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Abstract. A growing number of applications store and analyze graph-
structured data. These applications impose challenging infrastructure
demands due to a need for scalable, high-throughput, and low-latency
graph processing. Existing state-of-the-art storage systems and data pro-
cessing systems are limited in at least one of these dimensions, and simply
layering these technologies is inadequate.

We present Concerto, a graph store based on distributed, in-memory
data structures. In addition to enabling efficient graph traversals by
co-locating graph nodes and associated edges where possible, Concerto
provides transactional updates while scaling to hundreds of nodes. Con-
certo introduces graph views to denote sub-graphs on which user-defined
functions can be invoked. Using graph views, programmers can perform
event-driven analysis and dynamically optimize application performance.
Our results show that Concerto is significantly faster than in-memory
MySQL, in-memory Neo4j, and GemFire for graph insertions as well as
graph queries. We demonstrate the utility of Concerto’s features in the
design of two real-world applications: real-time incident impact analysis
on a road network and targeted advertising in a social network.
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1 Introduction

Graph-processing applications are quickly emerging as a critical component in
domains like social networks, road traffic, and biological networks where data
exhibit natural graph structure. Building large-scale graph applications requires
middleware support for storing data and for accelerating graph queries. Many of
today’s graph applications exhibit a need for high volume storage, low-latency
updates, and interactive responsiveness. Individually, these requirements do not
present a unique challenge, but taken together, they pose a significant challenge
to both state-of-the-art storage and data-processing systems. We detail two of
these emerging requirements, and how they translate into challenges for the
supporting system infrastructure:

– Scalability and consistency. Because many of today’s graph applications
run on the critical path of an on-line workflow, a graph store needs to provide
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a combination of adequate query throughput and data ingestion rate. For
example, Facebook receives more than 200,000 events per second [1] while
Twitter ingests approximately 80 TB/day of new data [2]. However, without
meaningful consistency semantics, such as transactional guarantees, writing
distributed graph applications will be difficult and error prone.

– Event-driven processing. Some graph applications, such as those used by
emergency technicians to respond to incidents, must be real-time to be use-
ful [3]. For example, the California highway road sensors requires ingestion of
new data every 30 seconds for over 26,000 sensors [4]. Such an application is
largely event-driven based upon incidents (i.e., accidents, slowdowns) occur-
ring on the road graph, and triggers computation to predict the spread and
duration of the incidents. Supporting an API with flexible event processing
on the graph store eases the development of these graph applications. Mul-
tiple applications monitoring similar events can avoid redundant client-side
computation on event detection. Moreover, events can be used to monitor
and dynamically optimize the store itself (such as graph layout) to further
improve query performance.

1.1 Limitations of Current Systems

State-of-the-art solutions are not designed to address these challenges simulta-
neously. Traditional storage systems such as relational databases and NoSQL
stores do not inherently retain the structure of the graph, and are unsuitable for
computing graph algorithms [5]. As shown in Table 1, using a fast caching layer
such as Memcached on top of a relational database can scale the performance of
resolving graph queries. However, this approach relies on pre-computing the set
of queries, and thus requires the workload to be known in advance, or returning
a computation based upon stale data.

Distributed in-memory stores (GemFire [6]) provide dynamic scalability and
high performance while also supporting transactions. However, similar to tradi-
tional relational databases, they do not provide native support for graph objects
and hence are slow for graph queries.

Contemporary data-processing frameworks such as MapReduce [7], Pregel [5],
Spark [8], or GraphLab [9] optimize for batch analysis by assuming data is largely
read-only, and hence are ill-suited for concurrent read and write queries. Since
many of these systems are designed for long running distributed graph analyses,
the overhead from additional communication and setup costs may exceed the
actual computation time for small graph queries [10].

In contrast, specialized graphdatabases perform complex graph queries quickly,
and concurrentlywith graph updates [11,12,13,14,15,16]. These systems are, how-
ever, limited to a single machine (or a set of replicated images) and therefore
do not scale with either the query rate, storage capacity, or data ingestion rate.
Trinity [17], a distributed graph engine, lacks support for transactional storage of
graph objects. Additionally, none of these graph databases support event-driven
processing.
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Table 1. Comparison with competitive approaches. Concerto has multiple advantages
over each system.

Technology Graph queries Transactions Event processing Scalable
RDBMS Slow due to Yes Yes, using No
(MySQL, etc.) table joins triggers
RDBMS + Fast but No No Yes
memcached [18] stale results
Distributed Slow Yes Yes, using Yes
in-memory stores [6] triggers
Batch graph frameworks [5] Fast but offline No No Yes
Graph DBs Fast, online Yes No No
(Neo4j [12], DEX [15])
Trinity [17] Fast, online No, explicit locks No Yes

Concerto Fast, online Yes Yes Yes
Design choice → In-memory Distributed Graph views, Distributed

data structures transactions notifications processing

1.2 Contributions

We have designed Concerto, a graph store that preserves the functionality of
specialized graph databases without sacrificing the ability to scale or build event-
driven applications. As shown in Table 1, Concerto differs from existing work in
its combination of two fundamental design principles.

First, Concerto provides distributed, in-memory, transactional storage of graph
elements. Unlike traditional databases, Concerto embeds the graph structure
within the aggregate memory of the cluster. While this layout incurs more stor-
age than a traditional table-based layout, it enables otherwise expensive graph
traversals to be performed quickly. Unlike existing graph databases, Concerto is
designed to maintain data consistency across multiple servers using distributed
transactions. The costs of the distributed transaction protocol are compensated
by several performance optimizations: in-memory representation, fewer network
roundtrips, and parallel computation.

Second, Concerto introduces the notion of graph views, which allows an appli-
cation to denote subgraphs of interest. Applications can compose different views
to form meaningful groups and run graph analysis on them. Applications can also
register user-defined event handlers on a view. As we discuss in Section 6, some
graph applications are naturally expressed as event-driven programs, and in our
experience, the extensibility provided by Concerto improves performance and
simplifies application programming. Moreover, views act as hints about which
graph entities are related, thereby providing a means to enhance data migration,
or partitioning policies [19,20,21] and reduce communication overhead.

We empirically compare Concerto against in-memory executions of MySQL, a
standard relational database; Neo4j, an open-source graph database; and Gem-
Fire, a commercial in-memory distributed store. Concerto is 10× faster in bulk
insertion throughput than Neo4j while consuming 3× less memory. Similarly,
Concerto is more than 7× faster than MySQL for interactive k-hop query per-
formance. Scaling results on 64 instances shows that Concerto can complete a
3-core computation of a 90-million node graph in only 12 minutes, compared
to nearly 6 hours on 64 instances of GemFire. We also demonstrate Concerto’s
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features through two real-world inspired applications: real-time incident impact
analysis on a road network, and targeted advertising in a social network.

2 Graph Storage

Concerto stores graph objects in memory and across distributed commodity
servers in data centers (Figure 1a). A distributed shared memory implementation
provides a global address space on which graph objects are allocated. Graph
traversals take place on the distributed graph representation using server-side
RPC calls batched for performance. Concerto’s key contributions are in the in-
memory graph representation and the use of efficient, distributed transactions to
provide concurrent access and online data migration.

2.1 Graph Representation

Concerto has three basic data types to store the application graph data: vertex,
edge, and property. A property element contains attributes and can be at-
tached to a vertex or edge. Vertices and edges can have multiple properties.
Concerto exposes APIs to graph applications to create and update the above
graph elements. New graph objects are allocated on a global address space pro-
vided by Sinfonia [22], a distributed shared memory system. Sinfonia exposes a
flat memory region per-server called memnode which are combined to create a
single global address space.

Concerto stores the logical graph using a layout optimized for in-memory
reads and inserts. As shown in Figure 1b, vertices, edges, and properties are
represented as records with pointers. A vertex has a pointer to a list of its
outgoing edges. An edge has pointers to its source and destination vertices and
to the next edge of the source vertex. Thus, all outgoing edges of a vertex can
be accessed consecutively starting from the first edge. Co-locating vertices and
edges in contiguous blocks of memory, and storing pointers to related graph
objects allow graph traversals to be performed quickly at the cost of additional
storage. Similar to edges, properties are chained together as a list. Both vertex
and edge records point to the head of their property lists.

In Concerto, each vertex and edge is a fixed-size record while properties can be
of variable size. Using an appropriate fixed size, a vertex or edge can be retrieved
in one read transaction (one network roundtrip between a client and a Concerto
server) as both the address and size of the data are known in advance. However,
accessing properties of a vertex or edge may require more than one transaction.
First, the vertex has to be read to determine the address of the property and
then the property is read in the next transaction. In some applications, certain
properties are accessed often. To retrieve these frequently accessed objects in
one read transaction, properties can optionally be embedded in the vertex or
edge records. Figure 1b depicts embedded properties attached to vertices and
edges.
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Fig. 1. Overview of Concerto

2.2 Use of Transactions

Concerto uses distributed transactions to provide consistency and concurrency
for graph allocation, access, and updates. Unlike simple key-value data, graph
data can seldom be partitioned into shared nothing regions, and hence we need
to support transactions that occur across machines. To balance consistency with
efficiency, Concerto leverages a distributed compare-and-swap primitive called a
mini-transaction provided by Sinfonia to support such distributed transactions.
Mini-transactions are a performance-optimized implementation of the two-phase
commit protocol. Concerto also provides other optimizations to minimize the
number of transactions used. These include batching graph operations during
traversals and reducing the number of indirections for graph object access. Us-
ing these optimizations, Concerto can, in the common case, perform reads of
vertices, edges or attributes in a single network roundtrip, and finish writes in
two network roundtrips. By comparison, transactionally updating even a single
value in GemFire requires at least three network roundtrips. Below, we discuss
examples of how transactions are used in Concerto.

Graph Allocation. During allocation of new graph elements (e.g., vertex,
edge) it is important to ensure a unique address is assigned to the graph ele-
ment even if two concurrent users request memory. Concerto uses transactions to
achieve this. As shown in Figure 1c, whenever an allocation request is received,
the Concerto graph allocator contacts the Sinfonia memnode. Upon allocation of
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an address space, an entry is made to the allocation meta-data on the memnode.
Concerto wraps these operations in transactions which ensures that the meta-
data for the allocator remains consistent during concurrent allocation requests.
Note that the use of transactions to allocate and manage each element incurs
overhead, especially for vertices and edges which are only a few tens of bytes.
To reduce this, Concerto pre-allocates large memory blocks from memnodes and
appends new vertices and edges until the block fills up. Pre-allocated blocks
reduce the amount of meta-data stored on memnodes, and also the number of
network roundtrips (and possible write conflicts) from allocation requests. Fig-
ure 1d illustrates how pre-allocated blocks store vertices and edges.

Graph Updates. Transactions are also used to allow in-place updates to ex-
isting graph elements with other (concurrent) accesses. Internally, the Concerto
transaction API calls the Sinfonia mini-transaction subsystem which allows up-
dates to be made to graph elements on distributed machines (in this case source
and destination vertices).

Graph Partitioning. Concerto uses transactions to provide online data mi-
gration for an application to optimize a graph partition. This can be used, for
example, when adding or removing servers, or when handling data hotspots. Ta-
ble 2 shows the three migrate functions available to applications. These functions
implement migration as a series of tasks wrapped inside distributed transactions.
For example, when migrating a vertex, the vertex and its associated data are
copied to the new server, the original copy is deleted, and all incoming pointers
to the vertex are updated. These tasks happen inside a transaction during which
time other non-conflicting operations can continue concurrently.

Table 2. Functions to migrate data

Function Description

migrateVertex(V, s) Move V and its data to server s

migrateView(View, s) Move view elements to server s

migrateGraph(View, map) Move elements based on map

3 Graph Views

The primary programming innovation of Concerto is the notion of application-
specific event processing using graph views. The concept of views is well-studied
in the database literature. Concerto extends this concept to distributed graph
stores. In Concerto, a view is a subgraph of interest on which applications can
run graph algorithms and also register generic event handlers. By using event
handlers, an application is easily expressed as an event-driven program.

3.1 Programming Model

Concerto provides a View class to create and manage graph views. Views are
subgraphs and comprise of a list of vertices, edges, and properties. Views are
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Table 3. View API for event-driven processing

Function Description

onReadVertex(V)
Invoked on read operation. Passes
element where read occurred.

onReadEdge(E)
onReadProperty(P)

onUpdateVertex(V)
Invoked on write operation. Passes
element where write occurred. Old
value of property also passed.

onUpdateEdge(E)
onUpdateProperty(P, val)

primarily created to isolate regions of interest and can constrain a query to
execute only on a subgraph. For example, Concerto applications use the BSP
programming model to implement distributed graph algorithms by specifying
code that runs on each vertex [5,23]. Graph views provide application-specific
semantics to these algorithms: applications can compose multiple views and then
execute a distributed algorithm on the complex view. Consider the example
mentioned in the introduction where the graph G represents a road traffic network
and the graph application performs real-time accident impact analysis [3] on G.
The application developer might create a view P and M corresponding to the
cities of Palo Alto and Mountain View, respectively. If an accident occurs in
Palo Alto, then the application can localize the execution of its impact analysis
algorithm on P and demarcate the affected region I=impactAnalysis(P). Now,
the application can be easily extended to provide useful functionality; to find
the best path from a location in Mountain View to Palo Alto, while avoiding
the impacted region, a user would simply run a shortest path algorithm on
the composed view:(P - I)∪M. Concerto supports basic set operations, such as
union, intersection, and subtraction, on views. For example, two views can be
merged or their common elements subtracted.

Views simplify the support for event-driven processing. Applications can de-
fine a view upon which to register event handlers. The View API (Table 3)
can be invoked when read or write events occur in the subgraph. For example,
onreadVertex function can be invoked when a read event occurs on a vertex
in the view, and onUpdateProperty function is invoked on a write event to a
property element in the view. To implement function invocation, the view point-
ers are stored in graph elements (Figure 1b). Specifically, whenever a read or an
write occurs on a graph element, the view pointer(s) associated with the graph
element are traversed and the corresponding function is invoked.

Applications can invoke custom code using the View API. In our experience,
read functions are broadly useful for gathering statistics and for monitoring the
store. For example, the onReadVertex function can be overwritten to determine
whether too many clients are reading the view members. By monitoring read
throughput, data may be migrated proactively to reduce hotspots. Handlers for
write events may benefit from more customization. For example, in our road
traffic application, write events might specify the location of an accident, which
would trigger execution of the traffic impact analysis in that region.
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3.2 Data Structures

Supporting graph views requires a trade-off between compact storage and fast sub-
graph traversal. For fast graph traversals, the ideal approach makes a copy of the
subgraph corresponding to a view, enabling traversals to occur directly on the sub-
graph.However, this approachhas serious shortcomings. For large graphs, applica-
tions may create hundreds or thousands of views. Some of these viewsmay overlap
and store (possibly) large, redundant portions of the original graph.Therefore, this
approach may lead to unnecessary space explosion from duplicate copies of nodes
and edges.Additionally,whenupdates occur, preserving the structural consistency
across the views and the original graph will result in significant overhead.

To overcome these problems, the View class only stores the identifiers of its
members (vertices and edges), and a scratch space to store properties about
the view itself. Therefore, views store only membership information and not
structural information. This storage format has the singular advantage of low
space overhead. However the compact representation has the unfortunate side-
effect that by looking at only the internal representation of a view, it is not
possible to traverse the subgraph. For example, the view may not contain enough
information to determine the neighbors of a certain vertex. Instead, the view’s
stored information has to be combined with the actual graph to traverse the
subgraph contained in the view.

Concerto uses hash maps to speed up traversals on a view’s subgraph. Vertex
and edge identifiers are hashed for fast lookups. To execute a graph algorithm on
a view, the application specifies the code that runs at each vertex, but Concerto
ensures that the algorithm will be constrained to only the view members.

3.3 Event-Driven Processing

Supporting event processing in a graph store raises several questions. Since events
on a graph can span different servers, how should the graph store aggregate
such information? Intercepting each event may introduce undesirable processing
overhead. If so, how do we prevent event processing from unduly impacting the
query throughput of the graph store?

Concerto Store

Events
(create, read,

modify)

View

AP
I

Runtime

Communication

Registered

CallbackRegister
functionsCo

nc
er
to

A

Active function queue
Registered
functions

F1 F2 ..

Fig. 2. Control flow of event processing

Views store the functions to be
invoked when specified events oc-
cur. For example, views map the six
function names in Table 3, such as
onUpdateVertex, to the programmer-
specified functions. Whenever events
occur in a view, the runtime in-
vokes the corresponding functions.
Applications register functions to a
view by calling register() on the
the view. For example, V.register(
onUpdateVertex, myFunc) will register the function myFunc. Concerto will in-
voke this function whenever any vertex is updated in the view V. Internally, the
function is stored as an executable.
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When the events of interest, e.g., vertex updates, occur on a graph element,
the Concerto runtime needs to determine which function registered with the view
should be invoked. As explained in Section 2, view members, such as vertices,
have a reverse pointer to their view object. This pointer is used to reach the
functions that need to be executed after the event occurs at the graph element.
Figure 2 illustrates the control flow during event-driven processing. The invoked
functions are first appended to a queue. These queued functions are executed
by a dedicated thread pool (separate from those handling queries) and, hence,
provide coarse-grain performance isolation between queries and event processing.
During execution, these functions can use the Concerto runtime for read access
to elements of the view. For example, after a traffic accident the impact analysis
function may traverse the vertices in the view to determine the affected region.
The invoked functions can also store persistent data in the property fields of the
view for subsequent processing. For example, a monitoring function may store
statistics about reads and writes as a property of the view.

Concerto can leverage off-the-shelf publish-subscribe systems for large-scale
event propagation. We believe our work to be complementary to these systems.

4 Fault Tolerance and Security

Concerto simplifies the graph store architecture by delegating most of the fault
recovery mechanisms to Sinfonia. Sinfonia provides atomicity, consistency, iso-
lation, durability (ACID), and availability if replication is enabled. These guar-
antees are independent of client-failures and the size of the graph. This design
choice ensures that the graph store can easily be ported to other platforms such
as distributed key-value stores. The Concerto prototype uses Sinfonia’s disk-
logging mechanisms to recover from memnode failures.

Sinfonia’s fault tolerant global address space implies that data stored in Con-
certo is recoverable. However, we need mechanisms in Concerto to regain con-
sistency (upon recovery) of the graph allocators. Graph allocators store all their
meta-data in the memnodes. However, if a graph allocator fails then some of
the memory may be leaked (e.g., pre-allocated blocks may be left dangling).
The recovery process in Concerto goes through the allocator meta-data in each
memnode and entrusts any dangling memory block to an active graph allocator.

Unlike data operations, event processing in Concerto’s current prototype is not
completely fault-tolerant. The difference in guarantees occurs because events are
processed asynchronously to isolate query performance from event processing.As a
result, an untimely fault can result in lost events. For example, when an update oc-
curs, the write operationmay return results to the client even though the triggered
event processing codemay still be executing a computation. If there is a fault before
the update operation returns, then Concerto’s recovery process will ensure that
both the write operation and the event-processing code is correctly re-executed (or
the client is notified of the failure and can retry). However, if a fault occurs after
the update operation completes but before the event processing code completes,
then the event may be lost. One can make event-processing fault tolerant by using
a fault-tolerant message queue which we plan as future work.
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Concerto assumes that functions registered with views are written by trusted
applications. Malicious code can impact both the graph store and the stored
data. The current prototype does not provide additional security features to
constrain malicious functions. In the future, standard security techniques, such as
sandboxes, may be used to limit the power of these functions [24]. Also, eventual
consistency will let Concerto scale to more servers, improve its performance
via asynchronous updates, and may decrease the latency of graph operations.
However, eventual consistency is difficult to reason about and program.

5 Evaluation

Concerto consists of approximately 4, 500 lines of C++ code for distributed data
allocation, query API, distributed graph traversals, and event processing. These
lines of code do not include the Sinfonia codebase.

We compare Concerto against MySQL, a well known relational database;
against Neo4j, a commercial graph database; and GemFire [6], a commercial, in-
memory distributed data management platform. GemFire uses hashing to store
data in memory regions distributed over multiple nodes and provides a SQL-like
interface. All experiments are performed using a cluster of 100 HP SL390 servers
running Ubuntu 11.04. Each server has two Intel Xeon X5650 processors (total
of twelve 2.67GHz cores), 96GB of DRAM, 120GB SSD drives, and 10 Gbps
NIC. In some cases, where the 96 GB memory limit was exceeded, we ran Neo4j
on a separate 1 TB memory server, however 96 GB was never approached for a
single Concerto memnode in these graphs.

In our experiments, all systems run in-memory: Neo4j is run on a ramfs par-
tition, MySQL uses its memory engine, and Concerto is run without replication.
GemFire is run with one logical data region, distributed over multiple nodes (the
number of nodes is specified in each experiment). In MySQL and GemFire, the
graph is stored as a table of edges. We optimize MySQL query performance by
using B-tree and hash indexes (GemFire uses hash maps). Workload generators
are located on different servers from those hosting the store.

From our evaluation, we find that:

– Concerto is fast. It can ingest millions of vertices and edges per second and
is more than 25× faster than other systems for k-core on large graphs and
uses 3× less memory than Neo4j.

– Concerto’s performance scales with the additional servers. It can calculate
the 3-core on a 90 million vertex graph in less than 12 minutes on 64 instances
compared to 45 minutes on a single memnode. The same computation takes
more than 6 hours by GemFire.

– Concerto’s graph views provide extensibility. Due to views and event-
processing, Concerto’s implementation of a road traffic application is 10×
faster than a poll based system.

Table 4 describes the graphs used in our experiments. For example, Twitter-L
represents 51 million users with 2 billion follower relationships that was collected
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Table 4. Graphs used in different experiments

Graph Vertices Edges File size Experiments
Twitter-S 33M 282M 6.5GB Insert, k-hop,

monitoringTwitter-L 51M 2B 38GB
Social-S 3M 13M 197MB

Insert, k-core
Social-L 90M 405M 7.5GB
Road-CA [26] 2M 5M 84MB Traffic analysis

Table 5. Comparison of insertion throughput. Concerto/GemFire-1,10 represent run-
ning with 1 and 10 instances, respectively

Inserts/sec Vertex Edge Vertex(bulk) Edge(bulk)
Neo4j 282 337 6,120 6,467
MySQL 21,898 15,457 504,209 324,352
GemFire-1 5,234 6,001 153,245 165,324
Concerto-1 6,584 7,089 1.1 million 0.9 million

GemFire-10 27,512 23,092 1.3 million 1.0 million
Concerto-10 29,695 27,122 2.6 million 1.8 million

from the Twitter Web site. The Social-S/L graphs represent synthetic social
network graphs generated using the model proposed by Newman [25].

5.1 Performance Results

We first compare the insertion throughput and query latency of Concerto, Neo4j,
GemFire, and MySQL.

Insertion throughput. Table 5 compares how many vertex and edge elements can
be inserted per second by the different stores for the Twitter-S graph. We also
compare bulk loading all the vertices and edges of the Twitter-S graph for the
different stores. Bulk loading avoids overhead from multiple memory allocations
by inserting vertices and edges in one request. Insertion requests are issued from
multiple clients to maximize the throughput. Our results show that a single in-
stance Concerto is more than 21× faster than Neo4j. For example, Concerto can
insert more than 6,500 vertices/second compared to only 282 vertices/second for
Neo4j. Inserting single data items into MySQL is faster than a single-server in-
stance of Concerto and GemFire because MySQL is highly tuned and stores the
graph in a simple table format. However, as we discuss in the next section, this
table representation considerably limits graph query performance in MySQL.
GemFire and Concerto exhibit similar performance with single-item insertions,
but Concerto is 1.8 − 7× faster than GemFire with bulk insertions. Similar to
single-insertion, GemFire still needs to hash every element in the bulk inser-
tion case resulting in lower performance. Concerto can parallelize ingestion to
increase throughput. With 10 instances, Concerto inserts approximately 2.6 mil-
lion vertices/second and 1.8 million edges/second. Scaling ingestion throughput
is particularly useful for applications that must load very large graphs.

Graph query: k-hop. A common query in many graph applications is to retrieve
a vertex and its neighbors that are k-hop distance away. Figure 3 compares the
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latency of retrieving upto 5-hop neighbors of a vertex in the different systems.
For a 1-hop distance, MySQL and Concerto have similar performance, while
Neo4j is noticeably slower. Neo4j’s Java implementation is the main reason for
the slowdown. However, for queries requiring more than 2-hops, MySQL is the
slowest. This result is not surprising because for each hop, it has to perform a join
operation, which is known to be an expensive operation for a database. For fewer
than 3-hops, the overhead from two table join operations is insignificant due to
use of the MySQL index. On the other hand, graph databases are optimized
for such larger traversals. For greater than 2-hops, both Neo4j and Concerto-
1 are at least 2-100× faster than MySQL, with the speedup increasing with
the number of hops in the query. GemFire-1 performs worse than MySQL and
hence we show only the GemFire-10 numbers. While Neo4j exhibits similar or
better performance than the single-server instantiation of Concerto, Concerto-10
is 2-6× faster than Neo4j and and 5× faster than GemFire-10.

System Social-S Social-L
Neo4j 6 min 64 hrs
GemFire-1 5 min 25 hrs
MySQL 4 min 22 hrs
Concerto-1 1 min 45 min

Fig. 4. 3-core execution time

Graph algorithm: k-core. The k-core of a
graph determines the subgraph where each
vertex has at least k neighbors on the induced
subgraph. Vertices with a larger “coreness”
value (i.e. k) correspond to nodes with a more
central position in the network structure [27].
The k-core of a graph is obtained by recur-
sively deleting vertices with degree less than k, until the degrees of remaining
vertices is larger than or equal to k.

For Concerto, we implement the parallel k-core decomposition algorithm [27].
Table 4 shows the time taken by different systems to calculate the 3-core of
two social graphs. For the 3 million vertex Social-S graph, MySQL, GemFire
and Neo4j perform similarly, computing the 3-core of the graph in 4, 5 and
6 minutes respectively. Concerto, however, computes the 3-core much faster,
requiring only 1 minute. For the 90 million vertex Social-L graph, Neo4j requires
over two days to compute the 3-core, whereas MySQL and GemFire complete
the same computation in 22 and 25 hours, respectively. Concerto completes the
computation in only 45 minutes.

To understand these numbers, we observe that each round of the k-core de-
composition consists primarily of two phases: a graph scan to find the vertices
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that need to be deleted, and a short traversal of each vertex to find their degree
in the induced subgraph. The bottleneck in Neo4j is the part of the algorithm
that must perform a scan of all the data; such scans are known to be slow in
Neo4j for large graphs. MySQL’s and GemFire’s advantage in scans and pred-
icate evaluation (using indexes) is the primary reason for the speedup relative
to Neo4j for large datasets. We note that for the Social-L graph we used a hash
index since MySQL could not create such a large B-Tree index due to a known
unresolved bug in its implementation 1. In contrast, the design of Concerto allows
it to perform both graph scans and traversals quickly. It calculates the 3-core
in approximately 45 minutes, which is 29× faster than MySQL, 33× faster than
GemFire, and 85× faster than Neo4j.

5.2 Memory Footprint

In Figure 5, we compare the storage footprint of each system, which, in this
case, is entirely in memory. For MySQL we quote the numbers when only a hash
index is created, which is much more memory efficient than creating a B-Tree
index. Over all data-sets, MySQL has the smallest storage footprint as it stores
only the edge information in the form of a table. Concerto requires 1.3 − 4.7×
more storage than MySQL, and requires similar storage as GemFire but is 2.8−
22.7× more space efficient compared to Neo4j. GemFire consumes less memory
than Neo4j due to optimizations in object serialization and deserialization –
only cached objects exist in deserialized forms, while remaining objects exist
in smaller, serialized form. Apart from the overhead of Java, Neo4j also stores
extra metadata and hence consumes more memory than Concerto. For example,
in Neo4j the outgoing edges of a vertex are stored in a doubly linked list which
incurs the additional cost of a back pointer per edge.

Revisiting the performance numbers from k-hop and k-core in the context of
memory footprint reveals that for simple queries (e.g., 1-hop or 3-core) over small
data sets, running in-memory MySQL offers roughly the same performance-vs-

1 http://bugs.mysql.com/bug.php?id=44138

http://bugs.mysql.com/bug.php?id=44138
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memory trade-off as single-server Concerto and a better trade-off than Concerto-
10. However, as the data set size or query complexity increases, the additional
performance improvement of Concerto outweighs the additional storage require-
ment. For example, when running k-core, single-server Concerto requires 4.7×
more storage than MySQL, but improves k-core latency by a factor of 29×. In
the case of Neo4j, this difference is even more pronounced, where Concerto re-
quires 3.3× less storage, and yet improves k-core latency by a factor of 85×.
Compared to GemFire, Concerto consumes a similar amount of memory but is
33× faster on k-core.

5.3 View Updates

Figure 6 is a microbenchmark to measure the latency in processing view updates.
We created a view on the Twitter-S graph such that 20% of the vertices are part
of the view (around 7M). We use a client to send randomly generated updates to
vertices both within and outside the view . Whenever a vertex is updated in the
view, we use event-processing to increment the count of writes occurring on the
view. The Y-axis in the plot shows the time interval between a vertex update
and the completion of the event handler. In Concerto-1, the latency increases
substantially as the update rate becomes more than 50K/s. The increased latency
is because the single server reaches full capacity utilization and incurs queuing
delay. In Concerto-10, the view update latency is higher than Concerto-1 initially,
due to the network communication to update the view statistic that resides
at one server. However, since the graph is distributed across multiple nodes,
Concerto-10 can handle a higher update rate. The average delay is under 150ms
for Concerto-10 even when the update rate is 250K updates/s. As a reference
point for update rates, Twitter and Facebook receive 100K-200K update events
per second [1,2].

5.4 Scalability Results

Unlike Neo4j, Concerto can leverage distributed parallelism to improve perfor-
mance. Figure 7 shows the effect of scaling on the execution time of 3-core on
the Social-L graph. As we increase the number of Concerto instances to 64,
the execution time drops from 45 minutes to 12 minutes. At four Concerto in-
stances the execution time is higher than the single server case because of the
extra communication required. Similarly, beyond 80 instances the communica-
tion overhead for this dataset overshadows the benefit of increasing parallelism.
The table in Figure 7 shows that GemFire’s performance improves with more
instances. However, even at 64 instances it still requires 6 hours to complete.

6 Case Studies with Views

In this section, we consider how views and event-processing in Concerto can ease
development and improve performance of real-world inspired applications.
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6.1 Real-Time Traffic Impact Analysis

The California Performance Measurement System (PeMS) is a network of road
sensors spanning the major metropolitan freeways in California; these 26,000
sensors collect data every 30 seconds, generating over 2 GB of data each day [4].
The primary challenge isn’t the scale of the data, but the real-time nature of the
application. We revisit the example described in sub-section 3.1 and implement
an application considered by both Kwon et al., and Miller et al: a statistical
technique to estimate the time and spatial impact of a road incident (e.g., an ac-
cident, obstruction) on surrounding traffic [3,28]. When any such incident occurs,
the application needs to react by analyzing the road network graph to predict
the impact region of this incident, and possible re-calculated the shortest path
between two endpoints of an impacted commute. Low latency is of the essence
in order to notify the appropriate authorities to respond [3].

The application leverages Concerto in three ways. First, road sensors are
stored as vertices, and connecting road segments are stored as associated edges
in a graph. Each vertex contains information collected by its associated sensor
(i.e., traffic flow, velocity, external incidents, which are uploaded from external
sources). Second, a specific region of interest – for example, a municipality –
forms a graph view such that the relevant client can run analysis when events
occur. Finally, a function is registered with each view to run the impact analy-
sis algorithm upon occurrence of an incident. The analysis function can use the
information contained in the sensors that span the view.

We construct a graph based on the California road network [26], and generate
10 independent views (non-overlapping subgraphs) of size 2000 to approximate
independent municipalities. We drive the experiment using synthetic traffic and
incident data over a 25-minute window; this data is drawn from a distribution
sampled by historical PeMS data, and approximately matches the findings of
Miller, et al [3]. Therefore, at every 30-second interval, a traffic update invokes
an updateProperty(sensorID,sensorData) in Concerto, and when an inci-
dent occurs (also associated with a specific sensor), updateProperty(sensorID,
incident) is invoked. Upon completing the incident impact analysis, a shortest
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path between a fixed source and destination municipality is recalculated, with
any impacted subgraph removed from the calculation.

Figure 8 shows the end-to-end latency of determining the impact region for
the first five incidents. To measure the performance benefit of using Concerto, we
compare the latency of implementing this application in Concerto without event-
driven processing, thus requiring polling and client side processing (poll-based in
Figure 8). We show a breakdown of the time it takes to compute the impacted
region, update the incident sensor, and from queueing delay, and polling over-
head. We use a 10-second polling interval, which is close to the time taken to
scan all the vertices in the ten views and read whether an incident has occurred.
In Figure 8 we see that Concerto can find the impacted region in less than 100
milliseconds, largely due to server-side processing in both the event handling and
code execution. The polling-based system takes from 1 to 10 seconds, and thus
is slower by upto two orders of magnitude from Concerto. Even discounting the
polling overhead, the poll-based system takes one second to complete because of
the costly client-side graph traversal.

6.2 Hotspot Migration

Large social networks such as Facebook expose their infrastructure to third-
party advertisers wishing to target particular users (e.g, through Facebook Ads
API [29]). An increase in targeted advertising usually coincides with increases in
traffic from trending topics or external events that impact the social graph (e.g.,
the Super Bowl). This rapid increase in traffic can cause a workload hotspot,
especially if members of the view are co-located on the same set of physical
servers. Concerto can dynamically load balance data corresponding to a view
to mitigate such workload hotspots. To demonstrate these features, we replay
a synthetic trace of read and write traffic on the Twitter-S graph stored across
three Concerto instances. To simulate peak load, we create a view (called hotspot)
by randomly selecting 1, 000 Twitter users (these correspond to vertices in the
Twitter-S graph) stored in the same Concerto sever. We assign a designated set
of clients to this view to simulate heavy-hitters and continuously send requests to
those vertices. Concerto handles the heavy hitters by using a migration policy
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such that the view members are evenly distributed across the three Concerto
servers. This policy is implemented by gathering statistics of the number of
requests hitting the view and when it exceeds a threshold (i.e hotspot occurs),
the data migration policy is invoked. All of this is done using the View event-
driven processing API described in Section 3.1. Figure 9 shows the timeline for
the above scenario. The hotspot occurs at time 70 seconds, at that time the
average request latency seen by the heavy hitters (hotspot-avg) increases to 6ms
compared to less than a millisecond initially. The average latency of other clients
in the store also increases (bkgd-avg) as some of their queries are on the view data.
At time 180 seconds, the migration starts and moves approximately one-third of
the view members to the remaining servers. During migration 683 vertices have to
be moved which requires updating 10, 916 edges. The total migration time takes
approximately 19.3 seconds, representing a downtime window during which the
heavy hitters cannot access the store. Note that our migration implementation
isn’t well optimized and the migration time of 19.3 seconds is on the higher
side which can be reduced. At the end of the migration, the average latency for
both the heavy hitters and the other users becomes the same. Also, as shown
in Figure 10, after the migration, the store can handle more traffic from the
heavy hitters as the data is now spread across more servers. The effect of this
migration is reflected by the increase in the total throughput beyond time 200
seconds. Online data migration can also be used to optimize query performance
in other cases. For example, in another experiment, we observe that executing
3-core on the 3M vertex graph (Social-S) is 1.6× better running on 10 Concerto
servers than executing it on 32 instances. Due to the communication overhead,
it takes 24 seconds to calculate 3-core on 32 instances compared to less than
15 seconds with only 10 instances. Therefore, in this case, the social media
application can move the data of a view to span fewer machines before running
the k-core query. Note that Concerto does not automatically partition the graph
for optimal performance. But applications can use known partitioning schemes
and register the partitioning logic with Concerto for dynamic data partitioning.

7 Related Work

Relational Databases. Common graph queries such as shortest-path and k-
hop are both difficult to express and inefficient to implement in a relational
model. Because these queries cannot be completed quickly enough to support
interactive or real-time responses. Web 2.0 sites such as Facebook, Flickr, and
Wikipedia complement their SQL-based backing store with an in-memory cache
such as Memcached [18] to provide low-latency response. Unfortunately the need
to use a caching layer to achieve performance scalability comes at the cost of
relaxed transactional semantics, a severely restricted set of supported graph
queries, and lack of extensibility using application defined functions.

Distributed Datastores. GemFire [6] is the most closely related system to
Concerto in that it is a scalable datastore that supports parallel query pro-
cessing, event-driven processing and transactions. It exports an SQL-like query
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interface on top of a distributed key-value storage layer. It is capable of perform-
ing dynamic load balancing, event-processing over data, and in-memory caching
of data objects across servers. Like relational databases and key-value stores,
however, it does not provide explicit support for graph objects, thereby making
graph queries inefficient.

Batch Analysis. Existing approaches to large graph analysis focus on optimiz-
ing offline computation. Systems like Pregel [5], GraphLab [9], Horton [30] and
algorithmic methodologies in the high-performance community [31,32] primarily
address the challenge of scaling computation with the size of graph data, gen-
erally on the order of billions of nodes and edges. As a result, these domains
restrict themselves to immutable, read-only data. On the other hand, Concerto
is designed to address the challenge of providing low-latency computation with
transactional semantics for complex graph problems where data is continuously
ingested and modified.

Graph Databases. Many specialized graph databases provide transactional
guarantees and are optimized for typical graph operations, but largely do not
scale storage [12,14,15] or storage or computation [11,16] to multiple servers.
Kineograph [33] and Trinity [17] are the most closely related graph projects to
Concerto, but do not provide semantics for user-defined functions or event-based,
active computation. Kineograph is designed to provide transactional support
for real-time graph updates in a distributed graph storage system; however, it
does not explicitly support fast graph computations and instead stores graph
elements using hash-based partitioning across graph storage nodes. Trinity does
not provide transactional storage, and makes a different trade-off with how edges
are named and represented in the graph. In the case of InfiniteGraph, no detailed
technical documentation is available to provide a more informed comparison.

Graph Views. Gutierrez et. al. [34] proposed database graph views as an ab-
straction mechanism on relational and object oriented databases. Their work
includes derivation operators such as union, intersection, difference to define
new graph views. However, their work is in the context of traditional databases
and they do not provide a specific implementation. Concerto’s view mechanisms
build upon this prior work and provide a specific implementation in a distributed
environment for non-relational, in-memory graph stores.

8 Conclusion

Many emerging applications require both scalable, transactional data storage,
and interactive, low-latency graph analysis. Concerto is a distributed graph store
that fills the gap between tiered database systems that scale, but perform poorly
on graph queries, and recent graph frameworks which can efficiently compute
graph algorithms but are offline and don’t provide transactional storage seman-
tics. Concerto’s abstraction of graph views simplifies how graph applications are
expressed, and provides mechanisms that can sustain update rates reported by
Twitter and Facebook.
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