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Abstract. We develop an algorithm for the computation of a locally
affine optical flow field as an extension of the Lucas-Kanade (LK) method.
The classical LK method solves a system of linear equations assuming
that the flow field is locally constant. Our method solves a collection of
systems of linear equations assuming that the flow field is locally affine.
Since our method combines the minimisation of the total variation and
the decomposition of the region, the method is a local version of the l22-l1
optical flow computation. Since the linearly diverging vector field from a
point is locally affine, our method is suitable for optical flow computation
for diverging image sequences such as front-view sequences observed by
car-mounted cameras.

1 Introduction

The theoretical aim of this paper is to introduce an affine tracker for a sequence
of images. In ref. [2], a linear method for image registration is introduced using
a local constraint. The method is used for the computation of a piecewise linear
optical flow field [3,8], assuming that the optical flow field is locally constant in
the neighbourhood of each point.

In ref. [5], using the local stationarity of visual motion, a linear method for
motion tracking was introduced. As a sequel to refs. [2,4,5], we develop an algo-
rithm for computing a locally affine optical flow field which minimises the total
variation of the field in a windowed area. The continuity order of the optical flow
vector field computed by a variational method depends on the derivative orders
in the prior term. We introduce a method which locally controls the gradient of
the optical flow field.

The classical methods for optical flow computation [2,6] are based on least-
squares and energy-smoothness criteria for the model-fitting term and the prior
term, respectively. The results computed by these methods exhibit oversmooth-
ing in the regions close to the boundaries of moving segments. Recently, to deal
with the sparsity of images, the total variation (TV) of the solution as the prior
[10,11] and the L1-constraint are widely used. In ref. [9], a primal-dual-based
method for optical flow computation for TV-L1 minimisation is proposed.
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There are a number of numerical schemes for (TV-L1)-based image analysis
[12,13]. These methods minimise a criterion defined over the whole image [8].
On the other hand, by dividing the region of interest into windowed areas and
assuming the optical flow is locally constant in each region, the Lucas-Kanade
(LK) method [2,8] solves a large system of diagonal linear equations, which can
be decomposed into collection of systems of linear equations [3]. Our method
combines the minimisation of the total variation and the decomposition of the
region, since the minimisation of affine parameters of the optical flow field vector
achieves the minimisation of the l1-norm of the optical flow field. Therefore, we
can achieve the minimisation of the total variation of the optical flow field using
a collection of systems of linear equations.

2 Mathematical Preliminaries

For a spatiotemporal image f(x, t), x = (x, y)�, we define the Gaussian pyramid
transform g(x, y, t) = Rf(x, y, t) of f(x, y, t) such that

g(x, y, t) =

∫ ∫
R2

w1(u)w1(v)f(2x− u, 2y − v, t)dudv, (1)

w1(x) =

{
1
2 (1− |x|

2 ), |x| ≤ 2
0, |x| > 2

. (2)

For R and positive integers l, we define

Rl+1f = R(Rlf), l ≥ 1. (3)

The dual operation of R is

Eg(x, y, t) = 4

∫ ∫
R2

w1(u)w1(v)g(
x − u

2
,
y − v

2
, t)dudv. (4)

For the sampled function fijk = f(i, j, k), the transform R and its dual trans-
form E are expressed as

Rfmnk =

1∑
i,j=−1

wiwjf2m−i 2n−j k, Efmnk = 4

2∑
i,j=−2

wiwjfm−i
2

n−j
2 k, (5)

where w±1 = 1
4 and w0 = 1

2 , In eq. (5), the summation is achieved if both
(m− i)/2 and (n− j)/2 are integers.

For f(x, y, t), the optical flow vector [5] u = ẋ = (ẋ, ẏ)�, where ẋ = u =
u(x, y) and ẏ = v = v(x, y), of each point x = (x, y)� is the solution of the
singular equation

fxu+ fyv + ft = ∇f�u+ ∂tf = j�u+ ft = 0, j = ∇f. (6)

Assuming u to be constant in the neighbourhood Ω(x) of point x [2,5], the
optical flow field vector of each point is the minimiser of the criterion

I0 =
1

2|Ω(x)|
∫
Ω(x)

|j�u+ ft|2dx =
1

2
u�Gu+ a�u+

1

2
c (7)
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for

G =
1

|Ω(x)|
∫
Ω(x)

jj�dx, (8)

a =
1

|Ω(x)|
∫
Ω(x)

ftjdx, c =
1

|Ω(x)|
∫
Ω(x)

|ft|2dx. (9)

Therefore, the optical flow field vector at each point is the solution of the linear
equation

∂l0
∂u

= (Gu+ a) = 0, (10)

that is, u = −G†a. If Ω(x) = {x}, the solution of eq. (7) is the normal flow
(−∂f∇f/|∇f |2) [3]. To avoid numerical instability for the computation of G†,
the solution of the system of linear equations

(G�G+ λI)u = −G�a, u = −(G�G+ λI)−1G�a (11)

is computed as the minimiser 1 of

Jλ(u; 2) = |Gu+ a|22 + λ|u|22, (12)

where |x|2 is the l2-norm of the vector x.
We robustly compute u using the pyramid transform described in Algorithm

1 [1]. For the sampled image fijk = f(i, j, k), the neighbourhood is expressed as
Ω((i + p, j + p))� for |p| ≤ n. The region Ω((i+ p, j + p)�) for |p| ≤ n is called
the ((2n + 1) × (2n + 1)) window area of point (i, j)�. In Algorithm 1, we set
f l
k = Rlfijk.

Algorithm 1. Optical Flow Computation with Gaussian Pyramid

Data: uL+1 := 0, L ≥ 0, l := L
Data: fL

k · · · f0
k

Data: fL
k+1 · · · f0

k+1

Result: optical flow u0
k

while l ≥ 0 do

f l
k+1 := f l

k+1(x+ E(ul+1
k ), k + 1) ;

solve Gl
ku

l
k = al

k ;
l := l − 1

3 Locally Affine Optical Flow Computation

Computation with l1-norm Regulariser If the displacement is locally affine
such that u = Dx+d, where D and d are a 2×2 matrix and a two-dimensional

1 We can deal with a minimisation such that

Jλ(u; 1) = |Gu+ a|22 + λ|u|1,
where |u|1 = |u|+ |v|, which is the l1-norm of the vector u = (u, v)�.
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vector, respectively, we estimate D and d as the minimises of the criterion 2

I1 =
1

2
· 1

|Ω(x)|
∫
Ω(x)

|j�(Dx+ d) + ft|2dy

=
1

2
· 1

|Ω(x)|
∫
Ω(x)

∣∣∣∣
(
j�, (x� ⊗ j�)

)( d
vecD

)
+ ft

∣∣∣∣
2

dy, (13)

which is an extension of eq. (7). The minimiser of I1 is the solutions of the system
of linear equations

∂l1
∂(d�, (vecD)�)�

=

(
G, x� ⊗G

x⊗G, (xx�)⊗G

)(
d

vecD

)
+

(
a

x⊗ a

)
= 0, (14)

for point x which is the centre point of the windowed area Ω(x).

Algorithm 2. Affine Optical Flow Computation with Gaussian Pyramid

Data: uL+1 := 0, L ≥ 0, l := L
Data: fL

k · · · f0
k

Data: fL
k+1 · · · f0

k+1

Result: optical flow u0
k

while l ≥ 0 do

f l
k+1 := f l

k+1(x+ E(ul+1
k ), k + 1) ;

compute Dl
k and dl

k ;

ul
k := Dl

kx
l + dl

k ;
l := l − 1

Since rankG ≤ 2 and rank(xx�) = 1, we use the l1-norm regulariser

Qλ(d,D; 1) =
1

2

∣
∣
∣
∣

(
G, x� ⊗G

x⊗G, (xx�)⊗G

)(
d

vecD

)

+

(
a

x⊗ a

)∣
∣
∣
∣

2

2

+ λ

∣
∣
∣
∣

(
d

vecD

)∣
∣
∣
∣
1

.

(15)

For u = Dx+ d, since ∇u = D�, we have the relation

1

Ω

∫
x∈Ω

|∇u|dx = |vecD|1. (16)

Therefore, the criterion of eq. (15) minimises the total variation of the affine
optical flow field in the windowed area Ω(x). This analytical property implies
that eq. (15) is a local version of the l22-l1 optical flow computation [2,5]. From
Algorithm 1, we have Algorithm 2 for the affine optical flow computation.

The iterative reweighted least squares (IRLS) algorithm [7] minimises eq.(15).
Let

A =

(
G, x� ⊗G

x⊗G, (xx�)⊗G

)
, y =

(
d

vecD

)
, b =

(
a

x⊗ a

)
(17)

2 The matrix equation AXB = C is replaced with the linear system of equations
(B� ⊗A)vecX = vecC.
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and Y = diag(|y|) = diag(y1, y2, · · · , yn) for y = (y1, y2, · · · , yn)�. We update
the solution yk by minimising the functional

R(yk) =

(
λykWY −1

k−1yk +
1

2
|b−Ayk|22

)
, (18)

where Yk−1 = diag(|yk−1|) and W is an appropriate weighting matrix. We can
set W = I. Equation (18) derives the following Algorithm 3 [7]. In Algorithm 3,
the vector 1 is the vector whose all entry is 1. Furthermore Yk(i, i) and |yk(i)|
are (i, i)-th entry of matrix Yk and i-th entry of vector yk We use this method
in each layer of the pyramid hierarchy of images in Algorithm 2.

Algorithm 3. IRLS for the minimisation of Qλ(d,D; 1)

Data: y0 := 1, Y0 := I, k := 0, 0 ≤ δ � 1, 0 < ε
Result: the minimiser of Qλ(d,D; 1)
while |yk − yk−1|2 > δ do

solve (2λY −1
k−1A+A�A)yk = A�b;

Yk(i, i) := |yk(i)|+ ε;
k := k + 1

Computation with the l2-norm Regulariser Second, the minimisation cri-
terion with l2-norm regulariser

Qλ(d,D; 2) =

∣∣∣∣
(

G, x� ⊗G
x⊗G, (xx�)⊗G

)(
d

vecD

)
+

(
a

x⊗ a

)∣∣∣∣
2

2

+λ

∣∣∣∣
(

d
vecD

)∣∣∣∣
2

2

,

(19)
derives the linear equation

(A�A+ λI)u = A�b (20)

for the computation of the optical flow u, which is an extension of the LK
method. Since |D|2 = tr∇u∇u�, this method corresponds to the HS method
for the locally-affine optical-flow computation.

4 Numerical Experiments

For the evaluation of the robustness of the computation, we evaluate the bad-
point percentage and endpoint error for each frame of optical flow field. Before
the framewise evaluation, we evaluated the effects of the regularisation parame-
ter, the size of the windows and the level of pyramid hierarchy, using the temporal
continuity of the optical flow. For the evaluation of temporal continuity, we use
the warp error (RMS error) and temporal derivative.

Figure 1 illustrates computational results by the LK method and the propos-
ing method. Figures 1(a) and 1(d) are the ground truths in the vector field and
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(b) LK 3× 3
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(c) Affine 7× 7 λ = 0.0

(d) Ground Truth
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(f) Affine 7× 7 λ = 0.5

Fig. 1. Computational results. (a) and (d) are the ground truths in the vector field and
Middlebury colour chart. (b) and (e) are results computed by the LK method with the
window sizes 3× 3 and 7× 7, respectively. (c) and (f) are computed optical flow fields
by the proposing method with the 7× 7 window for λ = 0.0 and λ = 0.5, respectively.

Middlebury colour chart. Figures 1(b) and 1(e) are results computed by the LK
method with the window sizes 3 × 3 and 7 × 7, respectively. Figures 1(c) and
1(f) are computed optical flow fields by the proposing method with the 7 × 7
window for λ = 0.0 and λ = 0.5, respectively.

Figure 2 shows a comparison of the two methods with different window sizes.
From left to right the results with the window sizes 3 × 3, 5 × 5, 7× 7 and 9×,
respectively. From top to bottom, the results by the L-K method, our method
for λ = 0.0 and our method for λ = 0.5, respectively. The level of the pyramid
hierarchy is 3.

These qualitative evaluations by the appearance of the vectors field show that
the performances of our method is better than these of the LK method, which
solves eq. (10). Furthermore, Figures 2(c) and 2(f) indicate that the results
depend on the selection of the regularization parameter λ.

Next, we applied our method to the Large Displacement sequence. For the
evaluation of temporal continuity, we used the originl sequence from KITTI3.
We use image sequence Nos. 117, 144, 147 and 181. The level of pyramid hi-
erarchy and the window size are selected as 0, 3 and 5, and 3 × 3, 7 × 7 and

3 http://www.cvlibs.net/datasets/kitti

http://www.cvlibs.net/datasets/kitti


Local Affine Optical Flow Computation 209

100 200 300 400 500 600

50

100

150

200

250

300

350

400

450

(a) 3× 3

100 200 300 400 500 600

50

100

150

200

250

300

350

400

450

(b) 5× 5

100 200 300 400 500 600

50

100

150

200

250

300

350

400

450

(c) 7× 7
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(d) 9× 9
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(l) 9× 9

Fig. 2. Comparison of the three methods with different window sizes. From left to right
the results with the window sizes 3 × 3, 5× 5, 7× 7 and 9× 9, respectively. From top
to bottom, the results by the Lucas-Kanade method, our method for λ = 0.0 and our
method for λ = 0.5, respectively. The level of the pyramid hierarchy is three.

11 × 11, respectively. Furthermore, the regularisation parameter is selected as
λ = 0.2, 0.5, 0.7, 1, 2, 10.

For the flow vector u(x, y, t) = (u, v)�, setting

f ′(x, y, t) = f(x− u, y − v, t+ 1), (21)

we define the RMS error and sequential error as

RMS error =

√
1

|A|
∫ ∫

x∈A

(f(x, y, t)− f ′(x, y, t))2dxdy, (22)

ε(t) =

√
1

|A|
∫
x∈A

|u(x, t)− u(x′, t+ 1)|2dx, (23)

respectively, in the region of interest A at time t, where |A| is the area measure
of region A. Furthermore, the derivative of the optical flow field along the flow
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line and its average in a frame are

∂u(x, t)

∂t
=

u(x+ u, t)− u(x, t)√
1 + ‖u‖2 , normave =

1

|A|
∫
x∈A

∣∣∣∣∂u(x, t)∂t

∣∣∣∣
2

dx. (24)

Figure 3 shows colour charts of the computed optical flow field by l1 optimi-
sation. Figure 4 shows comparison of results with respect to pyramid levels for
No. 181. We set λ = 1.0.

(a) No. 147, 1st-frame (b) Flows for No. 147

(c) No. 117, 1st-frame (d) Flows for No. 117

(e) No. 144, 1st-frame (f) Flows for No. 144

(g) No. 181, 1st-frame (h) Flows for No. 181

Fig. 3. Comparison of results. In all cases, λ = 1.0 and the size of window = 7× 7.

Table 1 shows the RMS errors for various regularisation parameters and win-
dow sizes. Table 2 shows sequential error for for various levels of pyramid hier-
archy and window sizes while the regularisation parameter is fixed to 1. Table 3
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(a) Pyramid Level 0, 7× 7 window (b) Pyramid Level 0, 11× 11 window

(c) Pyramid Level 3, 7× 7 window (d) Pyramid Level 3, 11× 11 window

(e) Pyramid Level 5, 7× 7 window (f) Pyramid Level 5, 11× 11 window

Fig. 4. Comparison of results with respect to the pyramid levels for the image No.
181. for λ = 1.0.

shows the mean norm of temporal derivatives of l1-regulariser for λ = 1. These
results for the evaluation of the continuity of the flow field show that the method
robustly detect temporal optical flow fields.

The results in Table 1 show that for robust computation of the optical flow
field between a pair of successive frames the levels of pyramid hierarchy must
be 3 or higher and the window size must be 7 × 7 or larger. Results in Table
2 show that the difference of levels of pyramid hierarchy slightly effects to the
sequential errors. However, the results in Table 3 show that the combination of
the regularisation parameters and the levels of pyramid hierarchy effects to the
the mean norm of temporal derivatives of l1-regulariser. Although the sequential
error is the measure for the evaluation of temporal continuity of the optical flow
field between frames, the mean norm of temporal derivatives of l1-regulariser is
a measure for the evaluation of the temporal smoothness of optical flow fields
at each pixel. Therefore, from these results, for the evaluation of the robustness
of the computed optical flow field on each frame, we set the levels of pyramid
hierarchy, window size and the regularisation parameter as 5, 11×11 and λ = 1.0,
respectively.

Figures 5(a), 5(b), 5(c) and 5(d) are the histograms of the bad-point percent-
ages for images Nos. 117, 144, 147 and 181, respectively. In Figures 6(a), 6(b)
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Table 1. The RMS error of l1-regulariser

N
o
.
1
4
7

PyramidLevel
0 3 5

Window Size Window Size Window Size
λ 3× 3 7× 7 11× 11 3× 3 7× 7 11× 11 3× 3 7× 7 11× 11
0.2 66.1 63.6 64.4 64.0 62.0 61.2 66.0 65.0 64.4
0.5 66.1 63.6 64.4 64.0 62.0 61.2 66.0 65.0 64.4
0.7 66.1 63.6 64.4 64.0 62.0 61.2 66.0 65.0 64.4
1.0 66.1 63.6 64.4 64.0 62.0 61.2 66.0 65.0 64.4
2.0 66.1 63.6 64.4 64.0 62.0 61.2 66.0 65.0 64.4
10.0 66.1 63.6 64.4 64.0 62.0 61.2 66.0 65.0 64.4

N
o
.
1
1
7

Pyramid Level
0 3 5

Window Size Window Size Window Size
λ 3× 3 7× 7 11× 11 3× 3 7× 7 11× 11 3× 3 7× 7 11× 11
0.2 40.7 39.7 40.2 38.6 37.4 37.5 41.4 41.6 41.9
0.5 40.7 39.7 40.2 38.6 37.4 37.5 41.4 41.6 41.9
0.7 40.7 39.7 40.2 38.6 37.4 37.5 41.4 41.6 41.9
1.0 40.7 39.7 40.2 38.6 37.4 37.5 41.4 41.6 41.9
2.0 40.7 39.7 40.2 38.6 37.5 37.5 41.3 41.6 41.9
10.0 40.7 39.7 40.2 38.7 37.5 37.5 41.3 41.6 41.9

N
o
.
1
4
4

Pyramid Level
0 3 5

Window Size Window Size Window Size
λ 3× 3 7× 7 11× 11 3× 3 7× 7 11× 11 3× 3 7× 7 11× 11
0.2 45.1 44.5 45.9 43.4 40.7 40.6 45.9 45.5 45.1
0.5 45.1 44.5 45.9 43.4 40.7 40.6 45.9 45.5 45.1
0.7 45.1 44.5 45.9 43.4 40.7 40.6 45.9 45.5 45.1
1.0 45.1 44.5 45.9 43.4 40.6 40.6 45.9 45.5 45.1
2.0 45.1 44.5 45.9 43.4 40.6 40.6 45.9 45.5 45.1
10.0 45.1 44.5 45.9 43.4 40.6 40.6 45.8 45.5 45.1

N
o
.
1
8
1

Pyramid Level
0 3 5

Window Size Window Size Window Size
λ 3× 3 7× 7 11× 11 3× 3 7× 7 11× 11 3× 3 7× 7 11× 11
0.2 19.4 20.1 20.2 19.1 17.0 17.1 21.3 20.3 20.1
0.5 19.4 20.1 20.2 19.1 17.0 17.1 21.3 20.3 20.1
0.7 19.4 20.1 20.2 19.1 17.0 17.1 21.3 20.3 20.1
1.0 19.4 20.1 20.2 19.1 17.0 17.1 21.3 20.3 20.1
2.0 19.4 20.1 20.2 19.1 17.0 17.1 21.3 20.3 20.1
10.0 19.4 20.1 20.2 19.1 17.0 17.1 21.3 20.3 20.1

6(c) and 6(d), the top, middle and bottom images are the estimated flow field,
the ground truth and end-point error distribution, respectively. We used the
Middlebury colour chart to express optical flow vectors and the end-point errors
on the images. Colours for bars in the end-point error histograms correspond to
the colours of pixels of end-point errors.

Figures 5 and 6 show that, in the central regions of Nos. 144 and 181, the
end-point error is small, since the motion in these images is diverging from the
vanishing points. On the other hand, the bad-point percentages of Nos. 117 and
147 show that their estimated flow fields are inaccurate, since the motion in these
images are mostly translation. These results support that our method efficiently
works for diverging images.

Front-view image sequences observed from car-mounted cameras are linearly
diverging from the vanishing point. Since the linearly diverging vector field form
a point is locally affine, our method is suitable for optical flow computation for
front-view images captured by car-mounted imaging systems.
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(a) (b) (c) (d)

Fig. 5. Computed optical flow: (a), (b), (c) and (d) are the histograms of the bad-point-
percentages for frames 117, 144, 147 and 181, respectively. The pyramid hierarchy,
window size and λ are 5, 11× 11, and 1.0, respectively

(a) (b)

(c) (d)

Fig. 6. Computed optical flow: (a), (b), (c) and (d) are the end point errors for frames
117, 144, 147 and 181, respectively. The pyramid hierarchy, window size and regular-
isation parameter λ are 5, 11 × 11, and 1.0, respectively In (a), (b), (c) and (d), top,
middle and bottom are the estimated flow field, the ground truth, and end-point error
distribution, respectively.
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Table 2. The sequential error of l1-regulariser for λ = 1

N
o
.
1
4
7

PyramidLevel
Window Size

3× 3 7× 7 11× 11
0 2.99×10−3 2.62×10−3 2.34×10−3

3 3.90×10−3 3.85×10−3 3.80×10−3

5 3.56×10−3 3.15×10−3 2.94×10−3

N
o
.
1
1
7

PyramidLevel
Window Size

3× 3 7× 7 11× 11
0 2.68×10−3 2.20×10−3 1.95×10−3

3 3.80×10−3 3.66×10−3 3.56×10−3

5 3.42×10−3 2.83×10−3 2.64×10−3

N
o
.
1
4
4

PyramidLevel
Window Size

3× 3 7× 7 11× 11
0 2.49×10−3 1.97×10−3 1.71×10−3

3 3.73×10−3 3.41×10−3 3.22×10−3

5 3.47×10−3 2.86×10−3 2.73×10−3

N
o
.
1
8
1

PyramidLevel
Window Size

3× 3 7× 7 11× 11
0 2.12 ×10−3 1.53×10−3 1.26×10−3

3 3.54×10−3 3.19×10−3 2.97×10−3

5 3.41×10−3 2.95×10−3 2.85×10−3

Table 3. The mean norm of temporal derivatives of l1-regulariser for λ = 1

N
o
.
1
4
7

PyramidLevel
Window Size

3× 3 7× 7 11× 11
0 1.863 1.577 1.354
3 2.543 2.574 2.444
5 2.336 2.045 1.838

N
o
.
1
1
7

PyramidLevel
Window Size

3× 3 7× 7 11× 11
0 1.540 1.215 1.029
3 2.356 2.176 2.137
5 2.240 1.741 1.498

N
o
.
1
4
4

PyramidLevel
Window Size

3× 3 7× 7 11× 11
0 1.42 1.02 0.816
3 2.13 1.80 1.56
5 2.22 1.70 1.63

N
o
.
1
8
1

PyramidLevel
Window Size

3× 3 7× 7 11× 11
0 1.08 0.68 0.51
3 1.94 1.62 1.34
5 2.14 1.64 1.67
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5 Conclusions

As an extension of the classical Lucas-Kanade method for optical flow computa-
tion, we developed an algorithm for computing a locally affine optical flow fields
by solving a collection of linear systems of equations. Furthermore, we showed
that our method is a local version [8] of the l22-l1 optical flow computation [9,10],
that is, our method is a l1 version of the LK method.

We showed that our method is suitable for the optical flow computation from
image sequences linearly diverging from the vanishing point such as front-view
images captured by car-mounted imaging systems.
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