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Abstract. In this article, we propose a new, fast approach to detect
human beings from RGB-D data, named Progressive Classification. The
idea of this method is quite simple: As in several state-of-the-art algo-
rithms, the classification is based on the evaluation of HOG-like descrip-
tors within image test windows, which are divided into a set of blocks.
In our method, the evaluation of the set of blocks is done progressively
in a particular order, in such a way that the blocks that most contribute
to the separability between the human and non-human classes are eval-
uated first. This permits to make an early decision about the human
detection without necessarily reaching the evaluation of all the blocks,
and therefore accelerating the detection process. We evaluate our method
with different HOG-like descriptors and on a challenging dataset.

1 Introduction

The last decade has produced tremendous advances in the field of pedestrian
detection. As an illustration of this evolution and of its impact on other computer
vision areas, the availability of powerful detectors has modified radically the
main paradigms in use for pedestrian target tracking. Traditional stochastic
filtering approaches (Kalman filters, particle filters) coexist now with the so-
called “detection-based” approaches that do not formulate anymore the tracking
problem as an inference problem within Markov models, but instead as a problem
of optimization, namely by association of positive detections given by reliable
pedestrian detectors along sequences of frames [1]. Such progress has been made
possible mainly by the appearance of a few robust, reliable human detectors such
as the one proposed by Dalal and Triggs [2], based on an exhaustive classification
of all possible test windows contained in the image as belonging to the pedestrian
or non-pedestrian class. Now, one of the main bottlenecks with detection-based
methods is specifically the computational times involved in the exhaustive testing
of all possible windows, at several scales. These computational times can be
dramatically reduced e.g. if the scene geometry is known, but it is not always
possible to have this kind of prior knowledge. In this paper, we focus on the
reduction of the computational times involved in the use of the acclaimed HOG-
based detector [2], by taking advantage of the spatial and semantic structure
contained in the HOG descriptor. This way, in most classification cases, we
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can make an earlier decision, and produce a significant saving of computational
resources. The main contributions of this work are (1) a progressive classification
technique based on the HOG-SVM strategy allowing a much faster processing
of images and (2) the proposal for a new depth/texture descriptor for RGB-D
images.We compare our strategy for pedestrian detection on RGB-D images with
several other HOG-like detectors from the literature on a challenging dataset.

This article is organized as follows: In Section 2, we review related works; In
Section 3, we recall the principle of HOG descriptors, describe similar descrip-
tors for RGB-D images, including a new one, and pinpoint the HOG-SVM score
structure. In Section 4, we describe progressive classification, based on the ex-
ploitation of this score structure and on the disparities among the test window
blocks in terms of class separability. In Section 5, we give results validating our
approach on several pedestrian databases and in Section 6, we draw conclusions.

2 Related Work

One of the first pedestrian detection schemes that successfully combined visual
features and classification techniques has been the one of Papageorgiou et al. [3],
that used Haar-wavelets with Support Vector Machines (SVM). The next mile-
stone has been the work of Viola and Jones [4], where Haar wavelets were used
in combination with a cascade AdaBoost. This resulted in impressive results for
face detection. In Sabzmeydani [5], the aforementioned cascade classifier was
used with Shapelets as features. Dalal and Triggs [2] use Histograms of Oriented
Gradients (HOG), together with Support Vector Machines. Their approach has
been successful for pedestrian detection, as HOGs robustly encode the objects
shape, and not only differences of contrast. Comparative studies on possible
features and classifiers have shown that the combination HOG-SVM was the
best one for pedestrian detection [6]. As the HOG-SVM process is quite heavy,
proposals have been made to use integral histograms [7] or to replace trilinear
interpolation in the histogram construction by spatial convolution [8].

Based on the aforementioned schemes, several combined, part-based classifiers
have been proposed. In [9], the HOG-based detector is used to detect the whole
body and its upper part. Both are combined with a face detector, a skin detector
and a motion detector into a robust classifier. In [10], the pedestrian detection is
made in stereo-vision, by using HOG-SVM classifiers for intensity, optical flow
and depth images. In the work of [11], several features (HOG, Haar wavelets. . . )
are concatenated into a large description vector used for classification (either
with SVM or Adaboost). In [12], a pedestrian detector is obtained by combining
several HOG-SVM classifiers trained for each part of the person, which allows
robustness for highly deformed bodies.

In this paper, we focus on pedestrian detection methods in RGB-D images.
Among the few works in which detectors specific to RGB-D images, [13] propose
two descriptors, one (HOD) using only depth information, and a second one
(Combo-HOD) combining the output of two different classifiers, one for the
depth data, one for the texture. In [14], a descriptor is proposed that is based
on the 3D orientations of the surface normals.
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3 HOG-Based Descriptors in Multiple Channel Images

Since the pioneer work of Dalal and Triggs [2], HOG-based classification has been
very popular for detecting instances of a particular class, such as pedestrians.
We first quickly recall how HOG features are extracted and how they are used in
classification problems, then we expose a few existing extensions of these features
to RGB-D images, and we present a new descriptor, called HOGD.

3.1 HOG-Based Classifiers for Pedestrian Detection

Histograms of Gradient (HOGs) have been originally defined as a dense rep-
resentation of the local shape and appearance of the image. They capture the
local texture information on a cell basis, by generating a discrete distribution
(histogram) of the gradient orientations inside this cell, similarly to what SIFT
does for sparse interest points, i.e. for wide baseline image matching.

The original HOG features and their corresponding HOG descriptor are de-
scribed in Section 3.2, together with its variants on RGB-D images. In the fol-
lowing, and in a generic way, we will refer to the extracted descriptor vector
(from any of the mentioned methods) as D. The SVM linear classifier response
for detecting instances of a given class has the well-known linear form:

fα,b(D) = α ·D+ b, (1)

where α ∈ R
K (K being the dimension of D) and b ∈ R are the linear SVM

learning parameters and · is the usual dot product in R
K . What is remarkable is

that D has a clear spatial structure, resulting from the per-block concatenation.
We intend to use this underlying structure to accelerate the decision process.

3.2 HOG Descriptors for RGB and RGB-D Images

In order to extend the approach of [2] to RGB-D images, some proposals have
been done to provide image descriptors D that, in addition to the texture infor-
mation (as in HOG), also include depth information. We describe briefly four of
those descriptors that we use for evaluation purposes.

Histogram of Oriented Gradients (HOG): We implemented the original
HOG version proposed by Dalal and Triggs for RGB images [2]. The image gra-
dient is computed over a 64 × 128 detection window. The detection window is
subdivided into a grid of cells of 4 × 4 pixels, and a 1D orientation histogram
of 9 bins is associated to each cell to capture the local distribution of gradient
orientations. Each pixel contributes, according to the gradient magnitude, to the
histograms of the 4-connected cells by trilinear interpolation in x, y and orien-
tation. Adjacent cells are grouped into blocks of 2 × 2 cells with an overlap of
one cell in each direction, so that there are 105 blocks in the whole detection
window. The histograms of the four cells within a block are locally normalized
for contrast variations and then concatenated to form a vector of dimension 36.
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The final HOG descriptor is a vector of dimension 3780 used to train a linear
SVM classifier. Finally, a detection window is scrolled over an image at multiple
scales, so that at each position and scale the HOG descriptor is computed and
a classification decision is made by the linear SVM classifier.

Histogram of Oriented Depths (HOD): Designed for RGB-D images, it
was first introduced by Spinello and Arras [13] based on HOG. It captures the
local shape and appearance of a depth image through the local distribution of
depth gradient orientations. The HOD implementation used for this paper fol-
lows the same procedure described above to compute HOG descriptors using
depth images instead of RGB images. The resulting HOD descriptor is also a
3780 dimension vector. The detection process can be accelerated by taking ad-
vantage of depth properties: for each pixel, compatible scales are determined
according to its depth information. A HOD descriptor is computed at a given
position and scale only if there are enough pixels within the detection window
that have a depth compatible with the current scale. This technique produces
a significant improvement of the computational time to evaluate the descriptor
and to perform the overall detection process. For more details, see [13].

Combo-HOD: It was also proposed by Spinello and Arras [13] to use both tex-
ture and depth information in RGB-D images, by combining the classification
response of two classifiers based on HOG and HOD descriptors. Both descrip-
tors are independently computed at each position and scale over the texture and
depth images, and two linear SVM classifiers are also independently trained. In
order to combine the classification responses, a posterior probability is calculated
for each type of information as the probability of being a person (y = 1) given
that the SVM response f is known p(y = 1|f). A sigmoid function is fitted to
map SVM responses to probabilities (See Platt et al. [15]). The final combined
probability is the weighted average of both probabilities, so that each type of
information contributes to the final decision depending on its detection confi-
dence. Spinello and Arras [13] select the weights according to the false positive
rate for each type of information at the equal error rate point of a validation set
(i.e., at the point of the ROC curve specified by its precision value). Here, we
modified a bit this policy by selecting the weights inversely proportional to the
intersection of the distributions p(f |y = 1) and p(f |y = −1) estimated by Gaus-
sian kernels on a validation set. This is equivalent to measuring the separability
generated by each classifier. It is reported in [13] that the combination of texture
and depth information results in a significant improvement of the detection rate.

HOGD: We propose a different descriptor that combines texture and depth in-
formation in a single descriptor. We concatenate the HOG and HOD descriptors
into a single vector of dimension 7560. A single linear SVM classifier is trained
with the HOGD descriptors from the training set. In spite of the increase in
dimensionality, training time, and memory, this descriptor has the advantage
of determining the contribution balance of texture and depth information by
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Fig. 1. Distribution of individual Hellinger distances (Eq. 5), for the HOG-SVM clas-
sifier, on a block basis. On the left, all blocks are depicted at their respective place in
the test window (the brightest is the color, the highest is the distance). It is remarkable
that blocks corresponding to the pedestrian silhouette can discriminate more. On the
right, the same blocks distances distribution is depicted with decreasing values.

learning, so that this balance does not have to be determined by selecting an
error rate point or evaluating a validation set as in [13]. It is also less expensive
in time to classify this descriptor, since no posterior probability is required.

3.3 Block-Based Structure in the Descriptor Vector

In all HOG-related approaches, the descriptor vector D has a block structure, as
it results from the concatenation of histograms evaluated inside the set of cells
corresponding to the blocks. Hence, the classifier output can be rewritten as a
sum of responses βi by the N different blocks composing the test window,

fα,b(D) =
∑N

i=0 βi + b,

βi =
∑M

k=0 αiM+kDiM+k,
(2)

where M is the number of elements in the descriptors arising from each block.
In HOG-like classification methods, the detection process does not consider a
specific order for blocks i, as they are all evaluated and summed up in the
classifier response. Here, we specify an order to the blocks, so as to evaluate the
classifier at different stages of the incorporation of the blocks, and eventually to
make an early decision on the binary output, to accelerate the detection process.

As an example, one could expect that in pedestrian detection, blocks cor-
responding to a pedestrian silhouette are more discriminative, whereas those
holding background information or clothes are less discriminative. Hence, by
evaluating the first ones as soon as possible, it may be possible to make an early
decision about the presence or absence of a pedestrian inside a test window.

4 Progressive Classification

In the following, we define progressive classification as the classification process
resulting from adding gradually (in a specific order!) to the global classifier score
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the individual contribution βi of each block Di. We also refer to the partial
classifier output after evaluating i blocks as f0:i, defined recursively as

{
f0:0 = b,
f0:i = f0:i−1 + βi for i > 0.

(3)

4.1 Block Ordering

To evaluate the importance of any block in the classifier output, we use a crite-
rion reflecting the class separability caused by each individual block i. For that
purpose, let us define as fi (with only one index) the output of the SVM classifier
resulting from using only one block (block i):

fi = βi + b. (4)

Once the learning has been done, we use our verification dataset to evaluate
the discriminability of each atomic, block-based classifier i. With all the ground
truth data compared to the application of the classifiers, we use Gaussian kernels
to estimate the discrete distributions P+

i = P (fi|y = 1) and P−
i = P (fi|y = −1),

for each block. The more these distributions overlap, the less discriminative the
block will be for the detection process. To evaluate this overlapping, we use the
Hellinger distance (based on the Bhattacharyya coefficient) between P+

i and P−
i :

d(P+
i , P−

i ) =

√

1−
∑

fk

P+
i (fk)P−

i (fk), (5)

where fk covers all the discretized values of the score value fi. This distance
takes values between 0 and 1, where 1 occurs when the distributions are the
same, and 0 when they have no common support. Hence, the closer to zero is
d(P+

i , P−
i ), the more separated are the pedestrians/non-pedestrians classes. In

Fig. 1, we depict these computed values for each block in the detection window.
The selected order of evaluation of the blocks is then the one corresponding to

decreasing values of d(P+
i , P−

i ), in such a way that the blocks with the positive
and negative classes most separated will be evaluated first.

4.2 Early Decision

Let us define pi = P (y = 1|f0:i) as the probability that a tested sample is
positive, given that the partial output of the classifier (up to block i) is f0:i

pi = P (y = 1|f0:i) = 1

1 + exp(Aif0:i +Bi)
, (6)

where Ai and Bi are the parameters of a sigmoid, adjusting the distributions
P+
0:i = P (f0:i|y = 1) and P−

0:i = P (f0:i|y = −1), obtained by evaluating the
partial, block-ordered classifier from block 1 to i, as explained in [15].
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Fig. 2. Evolution of the P+
0:i (blue) and P−

0:i (red) distributions while incorporating
(from left to right) 10, 50 and 105 ordered blocks. In green, we depict the corresponding
pi probability to be an instance of the class, given f0:i.
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Fig. 3. Evolution of the Hellinger distance with the partial scores fi (from Eq. 2).
Left: The dashed curve is the evolution of the Hellinger distance when the number
of blocks is increased, without ordering the blocks; the solid curve is the same with
ordered blocks. Right: We display the separability of the partial classifier ending with
each block. It can be noticed that the most discriminative blocks are evaluated first.

We depict (in blue and red, respectively) different partial distributionsP+
0:i, P

−
0:i

distributions in Fig. 2, for i = 10, 50, 105. Observe that the separability goes in-
creasing with i. Moreover, we depict (in green) the pi sigmoid curves for all these
cases. Then, in Fig. 3, we show the evolution of the Hellinger distances d(P+

0:i, P
−
0:i)

with and without ordering of the blocks.
To make an early decision, we associate, to each ordered level i, a rejection

threshold Ui, in such a way that if pi (deduced from the evaluated f0:i) is inferior
to this threshold, the decision is made of an early rejection of the test window,
without having to evaluate the rest of the blocks, expecting that the evaluation
of the following blocks will not bring a large enough contribution. The decision
at the step i < N is made according to the following rule:

{
y = −1 if pi < Ui

No decision is made otherwise and i = i+ 1.
(7)

where pi is the probability of a positive classification, derived from the partial
output f0:i in Eq. 6. For the progressive classification to be effective, we heuristi-
cally define Ui as an increasing function of i. The idea is that at the final stage of
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the evaluation (i = N), then we apply the threshold for the originally designed
SVM, namely Uf ; however, in the intermediary stages, we apply lower thresholds,
since partial scores may be abnormally low because of some local phenomenon
(illumination, occlusion. . . ). Hence, the threshold at stage i is defined as

Ui =
i

N
Uf . (8)

The defined threshold is a rejection threshold, and one could design a similar
approach for an early acceptation threshold. However, in the case of object de-
tection in a given image, the number of negative tests is by order of magnitudes
superior to the number of positive tests. This suggests that an early rejection
threshold will have much higher effect on the global computational time perfor-
mance than an early acceptation threshold. Hence, if there is enough evidence
in the first stages that the test window corresponds to a pedestrian, then the
evaluating process is pursued, up to a point where the test window is definitely
rejected or accepted (at the last stage i = N).

5 Experimental Results

We tested our method on our own dataset of RGB-D images captured with a
Kinect sensor. The dataset was generated in a challenging environment with hard
illumination conditions. It contains more than 2000 images, with an important
variability of pedestrian appearances and poses, and the objects are located
within a wide depth range (1 to 10 meters). We divided it into a learning set
(1834 positive examples and 516 negative images), and a testing set (523 test
images). We trained our linear SVM classifiers using the bootstrapping technique
to improve the classification results as most works in this domain do. A few
examples from this dataset are given in Fig 4. All the results in the following
have been determined on these 523 test images. Close multiple detections from
the classifier are merged by a simple criterion of overlapping. Detections are
furthermore validated as positive when the detected window relative overlapping
with the ground truth window reaches a threshold value.

Handling the Sensor Depth Resolution Variations with Range. It is
important to note that the Kinect sensor has a limited depth range and that
its resolution decreases as the distance to the sensor increases. The technical
specification recommends to use it in a range between 0.8 to 4 meters, because
depth information is significantly lost farther than this limit. Therefore, we can
not perform detection with the same confidence for near and far depth ranges.

We observed that global results (on the whole range of depths) are degraded
mainly because the relevant features are not the same at different depth ranges.
Hence, we propose to train different classifiers for three different depth intervals.

We divided the set of training images into three subsets according to the
distance of the sample to the sensor: 0 to 4 meters, 4 to 8 meters and farther
than 8 meters. During detection, the correct linear SVM classifier is selected for
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Fig. 4. A few examples of the dataset we used for evaluation purposes in this paper
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Fig. 5. Global performance comparison between the four HOG-based descriptors

the current image scale. This training procedure generates different contribu-
tion balances between texture and depth information for each depth range. For
near samples, depth information has a greater contribution than texture, and for
far samples, texture information is more discriminative. For ComboHOD, differ-
ent weights are determined for each interval, and for HOGD, the independent
learning processes generates three different detectors.

Since progressive classification orders the blocks according to the separability
of each block alone, a different order is determined for each depth range. In the
cases of HOGD and ComboHOD, a greater proportion of depth blocks are eval-
uated within the first blocks for the nearest depth range, whereas more texture
blocks are computed first for the farthest range. Thus we can probabilistically
determine which information is more discriminative at different depths.

Performance Comparison among HOG-Based Descriptors. Figure
5 shows a performance comparison between the four HOG-based descriptors on
the same test set of RGB-D images. We observe that Combo-HOD and HOGD
outperform HOG and HOD. This demonstrates that the combination of texture
and depth information behaves better than a single type of information. Fur-
thermore, we note that our new descriptor HOGD performs slightly better than
ComboHOD on most of the operation domain.
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Fig. 6. ROC curves for detection performance with (blue) and without (red) progressive
classification, for each HOG-based detector
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Fig. 7. Average computed blocks per image for each HOG-based descriptor using pro-
gressive classification. It must be remembered that HOG and HOD descriptors have a
total of 105 blocks, whereas Combo-HOD and HOGD descriptors have 210 blocks.
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Fig. 8. Average time per image using progressive classification. Blue bars correspond
to the original detection process. Yellow bars correspond to the detection process with
acceleration using scale/depth information (when depth is available). Green bars show
the average time with both acceleration using scale and progressive classification.

Computational Time Gains from Progressive Classification. In Fig. 6,
we show the detection performance for each HOG-based detector with progres-
sive classification. Even if this method does not compute the classification score
on the whole testing window, it can be seen that the overall detection perfor-
mance is not affected by making early decisions in progressive classification.

Fig. 7 shows the average number of computed blocks per detection window
with progressive classification, as a function of the required precision rate (ob-
tained for different values of the final Uf along ROC curves). Only a small
percentage of the 105 blocks are finally computed, resulting in a significant re-
duction of computational processing. When the desired precision increases, then
Uf also increases, and so does the number of early decisions. This is accentuated
for the basic HOG-SVM classifier: The average number of evaluated blocks is
around 15, to be compared with the 105 blocks included in the original version.

Finally, Fig. 8 depicts the average time reduction for each HOG-based descrip-
tor. We can see, for example, that the average detection time is 45% smaller when
using progressive classification for the original HOG (this time reduction is not
linear with the number of processed blocks reduction, because of overheads in
the algorithm). It must be remembered that for descriptors that rely on depth
information, an additional acceleration technique is implemented, based on scale-
depths correspondences. The average times are presented (1) without this scale-
based acceleration method; (2) using this scale-technique alone (when possible,
i.e. when depth is used) and (3) along with the progressive classification.

6 Conclusion

We have presented two promising contributions in the area of pedestrian detec-
tion from RGB-D images: The first one is a new descriptor combining texture
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and depth elements in the form of a HOG-like descriptor, and for which we show
that it exhibits better detection performances than other descriptors in the lit-
erature; the second one is a new strategy to accelerate the detection process by
making early decision about the presence of a pedestrian in a test window, based
on determining a specific order of evaluation of the blocks forming the HOG-like
descriptors. For the descriptors we evaluated, this improvement allows significant
gains in computational times, without significant losses in the performance.
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