Critical Path-Based Iterative Heuristic
for Workflow Scheduling in Utility and Cloud
Computing

Zhicheng Cai!, Xiaoping Li!, and Jatinder N.D. Gupta?

! Computer Science and Engineering, Southeast University, Nanjing, China
2 College of Business Administration, University of Alabama in Huntsville,
Huntsville, USA

Abstract. This paper considers the workflow scheduling problem in util-
ity and cloud computing. It deals with the allocation of tasks to suitable
resources so as to minimize total rental cost of all resources while maintain-
ing the precedence constraints on one hand and meeting workflow deadlines
on the other. A Mixed Integer programming (MILP) model is developed to
solve small-size problem instances. In view of its NP-hard nature, a Critical
Path-based Iterative (CPI) heuristic is developed to find approximate so-
lutions to large-size problem instances where the multiple complete critical
paths are iteratively constructed by Dynamic Programming according to
the service assignments for scheduled activities and the longest (cheapest)
services for the unscheduled ones. Each critical path optimization problem
is relaxed to a Multi-stage Decision Process (MDP) problem and optimized
by the proposed dynamic programming based Pareto method. The results
of the scheduled critical path are utilized to construct the next new critical
path. The iterative process stops as soon as the total duration of the newly
found critical path is no more than the deadline of all tasks in the work-
flow. Extensive experimental results show that the proposed CPI heuristic
outperforms the existing state-of-the-art algorithms on most problem in-
stances. For example, compared with an existing PCP (partial critical path
based) algorithm, the proposed CPI heuristic achieves a 20.7% decrease in
the average normalized resource renting cost for instances with 1,000 ac-
tivities.

Keywords: Cloud computing, workflow scheduling, utility computing,
critical path, dynamic programming, multi-stage decision process.

1 Introduction

Cloud computing is a new economic-based computational resource provisioning
paradigm, in which customers can outsource their computation and storage tasks
to Cloud providers and pay only for resources used. At present, only simple pric-
ing models (posted prices) are applied in cloud computing and resources for a
task are usually from a single cloud provider. However, there is a trend towards
the use of complex pricing models (such as spot-pricing) and a federated archi-
tecture (which spans both Cloud and Grid providers) [1]. That is to say, a Utility

S. Basu et al. (Eds.): ICSOC 2013, LNCS 8274, pp. 207-£2T] 2013.
© Springer-Verlag Berlin Heidelberg 2013

208 Z. Cai, X. Li, and J.N.D. Gupta

/ e\
/ Seryices (dlfferentf}l

of VM instances)
A¥ i
Workflow Scheduling ¢ serviee
(Service Encapsulation) a VM instance

Fig. 1. Architecture of the Utility Computing Environments

Computing based global market (such as Federated Cloud) containing different
types of computing and storage resources with different prices is established. For
example only in the commercial Amazon Cloud, there are many types of Virtual
Machines (VM), each of which provides different levels of services (number of
virtual cores, CPU frequency, memory size and I/O bandwidth) with various
prices per hour.

Many complex applications such as commercial data analysis, scientific earth-
quake prediction, weather forecast, are usually modeled as workflow instances
and executed on Utility Computing based platforms. Workflows are always de-
noted by Directed Acyclic Graphs (DAG), in which nodes represent activities
and arcs represent precedence relations between activities. Most workflow appli-
cations have deadlines. It is desirable to select appropriate services (appropriate
type and right number of VM instances) for each activity to get a balance be-
tween the task execution time and resource costs. For DAG based task schedul-
ing, there have been many related works such as in homogeneous [2] and hetero-
geneous distributed systems [3]. They usually try to maximize the utilization of
fixed number of resources from the perspective of the service providers. In this
paper, we consider the minimization of resource renting cost over unbounded
dynamic resources (such as Clouds) for executing a workflow with a given due
date from the perspective of customers. For customer-oriented resource renting
cost minimization, Byun et al. [4] allocates fixed number of resources to the
whole lifespan of the workflow. But in this paper, resources can be acquired at
any time and released when they are idle, saving renting cost.

Exact methods, heuristics, and meta-heuristics are commonly used for the
DAG-based scheduling problems. Since the workflow scheduling considered in
this paper is known to be NP-hard [5], exponential amount of computation
time is required for exact algorithms, such as dynamic programming, Branch
and Bound, and Benders Decomposition. The three available heuristics for these

Workflow Scheduling in Cloud Computing 209

Fig. 2. An Illustrative Example for the Workflow

problems, MDP [6], DET [7], and PCP [§] are single or partial critical-path based.
Meta-heuristics, such as [QT0/IT] are time-consuming for complex applications
(such as workflows with thousands of activities).

DET [7] and PCP [§] schedule activities of a workflow by partitioning them
into different types of critical paths and assigning a priority to each critical
path. The procedures used to assign services to activities and to schedule (par-
tial) critical paths immensely impact the performance of a scheduling algorithm.
Therefore, in this paper, CPI (Critical Path based Iterative) heuristic is devel-
oped. CPI heuristic generates complete critical paths as opposed to the partial
ones produced by PCP. The proposed CPI heuristic iteratively generates multi-
ple critical paths, which is distinct from the single critical path way adopted in
DET. All unscheduled activities are assigned to the longest services. Assignment
of all scheduled activities are kept unchanged to generate new complete critical
paths. As soon as a new critical path is found, its cost is minimized. In order to
simplify the optimization process, the critical path optimization problem is re-
laxed to the Multi-stage Decision Process (MDP) problem, which can be solved
by a dynamic programming algorithm in pseudo-polynomial time.

The rest of the paper is organized as follows. Section 2 describes the workflow
scheduling problem in detail and constructs its mathematical model. Section 3
presents the proposed CPI, the complexity analysis and an illustrative example.
Experimental results are given in Section 4, followed by conclusions in Section 5.

2 Problem Description

Workflows in Utility and Cloud Computing environments can be depicted by a
Directed Acyclic Graph (DAG),G = {V, E} where V = {V4,V5,...,Vx} is the
set of activities of the workflow, E = {(i,7)|¢ < j} is the precedence constraints
of activities, which indicates that V; cannot start until V; completes, P; and
£; represents the immediate predecessor set and the immediate successor set of
Vi, and path(i, j) = 1 means that there exists a path from V; to Vj, otherwise,
path(i, j) = 0. Figure [depicts a workflow example with five activities (V4 and
Vz are dummy source and sink nodes).

As shown in Figure[I] different types of Virtual Machines (with distinct price
per hour) are provided by different IaaS or even Grid providers. For every ac-
tivity, there are several candidate services, each of which has different types and
numbers of VMs with distinct execution times and costs. The candidate services

210 Z. Cai, X. Li, and J.N.D. Gupta

Table 1. Service Pool of the Ilustrative Example

Services Configurations Execution time Cost
S5 1 Small VM 24 hours $1.44
S3 1 Medium VM 15 hours $1.8
S 1 Large VM 8 hours $1.92
S5 1 Extra Large VM 6 hours $2.88
S3 1 Extra Large VM 18 hours $8.6
S2 2 Extra Large VM, 1 Large VM 9 hours $10.8
S3 4 Extra Large VM 6 hours $11.52
Si 1 Large VM 30 hours $7.2
S3 1 Extra Large VM 20 hours $9.6
S3 1 Extra Large VM, 1 Medium VM 18 hours $10.8
S3 1 Small VM 35 hours $2.1
Sz 2 Small VM 20 hours $2.4
S8 4 Small VM 13 hours $3.12
St 1 Medium VM 25 hours $3
S3 2 Medium VM 20 hours $4.8

for activity V; form the service pool S; = {S},S2,---, 5™}, m; = |S;|. And,
the service is denoted as S¥ = (d¥,cF), in which d¥ means the execution time
(contains VM set up time and data transfer time) and c¥ represents the resource
renting cost. Shorter activity execution time needs higher resource renting cost.
The cost function for the activity execution time may be concave, convex and
hybrid. For example, the candidate services for each activity of the workflow in
Figure 2 are illustrated in Table [l

Appropriate services must be selected for each activity to make a balance
between execution time and cost. The binary variable Xf e {0,1},1 < i <
N,1 < k < m; is used to demonstrate whether the service Sf is chosen for
Vi. Each activity is allocated to the most appropriate service to minimize the
total resource renting cost, under the constraint of a given deadline D, i.e., the
objective of the problem is to find the activity-service mapping for all activities
and services to minimize the total cost within deadline D. This problem can be
modeled as a mixed integer linear programming (MILP) problem as follows.

Min 37,0 SO0, it (
St YT xF=1,1<i<N (
fi< fi— Z;cnbldJX]7(jekE 3

f1> 30 dixg (
xFe{0,1},1<k<m,; (
di €It 1<i<N,1<k<m; (
Max{f;} <D, 1<i<N (7

The objective function (1) is to minimize the total cost. One and only one
service (mode) is assigned to each activity according to constraint (2). Constraint

Workflow Scheduling in Cloud Computing 211

(3) and (4) guarantee the precedence constraints. Constraint (5) denotes a binary
decision variable. The execution times of activities are integers according to
constraint (6). The deadline is met according to the constraint (7).

3 Proposed Heuristics

Though critical paths are commonly calculated in DAG-based scheduling meth-
ods, only single critical path or partial critical paths are utilized to distinguish
critical activities from the activity set. For the grid workflow scheduling consid-
ered by Yuan et al. [7], the criticality of non-critical activities is measured by
activity floats after the activities on the single critical path have been scheduled.
For the workflow scheduling in TaaS Clouds and Utility Grids considered by Abr-
ishami et al. [T2J§], partial critical paths are obtained by setting all unscheduled
activities with the shortest services. Path structure information is not fully used
in these two methods. In this paper, a novel critical path construction method
and a new critical path optimizing method are investigated.

3.1 Multiple Complete Critical Path Construction

Let F and U denote the set of scheduled and unscheduled activities respectively.
Qy;) denotes the index of the selected services for scheduled activity V; in par-
tial solution @ and EFT*(V;) denotes the earliest finish time of the activity
Vi, calculated by assigning all activities in U to the services with the longest
execution times while keeping the scheduled activities in F unchanged. If the
activity V; has been scheduled, i.e., V; € F, the execution time of the V; remains

diQ [the same as the assigned service in Q. Otherwise, the execution time of
V; is set as max) {d¥}. EFT(V;) for each activity V; is calculated from V;
to Vi sequentially according to the above procedure. Initially, the sink activity
Vv is chosen as the last node of the critical path (CP) and set as the current
activity. The activity with the largest EFT'" among immediate predecessors of
the current activity, denoted as Vj, is inserted at the head of C'P. V}, is set as
the current activity and the activity with the largest EFT'" among its immediate
predecessors is denoted as V;, and inserted at the head of CP. The procedure
is repeated until V; is inserted into CP and the final C'P is constructed. The
construction process is formally described in Algorithm [l

Multiple complete critical paths are generated iteratively during the whole
optimization process. To ensure that the whole workflow can finish before D,
the latest finish time LFT®(V;) of V; is calculated by keeping the scheduled
activities unchanged and assigning the unscheduled activities to their short-
est execution times, i.e., miny,c ¢, {{LFT5(V;) + dem,V} € F},{LFT5(V;) +
min?zjl{d?}, V; € U}}. The solution of the workflow is feasible if and only if the
finish time of every V; is not greater than LFT®(V;). Then, the length of CP

is tLp, = Z\/;anCP{dz‘Qm} + Y v.ecvnopimaxiciam, {df}}. If (5 is less than

D, the current solution is cheapest because all unscheduled activities take their

212 Z. Cai, X. Li, and J.N.D. Gupta

Algorithm 1. CP Construction using Longest services
1: EFT* (Vi) + 0,CP + (Vn),Vs + V.
2: for j=2to N do
3: if V; € F then
Ly, Ly <131
EFT*(V;) masc (EFT*(V))} + ;.
else
Ly, Ly, mg mj
EFT™(Vj) < glggj{EFT (Vi)} + max{d; " }.
7: while (V3! = V1) do
8: Vp <« arg max {EFT"(V;)}}.
Vi €Pe
9: Insert Vj at the head of CP.
10: return CP.

cheapest services. The whole algorithm terminates. Otherwise, some activities on
CP should be assigned to shorter execution times at higher cost services, which
may result in new critical paths. In other words, unscheduled activities on CP
are reassigned to services in order to minimize the total cost Cop of C'P while all
activities in V meet their LFT'® constraints, i.e, all unscheduled activities on C' P
are reassigned to the most appropriate services to minimize Ccop. The details
of the critical path optimization process is described in Section below. The
critical path of the workflow would be changed and a new one could be obtained
by Algorithm [again. The process is iterated until the length of the newly found
critical path is not greater than D.

3.2 Critical Path Optimization

The model of the critical path optimization problem is as follows:

Min Ccp = Ziecp 2;11 CfX? (8)
St Y xi=1YV;eU 9)
XFe{0, 1}, VW, eU1<k<m (10)
Xi =yl ieF,1<k<m; (11)

Equations (@), (@), @), (@)

where y¥ = 1 if activity V; € F and 0 otherwise.

The objective () is to minimize the total cost Cop of the critical path CP,
Constraints (d), and ([I0) are similar to the constraints (2)) and (B]) of the original
problem respectively. Constraint (I1]) means that the scheduled activities keep
their services assignments unchanged.

In this paper, a Dynamic Programming based Pareto Method (DPPM) is
proposed to simplify the critical path optimization problem. For each activity
V;, EFT?(V;) is the earliest finish time in terms of the scheduled activities, i.e.,

execution time of the scheduled activities remain diQ 1 At first, the critical path
optimizing problem is relaxed to a Multi-stage Decision Process (MDP) problem

Workflow Scheduling in Cloud Computing 213

Algorithm 2. Dynamic Programming for MDP;
1: Initialize the PS1 < {< 0,0,0 >},i « 1;
2: for i=1to |CP| do
3: for each s € PS; do
for k=1 to |Si+1| do

Generate a solution s for SSPiy1, C(sl) — C(s) + by
T(s') ¢ T(s) +d¥1,8 < T(5),C(5), L1, (5), k >;
PS¢+1 < PS¢+1 U{S,};

Update PS;t+1, remove solutions which are dominated by others or the finish

time is already greater than D;

9: return PS|cp;

by temporarily deleting activities and precedence constraints not on the critical
path CP Then, the MDP problem can be formulated as follows:

Min [ZieC’P 71?:71 Cfo: ZiEC’P ZZL:H def]T (12)
St. SrioxF=1vVieUuncP (
fi < i =2 i<ham, dyx5,v(i,j) € CP (
xFe{0,1},VWWi eUNCP,1 <k <m; (15
xE=ykieFNnCP1<k<m (
dfelLVieCP1<k<m; (
Mazx{f;} < D,V; € CP (18

Function ([2]) means that it is a multi-objective optimization problem to find
Pareto optimal solutions. Only precedence relations on C'P are considered, which
are represented in Constraints (I4)) and (IS).

Then, a Dynamic Programming (DP) algorithm is proposed to optimize the
MDP problem in pseudo-polynomial time. Sub-problems should be defined be-
fore a DP algorithm can be used. In this paper, the i** sub-problem SSP; of the
MDP is defined to get a Pareto solution set for partial critical path PC P,={C P,
CPy,,CPs,...,CP;} . Solutions of current sub-problem SSP; are constructed by
combining the Pareto solutions of the immediate former sub-problem SSP;_;
and services of the i*" activity C'P;. Solutions, which are dominated by others
or the solutions with the total execution time larger than the deadline, are re-
moved from the Pareto set. Pareto solutions of the SSP; can be represented with
a set PS;= {< T(s),C(s),I1(s), I2(s), I3(s),..., I;(s) >,...}. Each element of
the PS; is a (i + 2)-tuple. The first and second elements of the tuple represents
the finish time and the total cost of the PCP;. The element I;(s) of the tuple
represents the index of the selected service for the i** activity of the SSP; in
solution s. The Iy (s), I2(s), I3(s), ..., I;(s) can be denoted with I(; ;)(s). Since
SSP;11can be solved based on the solutions of SSP; directly, SSP; to SSPp, are
solved one by one. At last, a Pareto optimal solution set PS|cp|, in which there
are at most D solutions, is found. The formal description of this DP procedure
is given in Algorithm

214 Z. Cai, X. Li, and J.N.D. Gupta

Algorithm 3. DPPM(SF))
1: Relax the critical path optimizing problem to MDP;
2: Call Algorithm [2] to get a Pareto solution set PS for MDP;

3: Sort solutions of PS by the total cost in non-decreasing order;
4: for each s € PS do

5. for j=1to N do

6: if V; € CP; then

7: EFT®(V;) xrel?gx{EFTS(%)} +dl
el

8: else if V; € F then

9: EFTS(V;) né%x{EFTS(%)} +d2Y;
ety

10: else

11: EFT®(V;) + lggf{EFTS(%)} +min{d;”}

12: if EFT®(V;) > LFT*°(V;) then

13: Goto Step [4

14: Sbest <— S, break;
15: return spest;

After MDP is solved by Algorithm [, the cheapest feasible solution should be
distinguished from PS|cp|. Firstly, solutions of PS|cp| are sorted by the total
costs T'(s) in non-decreasing order. Then, their feasibility is verified by checking
whether EFT®(V;) is less than LFT®(V;) for all activity V; € V. Once a feasible
solution is found, the feasibility verification process stops. Finally, LFT%(V;) are
recalculated once a critical path is scheduled. The formal description of the
DPPM procedure is shown in Algorithm Bl in which s[j] is the services index of
activity V; in solution s.

3.3 The Proposed CPI Heuristic

The proposed CPI heuristic can be described as follows: Initially, U < V and
F are set as empty. LFT®(V;) is calculated one by one with all activities being
assigned the shortest services. A new critical path CP is generated by assigning
all unscheduled activities to the longest services while keeping the assignment of
scheduled activities in F unchanged. If the total duration of the CP is less than
the deadline D (i.e., €CLP < D), the algorithm stops because the partial solution
Q (unscheduled activities select the longest durations) is feasible. Otherwise,
CP is optimized by DPPM. U « U/{V; € CP} and F <~ F U{V; € CP}. s¢p is
appended to Q. LFT; is recalculated in terms of Q. The steps of the CPI heuristic
are formally described in Algorithm @l

3.4 An Illustrative Example for CPI

Take the workflow in Figure 2] for example. Set deadline D = 35.

(1) Caleulate LFT®(V7) = 35, LFT®(Vs) = 35, LFT°(Vs) = 35, LFT5(V4) = 35,
LFT®(V3) = 17 and LFT®(Va) = 17. Since no activities has been scheduled in

Workflow Scheduling in Cloud Computing 215

Algorithm 4. CPI

1:
2:
3:
4
5
6:

T

8.

9:
10:

11:

Set U « V, F + NULL,LFT® (Vy) + D.
Assign V; the service with min}" {d¥},Vi € V.
fori=N—-1to1ldo

Calculate LFTS(V;);

: while U # Null do

CP < Call Algorithm [l
if /5, < D then
Set V; € U with the longest services,Update Q, Go to step [Tl
Sep < DPPM(CP).
U + U/{V; € CP}, F < FU{V; € CP}. Append s¢p to Q. Recalculate
LFTS(Vi),l <4< N in terms of Q.
return Q.

the first iteration, all activities are allocated to their longest services. Calculate
EFT*(V3) = 24, EFT*(V3) = 18, EFT*(V4) = 54, EFTY(Vs) = 53 and EFT* (V) =
25 one by one . Initially, V7 is added to the C'P first, then, immediate prede-
cessor Vi with largest EFTT(Vy) = 54 is added to the front of CP and set as
the current activity. Later, Va is added. At last the first critical path CP; =
(V1, Vo, Vi, V) is constructed. Since (CLPI =54 > D, CPy should be optimized. In
Algorithm[3, a Pareto solution set PScp, = {(35,11.4, 5%, S7), (28,11.52, S5, S3),
(33,12.6, 53, 53), (26,12.48, S5, 5%), (24,13.68, S5, 53)} is generated by Algorithm
[@ Later, the cheapest feasible solution s = (35,11.4, S3,5%) for the CPy is distin-
guished from PScp,. Update Q = {x3 = 1,x3 = 1}, LFT*(V7) = 35, LFT*(Vg) =
35, LFTS(Vs) = 35, LFT®(Va) = 35, LFT5(V3) = 15 and LFT®(Vz) = 15.
F ={V1, Vo, V4, Vz}, U = {V3, V5, Vs }.

After EFT®(V2) = 15, EFTY(V3) = 18, EFT*(V4) = 38, EFT*(V5) = 53 and
EFT*(Vs) = 25 are calculated in terms of the solution of CPi, a new criti-
cal path CPy = (V1,V3,V5,V7) is generated. Since ICLp2 = 53 > D, CPy still
needed to be optimized. At first, a Pareto solution set PScp, = {(31,11.72, S5, S8),
(29,13.2, 83, 52), (22,13.92, S3,52), (26,13.92, 53, 52), (19, 14.64, 53, 52)} for the
MDP is generated. Later, each solution of PScp, is checked to find if E'FTS(Vi) <
LFTS(V;), Vi € V. For the first solution (31,11.72,5%,52), EFT%(Vz) = 18 >
LFTS(Va). So, it is infeasible. Considering the second solution (29,13.2, 53, 52),
EFT® (Vo) = 15, EFTS(V3) = 9, EFT®(V4) = 35, EFT®(Vs) = 29, EFT® (V) = 18
is calculated. Since EFTS(%) < LFTS(%), for all Vi € V, the second solution is
the cheapest feasible solution for CPs.

Update Q = {x3 = 1,xi = Lxi = 1,x§ = 1}, F = {V1,5, V4, V3,V5,V7},
U = {Vs}. Then calculate EFT* (V) = 15, EFT*(V3) = 9, EFT* (Vi) = 35,
EFT*(Vs) = 29 and EFT*(Vg) = 25. The CP1 = (Vi,Va, Vi, Vz) is got again and
ICLpl = 35 < D, which demonstrate that the left unscheduled activities need not to
be optimized again, i.e., x& = 1 is added to Q. The CPI algorithm terminates.

3.5 Complexity Analysis

Let N is the number of activities and M = maxX_,{m;}. In step 2 of Algorithm
B there are |CP| < N iterations. And in step 3, the Pareto solution set P.S;
has at most D Pareto non-dominated solutions. That is because the finish time

216 Z. Cai, X. Li, and J.N.D. Gupta

of solutions can only be an integer in the interval [1,D] and for each finish time
there can be only one Pareto non-dominated solution. For step 4 of Algorithm [2]
[Si+1| < M services are available. And the complexity of generating a solution
is O(N). So the complexity of Algorithm B]is O(N2DM). The complexities of
the step 3 and 4 of the Algorithm [Blare O(D?) and O(DN) respectively. So, the
complexity of Algorithm Blis O(N2D?M). It now remains to find the number of
times step 5 of algorithm Ml is executed. The following theorem helps to do that.

Theorem 1 (Unequal critical path property in CPI). In the CPI, ifﬁépi >
D, at least one activity in the new generated critical path CP; is unscheduled,
i.e., CP; has never been found in previous steps.

Proof. In each iteration step j,j < %, the critical path CP;,j < ¢ is scheduled,
while the LFT? is not violated, i.e., £° of all paths is less than D. Assuming
that all activities of CP; have been scheduled after iteration k,k < i — 1, we
can conclude that in each iteration step j,j > k, {&p = (&p and (5p < D.
Therefore, (5 < D is obtained, which is conflict with &, > D. O

In view of the above theorem, there are at most N iterations of step 5 of
Algorithm Al And the complexity of Algorithm[dlis O(N?). Therefore, the overall
complexity of the proposed CPI heuristic is O(N3D?M).

4 Computational Results

We now describe the computational tests used to evaluate the effectiveness of
the proposed CPI heuristic in finding good quality workflow schedules. To do
this, the proposed CPI heuristic is compared with three existing state-of-the-
art algorithms (DET heuristic [7], PCP F heuristic where PCP heuristic with
fair policy is used [§], and PCP D heuristic in which PCP heuristic deploys the
decrease cost policy []]. For comparison purposes, we also included the ILOG
CPLEX v12.4 with default settings to solve the MILP model of the workflow
problem formulated in Section 2 earlier. All four algorithms (CPI, DET, PCP F
and PCP D) were coded in Java. Computational experiments for all four algo-
rithms and ILOG CPLEX v12.4 were performed on Core 2 computer with one
3.1GHZ processor, 1G RAM, and Windows XP operating system.

4.1 Test Problems

Since parameters exert influence on the performance of an algorithm, they should
be tested on different values. Existing test problem instances used by Abrishami
et al. [I2] only have paths with at most 9 activities. However, in practice, paths
of workflow have much more activities. In our computational experiments, there-
fore, parameters of the problem instances are as follows:

— the number of activities, N in a workflow takes a value from {200,400, 600,
800, 1000};

Workflow Scheduling in Cloud Computing 217

— the number of services for each activity i, m; is generated from a discrete
uniform distribution DU[2,10],DU]11,20], or DU|[21, 30];

— the complexity of the network structure, measured by OS according to [13],
takes a value from {0.1,0.2,0.3};

— the cost function (CF), denoting the functional type of cost to duration, is
concave, convex, or hybrid;

— deadlines are generated by D = Dyin + (Dimaz — Dimin) * 0 where Dy is
the minimal total duration (using shortest duration of each activity), Dmaz
is the maximal total duration of the workflow, and 6 is the Deadline Factor,
which takes a value from {0.15,0.3,0.45,0.6}. This ensure the existence of
at least one feasible solution.

The services alternatives for each activity are generated according to [14] and de-
tails are as follows: First the number of services, m;, is generated from DU[2,10]
(i.e., discrete uniform distribution with parameters 2 and 10), DU[11,20] or
DUJ[21,30]. Then, the execution time of these services are randomly generated
between 3 and 163 as follows: The range [3, 163] is divided into intervals of size
4 and a simple randomized rule is used to decide whether one of the services
will have an execution time within that interval. If so, the execution time is
generated within the interval using Discrete Uniform distribution. After all the
m; number of execution times are determined, the costs of the services are gen-
erated sequentially, starting with that of the minimum-cost services, ¢,,,, which
comes from U[5,105]. Given the execution time, cost pair (dg, cx), for services k
and di_1 for service k — 1, ¢;—1 is calculated as cg + sg(di — di—1), where s, is
the randomly generated slope. For convex cost functions, si_; is generated from
U(sk,sk + 5), where S is the maximum change in slope per service and gener-
ated from U(1,2). $p,—1 (the minimum slope) is set to be 0.5. For the concave
functions,s,,,—1 is randomly generated as 1 + u(m; — 1)S, where u is generated
from U[0.75,1.25] (so that the initial slope is large enough to allow for smaller
slopes for the other services), and then sj_; is generated from U[max(1,(sy-
S)),sk]. For the hybrid functions, we randomly determine the number of times
the slope will increase/decrease compared to the previous one.

The paths connecting various activities are randomly generated, during which
the redundant arc avoiding method given by [I5] are adopted. The details are
shown in Algorithm [l path(i, j) = 0 means that there is no path from V; to V.
Step 1 of Algorithm [generates the node number of activities with ascending
integer numbers. Then, in step 2, random arcs are added to the network one by
one where an arc is accepted only if it does not produce redundancy [15].

Using the above test problem generation schemes, for each combination of m,
0S8, and CF, 10 problem instances are generated. Thus, a total of 1,350 problem
instances (= 5(N) * 3(m;)*3(0S)*3(CF)*10) are generated and used in our
computational experiments.

4.2 Comparison with Existing Algorithms

To compare the effectiveness of the proposed CPI algorithm with existing algo-
rithms, several measures are used. Let C; be the total cost if all activities of

218 Z. Cai, X. Li, and J.N.D. Gupta

Algorithm 5. Random Instance Generating Algorithm
Generate activities V = {1,2,...,N};
while OS. < OS do
Generate a non-existed arc (,7),7 < j randomly;
if (VVi, € PiVWVi, € £:VVi, € PVV;, € £5)(path(i,j) = 0 A path(ti,i) = 0 A
path(j,t2) = 0 A path(ts,ts) = 0) then
Accept the arc (4, j), recalculate Order Strength OS..
return

a problem instance b select the cheapest services. Let best, and worst, be the
best and worst solutions among all compared algorithms on instance b. For the
convenience of reporting, let W), be the total number of all problem instances for
parameter p which are grouped together (shown in Count column of Table [3).
Further, let C,(A) be the total cost of instance b obtained by algorithm A. Then,
the ANC (average normalized resource renting cost), ARDI (Average Relative
Deviation Index), and VAR (variance of RDI), are defined as follows:

ANC = (3,7 Cy(A)/Cy) /W (19)

RDI, = (Cy(A) — besty) /(worsty, — besty) (20)
ARDI = (X", RDI,)/W, (21)

VAR = (0% (RDI, — 0% RDI,/W,)?) /W, (22)

Due to the excessive computational time requirements, CPLEX cannot optimally
solve most of the random instances with the above parameters. Therefore, to
fairly compare the algorithms, the computation time of CPLEX is set to be
identical to that of CPI on the same instance and the best solution obtained
within this time is taken as the solution by CPLEX.

Table 2] illustrates that CPI outperforms PCP F; PCP D and DET on av-
erage normalized renting cost (ANC) and ARDI for all cases. The percentage
number in the ANC column for the CPI heuristic in Table[2l shows the decreased
percentage of average normalized renting cost, comparing the CPI and PCP F.
CPI gets better performance (lower renting cost) than CPLEX when N > 400
or OS > 0.2. As N increases, Both ANC and ARDI of CPI decease faster than
the other heuristics, which implies that CPI is more suitable than the compared
heuristics for complexity network structure instances, i.e., great N and big OS.
As m; and OS increase, ANC of all algorithms increases because the problems
become more and more complex. ANC of the compared algorithms with concave
CF is significantly bigger than those with convex and hybrid CF because the
concave CF has fewer cheap service candidates than the other two.

From VAR column of Table[3 it can be observed that the CPI heuristic gen-
erates solutions with the lowest VAR for all cases except for N = 200. This
illustrates that proposed CPI heuristic is more robust than the compared ex-
isting algorithms. VAR of CPI decreases as N increases, which means that the
robustness of the CPI heuristic increases with the increase in the size of the prob-
lem instance. As m; becomes larger, VAR of each algorithm increases. Among

Workflow Scheduling in Cloud Computing 219

Table 2. ANC and ARDI(%) of the Random Instances

ParasVal CPLEX DET PCPF PCPD CPI
arasVals

ANCARDIANCARDIANCARDIANCARDI ANC(Perc en) ARDI
N 200 527 0 1245956 7.74 33.2 8.15 51.2 7.43(4%]) 26.2

400 3.78 1.7 853 91.7 4.99 279 527 48 4.25(14.8%) 15.2
600 5.67 10.6 8.76 87.9 5.02 26.7 5.27 47.1 4(20.3%]) 8.4
800 7.32 16.7 8.9 86.1 4.88 24.6 5.14 44.4 3.84(21.5%)]) 6.7
1000 5.77 14.8 7.34 85.7 4.16 23.3 4.41 42.7 3.3(20.7%l]) 6.1
m; [2,10] 1.44 1.6 3.03 99.2 1.75 23.5 1.76 30.6 1.55(11.4%]) 10.5
[11,20] 44 8 8.04 89.1 4.71 29.6 4.98 54.1 4.09(13.2%]) 15.5
[21,30] 11.11 14.4 18.07 80.5 10.63 30.5 11.28 58.6 9.11(14.3%.) 15.4
OS 0.1 3.63 2.1 7.29 87.1 4.68 30.8 5.03 55.3 3.95(15.6%J) 13.2
0.2 569 9 9.67 89.8 5.57 26.3 5.87 46.5 4.78(14.2%)) 13
0.3 7.65 15.3 10.93 90.8 5.93 23.9 6.17 39.4 5.05(14.8%]) 11.6
CF convex 2.77 3.6 5.81 97.8 3.65 34.1 3.84 38.1 2.87(21.4%]) 12.6
concave 12.4 11.7 20.92 93.9 11.67 27.5 11.95 28.2 10.22(12.4%]) 16
hybrid 1.31 8 1.73 78.2 1.36 21.4 1.8 75.3 1.3(4.4%) 12,5
0 0.15 8.84 14.1 12.2 89.8 94 40.8 9.68 56.5 8.47(9.9%/) 23.3
0.3 6.59 10.5 10.03 89.3 6.37 33.5 6.7 51.5 5.4(15.2%]) 16.4
0.45 424 4.8 8.38 90.3 4.02 234 4.33 44.4 3.28(18.4%]) 10.1
0.6 234 1.8 7.25 904 2.42 13 2.68 36.2 2.01(16.9%]) 4.9

Table 3. VAR(%) and Time (s) of the Random Instances

CPLEX DET PCP F PCP D CPI
Paras Vals Count
VAR Time VAR Time VAR Time VAR Time VAR Time

N 200 270 0 129 19 083 2.7 031 7.8 0.27 3.62 14.05
400 270 1.67 20.4 3.65 1.06 3.02 1.65 9.69 1.41 1.48 21.18
600 270 9.26 27.0 4.93 2.28 3.52 4.89 10.72 4.20 0.73 27.74
800 270 13.77 38.5 5.38 4.78 3.31 10.2510.48 8.93 0.61 39.58
1000 270 12.45 40.9 5.84 6.43 3.32 13.3410.9511.82 0.54 41.17
m; [2,10] 450 1.55 14.3 0.41 2.32 1.55 3.08 3.26 2.88 1.09 15.18
[11,20] 450 7.28 29.3 4.18 3.28 3.46 6.82 10.71 5.81 2.67 30.28
[21,30] 450 12.09 36.2 6.78 2.77 4.66 6.46 11.44 5.59 2.83 37.50

OS 0.1 450 2.0 23.6 5.7 296 3.7 4.18 10.5 3.72 1.7 24.58
0.2 450 8.0 29.7 4.0 3.14 2.9 5.57 10.0 4.90 2.0 30.86
0.3 450 129 279 3.8 271 28 7.85 85 6.74 2.2 28.89

CF convex 450 3.48 24.0 1.15 2.84 4.61 4.79 6.55 5.16 1.96 25.08
concave 450 10.26 21.4 3.13 2.22 2.54 4.71 3.19 4.67 2.71 22.15
hybrid 450 7.13 33.3 6.39 3.26 1.82 6.63 7.43 4.25 1.8934.41

0 0.15 1350 11.8 37.1 4.0 248 34 472 69 3.90 3.7 37.98
0.3 1350 9.2 295 44 261 2.8 526 7.8 4.52 2.0 30.17
0.45 1350 4.5 229 42 282 1.7 564 9.8 5.00 0.9 23.61
0.6 1350 1.8 15,5 4.5 3.19 0.8 588 124 5.35 0.3 17.10

220 Z. Cai, X. Li, and J.N.D. Gupta

the compared algorithms, as N and m; increase, VAR of CPLEX increases the
fastest and that of CPI increases the slowest. This demonstrates that the sta-
bility of CPLEX decreases rapidly as the complexity of the problem increases.
VAR of CPLEX and CPI on concave instances is bigger than that on convex
and hybrid instances. As the deadline factor 6 increases (the deadline becomes
looser), the performance of CPLEX, CPI and PCP F becomes more stable.

Time columns of Table [3] show that CPI and CPLEX consume more com-
putation time than the other algorithms. DET is the fastest algorithm. As NN,
m;, and OS increase, more computation time is needed by all algorithms. CF
exerts little influence on computation time. Instances with bigger consume less
computation time for CPI and CPLEX whereas it is reverse situation for PCP
and DET. However, computational time to solve a problem by any heuristic is
less than one minute, which is reasonable and acceptable in practice.

5 Conclusions

In this paper, services with different time and cost attributes are allocated to
workflows in Utility Computing environments by the proposed Critical-Path
based Iterative (CPI) heuristic. All activities are grouped and scheduled by iter-
atively constructed critical paths. In every iteration, a new critical path is gen-
erated by keeping the activity-service mapping of the scheduled activities and
temporarily assigning the unscheduled activities to the longest services. Dynamic
programming based Pareto method is developed for the renting cost minimiza-
tion of critical paths, in which the workflow is relaxed to a Multi-stage Decision
Process (MDP) problem by removing the activities and relations not on the crit-
ical path. CPI heuristic is compared with the state-of-the-art algorithms (PCP,
DET, and CPLEX) for the considered problem. Experimental results show that
the proposed CPI heuristic outperforms the PCP and the DET algorithms for
all cases. CPI heuristic is better than CPLEX for most instances and is more
stable than CPLEX. Though CPLEX outperforms the CPI heuristic on small
size and simple structure problems, the stability of CPLEX is much worse than
that of CPI. While computational time required to solve the workflow schedul-
ing problem using the CPI heuristic is more than that required for the PCP
and DET algorithms, it is never more than one minute, which is reasonable and
acceptable in practice.

In the future, it is worth developing more effective methods for critical path
optimization, introducing new decomposition methods for workflows, and inves-
tigating the bounds of the problem during the search process.

Acknowledgment. This work was supported in part by the National Natural
Science Foundation of China (61003158 and 61272377) in part by the Research
Fund for the Doctoral Program of Higher Education of China (20120092110027)
and in part by the Southeast University (CXLX12 0099).

Workflow Scheduling in Cloud Computing 221

References

10.

11.

12.

13.

14.

15.

Chard, K., Bubendorfer, K.: High performance resource allocation strategies for
computational economies. IEEE Transactions on Parallel and Distributed Sys-
tems 24(1), 72-84 (2013)

Kwok, Y.K., Ahmad, I.: Static scheduling algorithms for allocating directed task
graphs to multiprocessors. ACM Computing Surveys (CSUR) 31(4), 406-471
(1999)

Bajaj, R., Agrawal, D.P.: Improving scheduling of tasks in a heterogeneous envi-
ronment. IEEE Transactions on Parallel and Distributed Systems 15(2), 107-118
(2004)

Byun, E.K., Kee, Y.S., Kim, J.S., Deelman, E., Maeng, S.: Bts: Resource capacity
estimate for time-targeted science workflows. Journal of Parallel and Distributed
Computing 71(6), 848-862 (2011)

De, P., Dunne, E., Ghosh, J., Wells, C.: Complexity of the discrete time-cost trade-
off problem for project networks. Operations Research 45(2), 302-306 (1997)

Yu, J., Buyya, R., Tham, C.: Cost-based scheduling of scientific workflow appli-
cations on utility grids. In: First International Conference on e-Science and Grid
Computing, p. 8. IEEE (2005)

Yuan, Y., Li, X., Wang, Q., Zhu, X.: Deadline division-based heuristic for cost op-
timization in workflow scheduling. Information Sciences 179(15), 2562-2575 (2009)
Abrishami, S., Naghibzadeh, M., Epema, D.: Cost-driven scheduling of grid work-
flows using partial critical paths. IEEE Transactions on Parallel and Distributed
Systems 23(8), 1400-1414 (2012)

Yu, J., Buyya, R.: Scheduling scientific workflow applications with deadline and
budget constraints using genetic algorithms. Scientific Programming 14(3), 217—
230 (2006)

Chen, W.N., Zhang, J.: An ant colony optimization approach to a grid workflow
scheduling problem with various qos requirements. IEEE Transactions on Systems,
Man, and Cybernetics, Part C: Applications and Reviews 39(1), 29-43 (2009)
Wu, Z., Liu, X., Ni, Z., Yuan, D., Yang, Y.: A market-oriented hierarchical schedul-
ing strategy in cloud workflow systems. The Journal of Supercomputing 63(1),
256-293 (2013)

Abrishami, S., Naghibzadeh, M., Epema, D.: Deadline-constrained workflow
scheduling algorithms for iaas clouds. In: Future Generation Computer Systems
(2012)

Demeulemeester, E., Vanhoucke, M., Herroelen, W.: Rangen: A random network
generator for activity-on-the-node networks. Journal of Scheduling 6(1), 17-38
(2003)

Akkan, C., Drexl, A., Kimms, A.: Network decomposition-based benchmark re-
sults for the discrete time—cost tradeoff problem. European Journal of Operational
Research 165(2), 339-358 (2005)

Kolisch, R., Sprecher, A., Drexl, A.: Characterization and generation of a gen-
eral class of resource-constrained project scheduling problems. Management Sci-
ence 41(10), 1693-1703 (1995)

	Critical Path-Based Iterative Heuristic for Workflow Scheduling in Utility and Cloud
Computing
	1 Introduction
	2 Problem Description
	3 Proposed Heuristics
	3.1 Multiple Complete Critical Path Construction
	3.2 Critical Path Optimization
	3.3 The Proposed CPI Heuristic
	3.4 An Illustrative Example for CPI
	3.5 Complexity Analysis

	4 Computational Results
	4.1 Test Problems
	4.2 Comparison with Existing Algorithms

	5 Conclusions
	References

