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Abstract. Brain-Computer Interfacing (BCI) aims to assist, enhance,
or repair human cognitive or sensory-motor functions. The classification
of EEG signals plays a crucial role in BCI implementation. In this paper
we have implemented a multi-class CSP Mutual Information Feature Se-
lection (MIFS) algorithm to classify our EEG data for three class Motor
Imagery BCI and have presented a comparative study of different classi-
fication algorithms including k-nearest neighbor (kNN) and Fuzzy kNN
algorithm, linear discriminant analysis (LDA), Quadratic discriminant
analysis (QDA), support vector machine (SVM), radial basis function
(RBF) SVM and Naive Bayesian (NB) classifiers algorithms. It is ob-
served that Fuzzy kNN and kNN algorithm provides the highest classifi-
cation accuracy of 92.65% and 92.29% which surpasses the classification
accuracy of the other algorithms.
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1 Introduction

The main function of Brain-computer Interfacing (BCI) is to process and decode
the brain signals and send the resulting commands to an external assistive device,
thus implementing a real-time interface between the user and his environment.
This interface may be a word processor, wheel chair or a prosthetic limb [1, 2]. In
this technique, the subjects use their brain signals for communication and control
of objects in their environment, thereby bypassing their impaired neuromuscular
system [3, 4].
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Common Spatial Pattern (CSP) is instrumental in implementing extraction
of intended activity from the neural recordings. CSP was first applied in BCI
implementation in [5, 6]. BCI is generally limited to binary classification of data
due to low information transfer rates. To enhance the information transfer rate
one can move from binary to multiple classes. For this purpose, we have pro-
posed a feature selection technique based on a simple multiclass CSP OVR [7]
and Mutual Information Feature Selection (MIFS) [8] and have compared the
performance of the proposed technique using seven different classification meth-
ods including k-Nearest Neighbor (kNN), Fuzzy kNN, Linear and Radial Basis
Function (RBF-) Support Vector Machine (SVM), Linear Discriminant Analy-
sis (LDA), Quadratic Discriminant Analysis (QDA) and Nave Bayesian (NB)
classifiers [9 - 11] in differentiating the raw EEG data obtained into left/right
hand and up movement. Our proposed framework also introduces a novel voting
scheme to increase the classification accuracy.

The rest of the paper is structured as follows: Section 2 elucidates the pro-
posed CSP-MIFS framework. The organization of the experimental data and
data preprocessing is explained in section 3. Performance analysis of the classi-
fiers is given in section 4. Section 5 concludes the paper.

2 Proposed Framework

The CSP algorithm was initially developed for binary classification of motor
imagery. In this section we describe the binary CSP algorithm and extend its
application for the multiclass case. The MIFS algorithm requires a user defined
parameter k which denotes the number of features to be selected. It is based on
the filter approach.

2.1 Proposed Approach of Multiclass CSP-MIFS

In this paper we consider the One-Versus-Rest (OVR) [7] approach to extend
the CSP algorithm to multiple classes. As we are considering three classes, three
CSP blocks have been employed. The input to the first CSP blocks will be the
signals from class1 and a combination of class2 and class3 EEG data. Similarly,
the input to the second classifier will be class2 and a combination of class3 and
class1 EEG data and so on. Next, the CSP projection matrix for each of the 3
combinations will be computed and the spatially filtered matrix Z is created. The
first 3 and last 3 rows are selected from Z and then they are subject to feature
selection by MIFS algorithm [8].The spatially filtered and feature selected signals
creates the feature vector to be fed to the classifiers. A comparative study of the
classification accuracies of these algorithms are carried out. Finally, the classified
data from each stage is processed by a voting mechanism which gives the final
classes of the EEG data. This process is graphically shown in Fig. 1.

2.2 The Voting Mechanism

The input to the voting stage is the predicted classes of the data from the three
classifiers. We denote the classes used in the first classifier as 1 and 23 where 1
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Fig. 1. Different stages of the proposed scheme for 3 classes

denotes the data is of class1 and 23 denotes the data is either of class2 or class3.
Similarly the classes in the second classifier are denoted by 2 and 31 and for
the third classifier as 3 and 12.c(x, y) is a function that computes the binary
CSP between classes x and y and gives the predicted class. When there is an
equal probability of a test data to belong to any one of two classes, then this
function is called to resolve the matter. This happens in cases 2, 3 and 5. When
the test data cannot be classified correctly to any of the classes, a random class
is assigned to them. This is the case in 1 and 8. This is illustrated in Table 1.

Table 1. The Voting Mechanism

Sl. No. Classifier 1 Classifier 2 Classifier 3 Class

1 1 2 3 rand(1,2,3)
2 1 2 12 c(1,2)
3 1 31 3 c(1,3)
4 1 31 12 1
5 23 2 3 c(2,3)
6 23 2 12 2
7 23 31 3 3
8 23 31 12 rand(1,2,3)

3 Data Analysis

All the experiments were conducted in our lab at Jadavpur University. 10 sub-
jects (6 female and 4 male) performed the experiments in which they were in-
structed to imagine moving left (Class 1), right (Class 2) or forward (Class 3),
according to the instructions displayed through a visual cue. The subjects per-
formed the experiment in a single session, containing 120 trials each, i.e., 40
trials for each class.
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Visual Cue. The visual cue is designed as follows: In the first 30 seconds of
the session, a blank screen is displayed during which the baseline of the subject
is measured followed by 60 trials of 6 seconds each. Each trial began with a
fixation + for 1 second, which is an instruction to the subject to focus on the
screen. Then a left/right/up arrow is displayed on the screen for 3 seconds as
instruction to the subject. After 3 seconds, a blank screen would be displayed
for 1.75-2.25 seconds to eliminate the cognitive effect of the current trial in the
next one. The timing scheme of the visual cue is shown in Fig.2.

Fig. 2. Timing scheme of the visual cue displayed to the subjects

Experimental Setup. The EEG was recorded using an Emotiv Epoc system,
which is a high resolution, multi-channel, wireless neuroheadset obtaining the
EEG signals from the 14 electrode locations, based on the 10-20 electrode system.
The electrode channels are AF3, F7, F3, FC5, T7, P7, O1, O2, P8, T8, FC6, F4,
F8 and AF4. The sampling rate of the EEG system is 128 Hz.

Data Extraction and Pre-processing. Following the acquisition of the EEG
signals, the raw EEG signal is band pass filtered using an IIR elliptical filter
of order 6 between 8-24 Hz, as movement related signals are obtained from
the 8-12 Hz mu- and 16-24 central beta band and to filter out any artifacts
obtained during the recording. The filtered signal is further epoched into 1/16th
of a second (i.e., 0.0625 seconds) and fed to the feature extraction and selection
algorithm to form the feature vector.

Feature Extraction. Our proposed approach is applied to the epoched signal.
First, the spatially filtered epoched signals are obtained and then fed to the
MIFS feature selector to select the best features among the six rows. The final
size of the features selected from each row is 4.

Classifiers. In this paper we have used both linear and non-linear classifiers
which include k-Nearest Neighbor (kNN), Fuzzy kNN, Linear and Radial Basis
Function (RBF-) Support Vector Machine (SVM), Linear Discriminant Analy-
sis (LDA), Quadratic Discriminant Analysis (QDA) and Nave Bayesian (NB)
classifiers [7-9].
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4 Results and Discussion

The whole experiment is conducted in MATLAB version 7.9 environment. The
specification of the system in which the experiment was conducted is as follows:
Processor- Intel Core2Duo, 1.19 GHz, 3.2 GB RAM.

The total feature vector is partitioned into two different datasets, the training
dataset and the testing dataset using k-fold cross-validation technique [10]. In
our study, k is taken as 10. The feature vector is fed to the above classifiers and
the classification accuracies are used as a parameter for performance analysis of
the classifiers (as shown in Table 2). From Table 2, we observe that Fuzzy kNN
gives the mean classification accuracy of 92.65% whereas kNN gives an accuracy
of 92.29%.

Table 2. Average Classification Accuracy

Subjects 1 2 3 4 5 6 7 8 9 10 Mean Std

kNN 96.15 95.31 92.43 90.17 93.59 90.72 89.56 94.57 85.11 95.29 92.29 3.43
Fuzzy kNN 96.88 95.35 92.40 90.32 93.65 90.71 89.66 94.70 86.77 96.01 92.65 3.24
SVM 72.10 73.52 75.21 76.22 73.89 74.20 75.37 72.66 75.12 72.98 74.13 1.34
RBF-SVM 85.12 84.56 82.35 82.01 83.23 81.36 81.02 83.14 78.85 84.93 82.66 1.97
LDA 65.87 67.23 70.52 71.41 70.25 71.17 72.07 68.03 74.21 66.10 69.69 2.76
QDA 81.27 80.78 79.54 77.16 80.16 76.98 76.85 80.51 72.29 80.92 78.65 2.82
NB 85.07 83.54 81.29 78.96 80.23 77.23 75.20 81.29 70.23 84.19 79.72 4.54

We have also employed Friedman Test [12] to statistically validate our results.
The significance level is set at α =0.05. The null hypothesis here, states that all
the algorithms are equivalent, so their ranks should be equal. We consider the
mean classification accuracy, obtained from Table 2 as the basis of rank. Table
3 provides the ranking of each classifier algorithm.

Table 3. Ranking of the classifiers based on their average classification accuracy

Classifier kNN Fuzzy kNN SVM RBF-SVM LDA QDA NB
j

Rank 2 1 6 3 7 5 4

Now, from Table 3, we obtain rj , χ
2
F = 79.291. Now, the χ2

F for our given
dataset > χ2

7,0.05= 14.067. So, the null hypothesis, claiming that all the algo-
rithms are equivalent, is wrong and, therefore, the performances of the algorithms
are determined by their ranks only. It is clear from the table that the rank of
Fuzzy kNN is 1, claiming Fuzzy kNN outperforms all the algorithms by Friedman
Test.
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5 Conclusion

The paper proposes a novel feature extraction and selection technique based on
Multi-class Common Spatial Pattern and Mutual Information Feature Selection
classification of multi-class problems. The resultant feature vector is fed to seven
classifiers for a comparison on their performances. It is noted that Fuzzy kNN
and kNN give the best results among all the classifiers and most of the classifiers
give a result of more than 75%. Thus, our algorithm can be employed for further
real time processing of multi-class problems. Further study in this direction will
aim to optimize the feature selection, extraction and classification techniques to
be implemented in real time application of Brain-Computer Interfacing.
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