trial (Section 4.2).

References

1. Ammons, G., Bodík, R., Larus, J.R.: Mining specifications. In: POPL, pp. 4–16 (2002)
2. Arcuri, A.: Evolutionary repair of faulty software. Applied Soft Computing 11(4),

3494–3514 (2011)
3. Ciupa, I., Pretschner, A., Oriol, M., Leitner, A., Meyer, B.: On the number and nature of

faults found by random testing. Softw. Test., Verif. Reliab. 21(1), 3–28 (2011)

http://se.inf.ethz.ch/research/specifix/


260 Y. Pei et al.

4. Cousot, P., Halbwachs, N.: Automatic discovery of linear restraints among variables of a
program. In: POPL, pp. 84–96 (1978)

5. Csallner, C., Smaragdakis, Y.: Dynamically discovering likely interface invariants. In: ICSE,
pp. 861–864 (2006)

6. Dallmeier, V., Lindig, C., Wasylkowski, A., Zeller, A.: Mining object behavior with ADABU.
In: WODA, pp. 17–24 (2006)

7. Dallmeier, V., Zeller, A., Meyer, B.: Generating fixes from object behavior anomalies. In:
ASE, pp. 550–554. IEEE (2009)

8. Ernst, M.D., Cockrell, J., Griswold, W.G., Notkin, D.: Dynamically discovering likely pro-
gram invariants to support program evolution. IEEE TSE 27(2), 99–123 (2001)

9. Ghezzi, C., Mocci, A., Monga, M.: Synthesizing intensional behavior models by graph trans-
formation. In: ICSE, pp. 430–440 (2009)

10. Gopinath, D., Malik, M.Z., Khurshid, S.: Specification-based program repair using SAT. In:
Abdulla, P.A., Leino, K.R.M. (eds.) TACAS 2011. LNCS, vol. 6605, pp. 173–188. Springer,
Heidelberg (2011)

11. Henkel, J., Reichenbach, C., Diwan, A.: Discovering documentation for Java container
classes. IEEE TSE 33(8), 526–543 (2007)

12. Jeffrey, D., Feng, M., Gupta, N., Gupta, R.: BugFix: a learning-based tool to assist developers
in fixing bugs. In: ICPC, pp. 70–79. IEEE (2009)

13. Kim, D., Nam, J., Song, J., Kim, S.: Automatic patch generation learned from human-written
patches. In: ICSE, pp. 802–811. IEEE (2013)

14. Le Goues, C., Dewey-Vogt, M., Forrest, S., Weimer, W.: A systematic study of automated
program repair: Fixing 55 out of 105 bugs for $8 each. In: ICSE, pp. 3–13. IEEE (2012)

15. Lorenzoli, D., Mariani, L., Pezzè, M.: Automatic generation of software behavioral models.
In: ICSE, pp. 501–510 (2008)

16. Nguyen, H.D.T., Qi, D., Roychoudhury, A., Chandra, S.: SemFix: program repair via seman-
tic analysis. In: ICSE, pp. 772–781. IEEE (2013)

17. Pei, Y., Wei, Y., Furia, C.A., Nordio, M., Meyer, B.: Code-based automated program fixing.
In: ASE, pp. 392–395. ACM (2011)

18. Polikarpova, N., Furia, C.A., Pei, Y., Wei, Y., Meyer, B.: What good are strong specifications?
In: ICSE, pp. 257–266. ACM (2013)

19. Wei, Y., Furia, C.A., Kazmin, N., Meyer, B.: Inferring better contracts. In: ICSE,
pp. 191–200. ACM (2011)

20. Wei, Y., Pei, Y., Furia, C.A., Silva, L.S., Buchholz, S., Meyer, B., Zeller, A.: Automated
fixing of programs with contracts. In: ISSTA, pp. 61–72. ACM (2010)

21. Weimer, W., Nguyen, T., Le Goues, C., Forrest, S.: Automatically finding patches using
genetic programming. In: ICSE, pp. 364–374. IEEE (2009)

22. Xie, T., Martin, E., Yuan, H.: Automatic extraction of abstract-object-state machines from
unit-test executions. In: ICSE, pp. 835–838. IEEE (2006)


	Automatic Program Repair by Fixing Contracts
	1 Introduction
	2 SpeciFix in Action
	3 How SpeciFix Works
	3.1 Test Cases
	3.2 Contracts, Correctness, and Faults
	3.3 Weakening vs. Strengthening
	3.4 Fix Generation
	3.5 Fix Validation and Ranking
	3.6 Dynamic Invariants and State Abstraction

	4 Experimental Evaluation
	4.1 Experimental Setup
	4.2 Results
	4.3 Limitations and Threats to Validity

	5 Related Work
	6 Conclusions and Future Work
	References




