QoS-Aware Cloud Service Composition
Using Time Series

Zhen Ye', Athman Bouguettaya?, and Xiaofang Zhou!

! The University of Queensland, Australia
2 Royal Melbourne Institute of Technology, Australia

Abstract. Cloud service composition is usually long term based and
economically driven. We propose to use multi-dimensional Time Series
to represent the economic models during composition. Cloud service com-
position problem is then modeled as a similarity search problem. Next,
a novel correlation-based search algorithm is proposed. Finally, exper-
iments and their results are presented to show the performance of the
proposed composition approach.

1 Introduction

Cloud computing is increasingly becoming the technology of choice as the next-
generation platform for conducting business [I]. Big companies such as Amazon,
Microsoft, Google and IBM are already offering cloud computing solutions in the
market. A fast increasing number of organizations are already outsourcing their
business tasks to the cloud, instead of deploying their own local infrastructures
[2]. A significant advantage of cloud computing is its economic benefits for both
users and service providers.

Compared to traditional service composition, cloud service composition is usu-
ally long-term based and economically driven. Traditional quality-based compo-
sition techniques usually consider the qualities at the time of the composition
[3]. For example, which composite service has the best performance at present?
This is fundamentally different in cloud environments where the cloud service
composition should last for a long period. For example, which composite cloud
service performs best in the next few years, despite it may not be the best one at
present? This paper presents a novel cloud service composition approach based
on time series. Time series databases are prevalent in multiple research ares,
e.g., multimedia, statistics etc. Many techniques [4], [5] have been proposed to
effectively and efficiently analyze economic models in cloud computing [] [].

We identify four actors in the cloud environment (Fig. dl): End Users, Com-
poser, SaaS (Software as a Service) Providers and IaaS (Infrastructure as a
Service) Providers. Platform as a Service (PaaS) layer is omitted as we assume
that it is included in the IaaS layer. End Users are usually large companies and
organizations, e.g., universities, governments. The composer in this paper rep-
resents the proposed composition framework. SaaS providers supply SaaS [6] to
end users. TaaS providers supply IaaS [6], i.e., CPU services, storage services,
and network services, to SaaS providers and end users. The composer acts on

S. Basu et al. (Eds.): ICSOC 2013, LNCS 8274, pp. 9-E2Z] 2013.
(© Springer-Verlag Berlin Heidelberg 2013

10 Z. Ye, A. Bouguettaya, and X. Zhou

committee committee committee

[/ university} [/ university] / university Edbecy
Composition Composer
Framework

V\
1:N 1:N
N L/
SPy SP, SaaS Provider
=
1:1 1:N
L/

\‘[P,] [P, } \£ 1P JIaaSProvider

Fig. 1. Four actors in cloud computing

the behave of the end users to form composite services that contains services
from multiple SaaS providers and IaaS providers (Fig. [II).

Similar to traditional service composition [7], cloud service composition is
conducted in two steps. First, a composition schema is constructed for a compo-
sition request. Second, the optimal composition plan is selected. A composition
plan is formed by choosing concrete cloud service providers for each abstract
SaaS and abstract IaaS in the composition schema.

Our research focuses on the selection of composition plans based solely on non-
functional (Quality-of-Service, or QoS) attributes [§]. On one hand, we model
the requirements of end users as a set of time series. On the other hand, cloud
service providers market their services (SaaS or TaaS) using a set of time series.
Each time series represents the values of a corresponding QoS attribute over
a long period. Hence, cloud service composition problem becomes a similarity
search problem whose query is a set of desired time series.

Traditional techniques seldomly handle complex time series queries which re-
quire the correlation between the time series to be used during similarity match-
ing. The correlation, however, are prevalent during service composition where each
QoS attribute is correlated with several other QoS attributes. For example, con-
sidering that we will select the best composition plan by leveraging two QoS at-
tributes, response time and cost. The cost of a cloud service may decrease during a
period, while the response time of the cloud service is also decreasing. We can eas-
ily observe the correlations that exist between time series. If we process each time
series independently, we will not be able to make use of the inherent correlations.

We refer to groups of time series with correlations as Time Series Groups
(TSG). Given a query TSG object @ = {q1,¢q2,.-.,q}, where [is the number of
the time series in @ and each time series ¢; = {(@m,tm)|m = 1,2,...,L;},
where z,, is the value of the time series at time t,,, and a TSG set D =
{TSG1,TSGy,...,TSGyn}. The similarity search on TSG is to find the most
similar TSGs from set D via a predefined function dist(Q,TSC;), where

result = argmin;=1,.. n(dist(Q,TSC;)). (1)

The main contributions of the paper include: (1) Cloud service composition
problem is considered as a similarity search problem. Specifically, this paper

QoS-Aware Cloud Service Composition Using Time Series 11

proposes algorithms that leverages time series correlations to effectively and effi-
ciently compute the distance between two TSGs. (2) We propose two data struc-
tures for Time Series Group processing, which leverage the principal components
and the relations of time series. A key difference between T'SG and existing time
series similarity search is that the former requires the use of relations between
time series. (3) Analytical experiments are presented to show the performance of
the proposed approach. The empirical results show that the proposed approach
is superior compared with other similarity search approaches.

The remainder of the paper is structured as follows: Related work are pre-
sented in section [2l Section [3] presents a use case for cloud service composition.
Section Ml gives a detail analysis of the research challenges and then elaborates
the proposed composition approach. SectionBlevaluates the proposed approaches
and shows the experiment results. Section [concludes this paper and highlights
some future work.

2 Related Work

Service composition is an active research topic in service-oriented computing [9].
During the last decade, many QoS-aware composition approaches are proposed.
QoS-aware service composition problem is usually modelled as a Multiple Crite-
ria Decision Making [3] problem. The most popular approaches include integer
linear programming and genetic algorithms. An Integer Linear Program (ILP)
consists of a set of variables, a set of linear constraints and a linear objective
function. After having translated the composition problem into this formalism,
specific solver software such as LPSolve [10] can be used. [II] and [12] use Ge-
netic Algorithms (GA) for service composition. Individuals of the population
correspond to different composition solutions, their genes to the abstract com-
ponent services and the possible gene values to the available real services. While
GAs do not guarantee to find the optimal solution, they can be more efficient
than ILP-based methods (which have exponential worst-case time complexity).
Most of the traditional Web service composition approaches are not well suited
for cloud environment [12]. They usually consider the qualities at the time of the
composition [9]. [§] adopts Nayesian Network and Influence diagram to model
the economic models and solve the cloud service composition problem. However,
they assume conditional probability relationship among multiple QoS attributes,
which is not a general case in reality. This paper considers a general case where
QoS attributes can be described using time series.

Existing work on time series query can be categorized into two categories,
time series matching and pattern and correlation mining on multiple time series.
In existing similarity search over time series databases, the time series is trans-
formed from its original form into a more compact representation. The search
algorithm leverages on two steps: dimensionality reduction [4], [13], [I4], [I5] and
data representation in the transformed space. Various dimensionality reduction
techniques have been proposed for time series data transformation. These in-
cludes: Discrete Fourier Transform (DFT), Singular Value Decomposition (SVD)

12 Z. Ye, A. Bouguettaya, and X. Zhou

SaaS SaaS SaaS
Provider Provider Provider
T T T

Fmd. Find Comparable Generate
Publications Professors (T2) Reports (T3)
&Citations (T1) P

CPU Sto Net

laaS Provider

Fig. 2. Tenure application for University A

[13], Discrete Wavelet Transform (DWT)[14], and Piecewise Aggregate Approx-
imation (PAA) [I3]. Another approach for dimensionality reduction is to make
use of time series segmentation [4].

Existing multiple time series research have focused on pattern mining and
finding correlation between multiple time series, over patterns and observed val-
ues from group of individual time series. Papadimitriou et al. [16] proposed
the SPIRIT system, which focuses on finding patterns, correlations and hidden
variables in a large number of streams. SPIRIT performs incremental Principal
Component Analysis (PCA) over stream data, and delivers results in real time.
SPIRIT discovers the hidden variables among n input streams and automatically
determines the number of hidden variables that will be used. The observed val-
ues of the hidden variables present the general pattern of multiple input series
according to their distributions and correlations. These existing approaches can-
not be easily extended for the T'SG similarity search problem because of the lack
of a clearly defined similarity measure. Most importantly, existing approaches
are unable to deal with the relations that exist between the multiple time series.

3 Use Case

Let us consider a simple use case, university A requires a composite cloud ser-
vice to aid the tenure process every year. Suppose the university outsources
three main tasks to the clouds during 2012 and 2015. The aim of cloud service
composition in this example is to find and select a set of component cloud ser-
vices to form a tenure application. Specifically, the tenure application (Fig.)
has three abstract SaaS. Tenure application will first search and find the pub-
lication and citation records of a candidate (task 1, T1). It will then find the
the publication and citation records of the comparable professors (task 2, T3).
Finally, the tenure application will generate the evaluation report (task 3, T3).
Besides these abstract SaaS, the composite tenure application also needs CPU,
network and storage resources from IaaS providers. CPU services (denoted as
CPU) are used to do computations on data. Storage services (denoted as Sto)
are used to keep intermediate data. The whole tenure application should be as
fair as and as transparent as possible. Therefore, all the input and output data,
should be stored in case some appeals arise. Network services (denoted as Net)

QoS-Aware Cloud Service Composition Using Time Series 13

are needed to transfer data between end users and the application, and between
components in the composite application.

University A has different QoS requirements (e.g., the number of tenure cases
that the composite service can process at once, the cost of the service and the
reputation of the service) on the composite tenure application over a period of
time. These preferences are presented through a set of time series data. Each
time series denotes the requirement of the university on a specific QoS attribute.
All the cloud service providers also advertise their services using time series
with the same time frequency. Hence, there are multiple candidate composition
plans, which are also represented as a set of time series data by aggregating all
the component services together. The composition problem, therefore, becomes
a query problem that aims to find the most similar sets of time series to meet
the university’s requirements.

4 Time Series Group Search Approach

There are two requirements when designing our composition approach. First, a
time series representation is needed to describe and measure the general infor-
mation extracted from a TSG. Second, the similarity search algorithm must be
more scalable compared to other approaches, since cloud environment is more
scalable than other existing platforms.

This section first presents the QoS model for cloud service composition. Two
data structures, denoted as QA and QR are then introduced to represent time
series during cloud service composition. The proposed composition approach is
finally presented at the end of this section.

4.1 QoS Model

To differentiate composition plans during selection, their non-functional prop-
erties need to be considered. For this purpose, we adopt a QoS model that is
applicable to all the SaaS and IaaS. Without loss of generality, we only consider
the QoS attributes listed as follows. Although the adopted QoS models have a
limited number of attributes, they are extensible and new QoS attributes can be
added. We assume laaS are homogeneous. One unit of TaaS, i.e., CPU, network
or storage, possess the same resources.

Three QoS attributes are considered for component services and composite
services: throughput, reputation, and cost.

— Throughput. Given an SaaS provider S P, the throughput of its SaaS ¢, (SP)
is the number of requests the SaaS provider is able to process per sec-
ond. Given an IaaS provider IP, the service rate of its IaaS ¢ (IP) =
[¢CPY(IP), Nt (IP),¢3t°(IP)] is a three-attribute vector, where ¢FV (I P)

(gNet(1P), q3t°(IP)) represents the number of CPU (network, storage) re-
quests the IaaS provider is able to process per second.

14 Z. Ye, A. Bouguettaya, and X. Zhou

— Reputation. Given an SaaS provider SP, the reputation ¢, (SP) is a value be-

tween (0, 1). Given an IaaS provider I P, the reputation of its TaaS ¢,+(IP) =
[SEY (IP),gNet (IP), g3t°(IP)] is a three-attribute vector, where ¢&;*V (I P)
(gNet(IP), ¢3t°(IP)) is the reputation for processing a computation (data
transfer, storage) request.

— Cost. Given an SaaS provider, the execution cost g.,st(SP) is the fee that
a customer needs to pay for the SaaS. Given an IaaS provider I P, the cost

for using Taa$ is denoted as a three-attribute vector geost(IP) = [¢SEY (IP),
lost(IP), 42ye (IP)], where qG0Y (IP), qligi(IP) and g3, (1P) are the price
for using CPU IaaS, unit network IaaS and unit storage [aaS correspondingly.

The quality criteria defined above are in the context of elementary cloud
services. Aggregation functions are used to compute the QoS of the composite
service.

— Throughput. The throughput of a composite service denotes the number
of requests it serves per second. For an abstract composite service aC'S,
the throughput g¢s.(aCS) is the minimal service rate of the selected SaaS
providers g4 (SP) and the TaaS provider ¢, (IP).

— Reputation. The reputation g,+(aC'S) of an abstract composite service aC'S
is computed by multiplying the selected SaaS providers and IaaS providers.

— Cost. The cost of an abstract service is the sum of execution cost of all the
selected SaaS and TaaS.

4.2 QoS Attribute of TSG

One of the key challenges of performing TSG similarity search in cloud service
composition is to efficiently match the QoS attribute (QA) of multiple time series
in TSGs. Using a compact representation can avoid the need to perform pairwise
comparisons of the time series, which is computationally expensive.

Principal Component Analysis (PCA) is commonly used in time series analysis
[16] to reduce dimensionality, and to facilitate query retrieval. The essential
idea in PCA is to transform a set of observed values in the high-dimensional
vector space into a smaller new vector space. Given a data matrix X, and a
transformation matrix W. Each column of X corresponds to a data vector in
the original space. Each row of W corresponds to a transformation vector. The
transformation vector transforms the data vectors from the original space to
the value of certain principal components (PCs). The PCA transformation is
given as: Y = X x W. Y denotes the data matrix in the new vector space. In
the new vector space, each dimension corresponds to the principal component
of the original space. It is generated from the original dimensions based on the
statistical distribution of the observed values.

We adopt PCA to produce QA, a compact representation of the patterns of
multiple time series in a TSG. Each QA consists of one or several time series of
the principal components extracted from the original TSG. Given a TSG, which
consists of n time series Ty,T5,...,T,, for each time series Tj;, the observed

QoS-Aware Cloud Service Composition Using Time Series 15

value in time ¢; is x;;. Assume the number of time slots is denoted as [, the TSG
can also be represented as a In—dimensional vector. We build a n-dimensional
vector X; = (x1,,%2;,...,2y,) for each time slot. Each dimension refers to a time
series in 11,75, ..., T,,. We perform PCA transformation on these n-dimensional
vectors to identify the first few principal components. In the implementation, we
choose the first n’ principal components as the QAs (n’ < n). These n’ PCs can
capture the most dominant information of the original data, even if n’ < n. We
only consider these PCs and their associated observed values which have been
transformed in PCA dimensions. The new observed values of time slot ¢; on the
dimensions of transformed PCA space are:

X]‘:X]‘XW:(X]‘XWhXjXWQ,...,XjXWn). (2)

where W; is a n-dimensional transformation vector. The derived values in each
time slot ¢; in QA are the first n’ principal components of X, which are the
first n’ dimensions of X ;. The transformation matrix which transforms the origin
vector space into first n’ dimensions is: W/ = (W, Wa, ..., W,,/). Hence, QA can
be represented as:

QA=X xW' = (X1 x W, Xox W ... X, x W), (3)

where [is the length of time series. The [x n’ data matrix in this equation
represents n’ time series which are generalized form the multiple patterns of
original n time series.

Comparing to Brute-Force method (mentioned in Sec.[H), which finds the best
matches between every time series pair, QA is a more general feature and is easier
to measure the similarity, though information will be lost by only reserving the
first few principal components. The lost information can be compensated using
QoS Relation (QR) which will be introduced in the next section.

4.3 QoS Relation for TSG

This section shows how we can generate relations among time series in a TSG.
Relations between multiple time series can be complex. Similar to “Relation
Vector” in [I7], a QoS Relation (QR) of a TSG is a multidimensional vector,
which can be used to describe the relations among multiple time series in a TSG.
QR consists of a set of signatures, which are extracted from a relation matrix.
The relation matrix is obtained based on the relation descriptors of every time
series pair in TSG.
QR can be generated in mainly two steps:

— First, a relation descriptor is used to capture the intrinsic relationship for
any two time series in a TSG.

— Second, PCA transformation is used to transform the high-dimensional re-
lation descriptors into a smaller space.

The relations between T, and T, refer to the differences between the QoS
values in the time series and the associated time slots. Hence, we introduce two

16 Z. Ye, A. Bouguettaya, and X. Zhou

basic relations defined by [I7], i.e., variance in QoS values (VIQ) and variance
in time (VIT). The VIQ is a high-dimensional vector, each dimension of which
captures the difference between the sampled observed QoS values of T;,, and T,:

); (4)

where z,,,, is the sampled QoS values of T}, and xy,; is the sampled QoS value
of T,,. VIT is a descriptor of the relation between intervals of T}, and T}, denoted
as a 4D vector VIT(T,,, T,) [17:

(|1'm51 — Tng |$m52 — Tngaly e |'Tmsl — Tng

VIT(Tm, Tn) = (tml — tn1, tmi — tni, tgn,m tfn,n)’ (5)
where t,,1 and t,,; are the first time ticks of T},, and T, t.,,; and ¢,; are the last
time ticks. 3, , and ¢} , are used to describe the overlap status between two
time series’ interval. They are defined as:

0,m=n,
ton = tm1 = tnly tm1 > t, (6)
*(tnl - tml)a tml < tn1~

0,m=n,
tfn,n = tmi — tn1, tm1 2 tal, (7)
*(tnl - tml)a tml < tn1~

In summary, the relation descriptor of T,, and T, is the combination of two
components, i.e., the differences between QoS values and intervals.

The relation descriptors of each time series pair in TSG are vectors in a
high-dimensional vector space. Given a TSG object which has n time series
T.,Ts,...,T,, we can generate n? relation descriptors R;; of each pair of time
series T; and T from the TSG object, where R;; = {VIQ(T;,T};), VIT(T;,T})}.
Using these n? vectors, we perform PCA to find the Principal components ac-
cording to the datas latent correlation and distribution on these dimensions. Set
r as the dimensionality of each R;; , and 7 x r transformation matrix W for PCA
as (Wh, Wa, ..., W,), we reserve only first few PCs which contain the majority
information. The number of PCs remained is denoted as . Thus, we obtain the
transformed relation descriptors R;;

Rz‘j = (Rij X Wl,Rij X WQ,. . .,Rij X Wr/). (8)

4.4 Similarity Search of Time Series Groups

Given two TSG objects which are represented by aforementioned features, e.g.,
TSG; ={QA;,QR;} and TSG; = {QA;,QR;}, we define the distance function
between two TSGs dist(T'SG;,T'SG;) based on the similarity measure for QA,
ie., DIS(QA;, QA;) and relation vector QR, i.e., DIS(QR;, QR;). For simplicity

QoS-Aware Cloud Service Composition Using Time Series 17

of presentation, we deploy the euclidean Distance as the default distance func-
tion. The distance between two QAs can be calculated by the following equation:

DIS(QA: Q4;) = /Y (ack — ack? (9)

where gcF and qcf are the values for the k principal components of T'SG; and
TS5G;.

The distance between two QRs can be calculated:

DIS(QR,QRy) = /S (R — RE)? (10)

According to the distance functions defined on the two features, the overall
distance between two TSG objects dist(T'SC;, T'SC;) can be calculated by the
geometric value of the two distances:

dist(TSC;, TSC;) = \/DIS(QA:, QA;) x DIS(QR:,QRy). (1)

By using these two components for TSG similarity evaluation, we solve the
two challenges of effectively evaluating relations and measuring the patterns of
multiple time series in TSG; therefore, our approach can perform effectively and
efficiently for similarity search in TSG databases.

5 Experiments and Results

We conduct a set of experiments to assess the performance of the proposed
approach. We measure both the query effectiveness and the execution time for
TSG retrieval. We compare our proposed approach named TSG with the Brute-
Force approach, and the QA-only approach. QA-only approach is the same with
the proposed approach in Sec[lexcept that it only consider QAs when computing
the distance between two TSGs. All experiments are conducted using Matlab.
We run our experiments on a Macbook Pro with 2.2 GHz Intel Core i7 processor
and 4G Ram under Mac OS X 10.8.3. Since there is no testbed available, we
focus on evaluating the proposed approach using synthetic cloud services.

5.1 Brute-Force Approach

To show the performance of the proposed approach, we first present a Brute-
Force approach for solving the TSG matching problem, which exhaustively com-
pares the time series in TSGs. In such a Brute-Force approach for TSG similarity
matching, the distances between all the QoS attributes in the query time series
and the candidate plan’s time series are computed. The maximum similarity (i.e.,
minimum distance) is then used to represent the similarity between two TSGs.
Here, we computing the similarity between T'SG1 and T'SG4 by calculating the
euclidean distances. The Brute-Force approach guarantees the minimum of

3 DIS(T;, T)), (12)
T:€TSG1 NT/€TSG>

18 Z. Ye, A. Bouguettaya, and X. Zhou

where T] € TSGo and T; in TSG; are QoS attributes. In summary, by enu-
merating all pairs between the time series in two TSGs, we can calculate the
minimum distance of Brute-Force approach by the following equation:

distpp(TSG1, TSGs) = ming (D> _(DIS(Tn,T0))), (13)

The Brute-Force TSG similarity matching approach is an exhaustive matching-
based algorithm. The approach is very costly, as it requires an enumeration
between all pairwise single time series. Meanwhile, this method can measure the
patterns between time series in two TSGs well, but ignores the correlations of
time series inside the TSG.

5.2 Data Description

To generate the synthetic data sets, we first randomly generate 5 time series.
Each time series is denoted as {(QoS;,t;)|i = 1,2,3,...,1}, where the length [is
equal to 150. These five time series form the seed TSG. For each time series in
the seed TSG, we add some normally distributed random noise to create another
199 TSGs. Using the 200 TSGs as seeds, we expand them to 200 TSG categories,
each of which is with 80 T'SGs. We produce variations of TSGs by adding small
time warping (e.g., 5 percent of the series length), and some normally distributed
random noise. Consequently, our synthetic data set contains 200 categories and
each has 80 similar TSGs, i.e., the TSG database has 16,000 T'SGs in total. We
use the first 200 TSGs as the query set.

We generate two dataset to evaluate the proposed approach. Time series in
RAND dataset are generated randomly in Matlab, while time series in GAS
dataset are generated with Gaussian distribution. For each TSG in the query
set, we search the similar TSG in the whole dataset using three approaches: TSG,
QA-only and the brutal force approach. Each approach will return a sorted list
of the most similar TSG to the query.

We use recall and precision to compare different algorithms. We denote the
first 100 results returned by the brutal force approach as the relevant results.
Hence, the precision and the recall can be calculated using:

{relevant} ({retrieved}

{retrieved} (14)

precision =

{relevant} ({retrieved}

{relevant} (15)

recall =

5.3 Performance

In the first experiment, we investigate two important parameters of the pro-
posed TSG retrieval method. The first parameter is the number of PCs reserved
in QA feature generation. We extract QA feature by using first n’ PCs of mul-
tiple time series. The second parameter is the reduced dimensionality of Relation

QoS-Aware Cloud Service Composition Using Time Series 19

Precision Precision
1 T T T

RAND L RAND

al

07 08 8 09
Recall Recall

(c) (d)

Fig. 3. Performance on parameter tuning. (a) varying the number of PCs in QA using
RAND data set. (b) Varying the number of PCs in QR using RAND data set. (c)
varying the number of PCs in QA using GAS data set. (b) Varying the number of PCs
in QR using GAS data set.

Descriptor in QR , i.e., r’, which is used to capture the relations among the time
series in a TSG.

We first evaluate the effect of QA feature on TSG retrieval performance by
varying the number of PCs n’. As the maximum number of PCs in QA generation
is the number of time series in TSG, we conduct the experiments by varying n’
from 1 to 5. The results of precision/recall for TSG retrieval are shown in Fig.[Bl
Each line in the graph represents the performance of a corresponding approach.
Each node on a line represents the precision and the recall when the first num
(num > 100) results are returned. For example, in the first graph in Fig. B the
first node on the green line represents the precision and the recall when the first
100 results are returned.

According to Fig.Bh and Fig. Bh, the TSG approach performs best when n’ =
1, although when it comes to RAND data set, n’ = 3 performs better than n’ = 1
when the recall is less than 0.16. The approach performs similarly when the recall
is high. This can be explained by that when almost all the relevant results are
retrieved, the precision tends to be the same. To sum up, the best performance

20 Z. Ye, A. Bouguettaya, and X. Zhou

Precision Precision
o - 1

I RAND —_ QA.onlyv GAS —_ QA-onIy |
--TSG

09

08

07

06

05

04

03t

02r

01 01
0

Fig. 4. Performance comparison of effectiveness: precision and recall. (a) Results using
RAND data set. (b) results using GAS data set.

is obtained when only the first PC is reserved. This is because the first PC
summarizes sufficient general information of multiple patterns in TSGs, while
the retrieval performance by using more PCs may suffer from redundant and
useless information. Note that, when n’ > 1, we generate multiple representative
time series as QA features, and hence the incurred multiple time series matching
may degrade overall performance.

Next, we investigate the performance of TSG retrieval by varying the reduced
dimensionality of Relation Descriptor in QR feature, i.e., r’, which is shown in
FigBb and FiglBd. From these figures, we can observe that as more PCs are
used, the performance is improved. This is because more information is included
in the relation descriptor of the QR. Notice that when the recall is higher, the
approach performs more similarly. Therefore, in the following experiments, we
fix the two parameters for performance comparison, i.e., n’ =1 and r’ = 5.

5.4 Comparison with Other Methods

In this experiment, we compare the retrieval performance of our approach with
the the QA-only method. As we can see from Fig. [l the proposed TSG approach
performs similarly as the QA-only approach when the recall is bigger than 0.5
for RAND data set and 0.55 for GAS data set. This is because that when recall
gets larger, more relevant results are retrieved. However, we can still observe
that when the recall is small, i.e., retrieving a few most similar results, which
is more common in the similarity query area, TSG still preforms better than
QA-only approach. This is because the compact representation of multiple time
series in QA-only approach, can only capture the limited pattern information,
while ignore the intrinsic relations between the multiple time series in the TSG,
which are more valuable to distinguish different TSCs. QA feature matches the
similarity of group of time series by generalizing their characteristic patterns,
and the QR information can capture the natural relations among time series in
TSGs. The TSG approach can take both factors into effect for TSG retrieval,
and hence improve the retrieval effectiveness in TSG databases.

QoS-Aware Cloud Service Composition Using Time Series 21

5.5 Scalability and Robustness

In this section, we investigate the scalability and robustness of the proposed
approaches. We first evaluate the time efficiency for the three approaches in
terms of the scalability of the database size. We vary the size of TSG data set
by utilizing 50, 100, 150, 200 categories of TSGs, which results in the data size
from 4,000 to 16,000 TSGs.

Fig. Bl shows the average time cost of these different approaches for one TSG
retrieval. We can observe that QA-only approach and the proposed approach are
comparable and perform much better than the Brute-Force method. Our TSG
approach explores both QA and QR for similarity computation, and the extra
computation on QR feature is needed compared with QA-only approach. While
the Brute-Force algorithm performs badly by two orders of magnitude. This is
because the Brute-Force algorithm needs to calculate all the matches for each
time series pair in the group.

10°
—e—-TSG

1 04 —&— QA-only
—»— Brutal-Force

103 /—/

Time Cost(sec)
=

10
4000 7000 10000 13000 16000
Dataset

Fig. 5. Time efficiency of different approaches

6 Conclusion

This paper proposes a cloud service composition approach to aid end users select-
ing and composing SaaS providers and IaaS providers in the cloud environment.
Compared to traditional service composition framework in SOC, the proposed
approach considers service composition from a long-term perspective. Cloud eco-
nomic models for both end users and cloud service providers are leveraged during
the composition. Specially, we propose to use time series to represent the eco-
nomic models. Cloud service composition is then modeled as a similarity search
problem in the multiple time series database. We use two structure QoS attribute
and QoS relation to further improve the effectiveness and the efficiency of the
similarity search approach.

22 Z. Ye, A. Bouguettaya, and X. Zhou
References
1. Motahari-Nezhad, H., Stephenson, B., Singhal, S.: Outsourcing business to cloud

10.

11.

12.

13.

14.

15.

16.

17.

computing services: Opportunities and challenges. IEEE Internet Computing
(2009)

Youseff, L., Butrico, M., Da Silva, D.: Toward a unified ontology of cloud comput-
ing. In: Grid Computing Environments Workshop (2009)

Zeng, L., Benatallah, B., Ngu, A., Dumas, M., Kalagnanam, J., Chang, H.: QoS-
aware middleware for web services composition. IEEE Transactions on Software
Engineering 30(5), 311-327 (2004)

Keogh, E., Chu, S., Hart, D., Pazzani, M.: Segmenting time series: A survey and
novel approach. Data Mining in Time Series Databases 57, 1-22 (2004)

Bashir, F.I., Khokhar, A.A., Schonfeld, D.: Real-time motion trajectory-based in-
dexing and retrieval of video sequences. IEEE Transactions on Multimedia 9(1),
58-65 (2007)

Armbrust, M., Fox, A., Griffith, R., Joseph, A., Katz, R., Konwinski, A., Lee, G.,
Patterson, D., Rabkin, A., Stoica, I., et al.: Above the clouds: A berkeley view
of cloud computing. EECS Department, University of California, Berkeley, Tech.
Rep. UCB/EECS-2009-28 (2009)

Milanovic, N., Malek, M.: Current solutions for web service composition. IEEE
Internet Computing, 51-59 (2004)

Ye, Z., Bouguettaya, A., Zhou, X.: QoS-aware cloud service composition based on
economic models. In: Liu, C., Ludwig, H., Toumani, F., Yu, Q. (eds.) ICSOC 2012.
LNCS, vol. 7636, pp. 111-126. Springer, Heidelberg (2012)

Medjahed, B., Bouguettaya, A., Elmagarmid, A.: Composing web services on the
semantic web. The VLDB Journal 12(4), 333-351 (2003)

Berkelaar, M., Eikland, K., Notebaert, P., et al.: Ipsolve: Open source (mixed-
integer) linear programming system. Eindhoven U. of Technology (2004)

Canfora, G., Di Penta, M., Esposito, R., Villani, M.: An approach for QoS-aware
service composition based on genetic algorithms. In: Proceedings of the 2005 Con-
ference on Genetic and Evolutionary Computation, pp. 1069-1075 (2005)

Ye, Z., Zhou, X., Bouguettaya, A.: Genetic algorithm based qoS-aware service com-
positions in cloud computing. In: Yu, J.X., Kim, M.H., Unland, R. (eds.) DASFAA
2011, Part II. LNCS, vol. 6588, pp. 321-334. Springer, Heidelberg (2011)

Keogh, E., Chakrabarti, K., Pazzani, M., Mehrotra, S.: Dimensionality reduction
for fast similarity search in large time series databases. Knowledge and Information
Systems 3(3), 263-286 (2001)

Kahveci, T., Singh, A.: Variable length queries for time series data. In: Proceedings
of the 17th International Conference on Data Engineering, pp. 273-282. IEEE
(2001)

Wu, Y.-L., Agrawal, D., El Abbadi, A.: A comparison of dft and dwt based sim-
ilarity search in time-series databases. In: Proceedings of the Ninth International
Conference on Information and Knowledge Management, pp. 488-495. ACM (2000)
Papadimitriou, S., Sun, J., Faloutsos, C.: Streaming pattern discovery in multiple
time-series. In: Proceedings of the 31st International Conference on Very Large
Data Bases, pp. 697-708. VLDB Endowment (2005)

Cui, B., Zhao, Z., Tok, W.H.: A framework for similarity search of time series
cliques with natural relations. IEEE Transactions on Knowledge and Data Engi-
neering 24(3), 385-398 (2012)

	QoS-Aware Cloud Service Composition
Using Time Series
	1 Introduction
	2 Related Work
	3 Use Case
	4 Time Series Group Search Approach
	4.1 QoS Model
	4.2 QoS Attribute of TSG
	4.3 QoS Relation for TSG
	4.4 Similarity Search of Time Series Groups

	5 Experiments and Results
	5.1 Brute-Force Approach
	5.2 Data Description
	5.3 Performance
	5.4 Comparison with Other Methods
	5.5 Scalability and Robustness

	6 Conclusion
	References

