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Abstract. Reductions are the common technique to prove security of
cryptographic constructions based on a primitive. They take an allegedly
successful adversary against the construction and turn it into a success-
ful adversary against the underlying primitive. To a large extent, these
reductions are black-box in the sense that they consider the primitive
and/or the adversary against the construction only via the input-output
behavior, but do not depend on internals like the code of the primitive or
of the adversary. Reingold, Trevisan, and Vadhan (TCC, 2004) provided
a widely adopted framework, called the RTV framework from hereon, to
classify and relate different notions of black-box reductions.

Having precise notions for such reductions is very important when it
comes to black-box separations, where one shows that black-box reduc-
tions cannot exist. An impossibility result, which clearly specifies the
type of reduction it rules out, enables us to identify the potential lever-
ages to bypass the separation. We acknowledge this by extending the
RTV framework in several respects using a more fine-grained approach.
First, we capture a type of reduction—frequently ruled out by so-called
meta-reductions—which escapes the RTV framework so far. Second, we
consider notions that are “almost black-box”, i.e., where the reduction
receives additional information about the adversary, such as its success
probability. Third, we distinguish explicitly between efficient and ineffi-
cient primitives and adversaries, allowing us to determine how relativiz-
ing reductions in the sense of Impagliazzo and Rudich (STOC, 1989) fit
into the picture.

1 Introduction

A fundamental question in cryptography refers to the possibility of constructing
one primitive from another one. For some important primitives like one-way
functions, pseudorandom generators, pseudorandom functions, and signature
schemes it has been shown that one can be built from the other one [24, 17, 34].
For other primitives, however, there are results separating primitives like key
agreement or collision-resistant hash functions from one-way functions [26, 36].

Separations between cryptographic primitives usually refer to a special kind
of reductions called black-box reductions. These reductions from a primitive P
to another primitive Q treat the underlying primitive Q and/or the adversary
as a black box. Reingold et al. [33] suggested a taxonomy for such reductions
which can be divided roughly into three categories:
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Fully Black-Box Reductions: A fully black-box reduction S is an efficient
algorithm that transforms any (even inefficient) adversary A, breaking any
instance Gf of primitive P , into an algorithm SA,f breaking the instance f
of Q. Here, the reduction treats both the adversary as well as the primitive
as a black box, and G is the (black-box) construction out of f .

Semi Black-Box Reductions: In a semi black-box reduction, for any instance
Gf of P , if an efficient adversary Af breaks Gf , then there is an algorithm
Sf breaking the instance f of Q. Here, Sf can be tailor-made for A and f .

Weakly Black-Box Reductions: In a weakly black-box reduction, for any
instance Gf of P , if an efficient adversary A (now without access to f)
breaks Gf , then there is an algorithm Sf breaking the instance f of Q.

Reingold et al. [33] indicate that the notion of weakly black-box reductions is
close to free reductions (with no restrictions), such that separation results for this
type of reduction are presumably hard to find. They discuss further notions like
“∀∃ versions” of the above definitions, where the construction G does not make
black-box use of f but may depend arbitrarily on f , and relativizing reductions
where security of the primitives should hold relative to any oracle. We discuss
these notions later in more detail.

1.1 Black-Box Separation Techniques

Known black-box separations usually obey the following two-oracle approach:
to separate P from Q one oracle essentially makes any instance of P insecure,
whereas the other oracle implements an instance of Q. It follows that one cannot
build (in a black-box way) P out of Q. For example, Impagliazzo and Rudich [26]
separate key agreement from one-way permutations by using a PSPACE-complete
oracle to break any key agreement, and a random permutation oracle to realize
the one-way permutation. This type of separation rules out so-called relativizing
reductions, and are in this case equivalent to semi black-box reductions via
embedding of the PSPACE-complete oracle into the black-box primitive [33].

Later, Hsiao and Reyzin [25] consider simplified separations for fully black-box
reductions. Roughly speaking, they move the breaking oracle into the adversary
such that the reduction can only access this oracle through the adversary (instead
of directly, as in [26]). Because this makes separations often much more elegant
this technique has been applied successfully for many other primitives, e.g., [11,
20, 21, 27, 5, 13, 29, 28, 3].

Interestingly, recently there has been another type of separations based on so-
called meta-reduction techniques, originally introduced by Boneh and Venkate-
nesan [6], and subsequently used in many other places [9, 30, 22, 14, 31, 15,
10, 35, 12]. Such meta-reductions take an alleged reduction from P to Q and
show how to use such a reduction to break the primitive P directly, simulat-
ing the adversary for the reduction usually via rewinding techniques. It turns
out that meta-reductions are somewhat dual to the above notions for black-box
reductions. They usually work against reductions which use the adversary only
in a black-box way, whereas the reduction often receives the description of the
primitive f . This notion then escapes the treatment in [33].



298 P. Baecher, C. Brzuska, and M. Fischlin

An interesting side effect when the reduction is given the description of f is
that then the separation technique still applies to concrete problems like RSA
or discrete logarithms, and to constructions which use zero-knowledge proofs
relative to f . Such zero-knowledge proofs often rely on Karp reductions of f
to an NP-complete language and therefore on the description of f . In contrast,
for black-box use of the primitive f such constructions do not work in general,
although some of them can still be rescued by augmenting the setup through a
zero-knowledge oracle which allows to prove statements relative to f (see [7]).
We also remark that in some cases, such as Barak’s ingenious result about non-
black-box zero-knowledge and related results [2, 4], the security relies on the
code of the adversary instead, though.

1.2 Our Results

The purpose of this paper is to complement the notions of fully, semi, and weakly
black-box reductions. We also introduce a more fine-grained view on the involved
algorithms, such as the distinction between efficient and non-efficient adversaries,
or the question in how far the framework can deal with the reduction having
partial knowledge about the adversary. We also formalize meta-reductions in the
new framework and thus enable classification of this type of separation results.
We give a comprehensive picture of the relationship of all reduction types. Next
we discuss these results in more detail.

As explained above, we extend the classification of black-box reductions to
other types, like meta-reductions relying on black-box access to the adversary but
allowing to depend on the primitive’s representation. This, interestingly, also af-
fects the question of efficiency of the involved algorithms. That is, we believe that
reductions for inefficient and efficient adversaries and primitives should in gen-
eral not be resumed under a single paradigm, if efficiently computable primitives
like one-way functions are concerned. For this class, classical separations tech-
niques such as the embedding of the adversarially exploited PSPACE-complete
oracle into the primitive do not work anymore. Hence, in this case one would
need to additionally rely on a complexity assumption, such as for example in the
work by Pass et al. [32]. To testify the importance of the distinction between
efficient and inefficient adversaries in black-box reductions we show for example
that black-box use of efficient adversaries is equivalent to non-black-box use, for
constructions and reductions which are non-black-box for the primitive. Another
example where the non-black-box use of the primitive turned out to be crucial
is in the work by Mahmoody and Pass [29] where non-interactive commitments
are built from non-black-box one-way functions, whereas constructions out of
black-box one-way functions provably fail.

Another issue we address is the question in how far information about the
adversary available to the reduction may be considered as covered by black-
box notions. Technically speaking, the running time of an efficient fully black-
box reduction must not depend on the adversary’s running time, and thus for
example on the number of queries the adversary makes to the primitive. Else, one
would need to use a non-standard cost model for the reduction’s oracle queries
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to the adversary. We overcome this dilemma by allowing the reduction’s running
time (or other parameters) to depend on adversarial parameters, such as the
number of queries the adversary makes when attacking primitive P . We call this
a parameter-dependent reduction.

We can go even one step further and give the reduction the adversarial param-
eters as input. This is for example necessary to allow the reduction to depend
on the adversary’s success probability, but otherwise treating the adversary as a
black box. A well-known example of such an “almost” fully black box reduction
is the security proof of the Goldreich–Levin hardcore predicate [19], attributed
to Rackoff in [16]. This reduction depends on the adversary’s success probability
for a majority decision, but does not rely on any specifics of the adversary nor
the function to be inverted itself. We call such reductions parameter-aware.

We note that it is up to the designer of the reduction or separation to precisely
specify the parameters. Such parametrized black-box reductions potentially allow
authors to counteract the idea behind black-box reductions by placing the adver-
sary’s code in the parameters and thus making the reduction depend on the adver-
sary again (via a universal Turing machine). But we assume that such trivial cases
can be easily detected if the dependency is signalized clearly, just as in the case of a
trivial reduction of a cryptographic protocol to its own security. So far, however, lit-
erature seems to be often less explicit on which parameters the reduction is based
upon, and if the reduction should really count as black box. Stating reductions
clearly as parametrized black-box reduction should make this more prominent.

In summary, we thus provide a more comprehensive and fine-grained view on
black-box constructions and separations, allowing to identify and relate separa-
tions more clearly. In our view, two important results are that we can place rel-
ativizing reductions between non-black box constructions for inefficient and for
efficient adversaries, and that for efficient adversaries the question of the reduc-
tion having black-box access to the adversary, or allowing full dependency on the
adversary, is irrelevant. This holds as long as the construction and reduction itself
make non-black-box use of the primitive. From a technical point of view, one of
the interesting results is clearly that any reduction from the indistinguishability
of hardcore bits to one-wayness, such as in the Goldreich–Levin case [19], must de-
pend on the adversary’s success probability (and thus needs to be parametrized).

Nevertheless, we view the contributions in this paper to be primarily on the
conceptual side. Given the central role that reductions play in modern cryptog-
raphy, our impression is that a fundamental—but rather coarse—work like [33]
leaves some potential for refinement. Let us demonstrate this by the following
two examples.

The Hsiao-Reyzin separation [25] is often termed fully black-box (according
to [33]) and considered to be a rather “weak” separation. Our more fine-grained
picture shows that the separation is actually of the NNN type and thus rather
a low-level (i.e., strong) separation which cannot be bypassed through, say, any
non-black-box technique in either direction of the CAP dimensions. Hence, non-
black-box techniques cannot be used to sidestep this impossibility result; looking
at efficient adversaries/primitives may help, though.
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Similarly, according to [33], meta-reductions only rule out BBB reductions.
So, the framework does not make any distinction between the strength of meta-
reductions and some oracle separations. However, most meta-reductions today
rely on unbounded adversaries. As our paper exhibits one might circumvent such
meta-reductions by switching to the “parallel universe” of efficient adversaries,
identifying exactly what kind of black-boxness is still admissible according to
our implications (e.g., if the meta-reduction rules out NBN reductions, then one
may still manage to find an NBNa reduction).

Thus, our framework reveals that some impossibility results actually rule out
a great class of reductions and points exactly to the remaining few leverages to
give positive results.

2 Notions of Reducibility

We extend the original framework for notions of reducibility by Reingold, Tre-
visan and Vadhan [33]. Since we augment the basic notions in various directions,
we find it useful to use a different terminology for the reduction types. Instead
of referring the original terms fully, semi, weakly, and their ∀∃ variants, we use a
more descriptive three-character “CAP” notation with words from the language
{B,N}3, with the meaning that a ‘B’ in the first position (the C-position) refers
to the fact that the Construction is black-box, in the second A-position that the
Adversary is treated as a black-box by the reduction, and in the third P-position
the Primitive is treated as black-box by the reduction. Accordingly, an entry ‘N’
stands for a non-black-box use. From each combination of constraints, we then
derive the order of quantification to obtain the actual definitions.

Hence, a fully black-box reduction in the RTV framework corresponds to a
BBB-reduction in our notation, and a ∀∃ fully black-box reduction is an NBB-
reduction in our sense. The CAP notation will later turn out to be handy when
showing implications from an XYZ-reduction to an ̂X ̂Y ̂Z-reduction, whenever
̂X ̂Y ̂Z is pointwise at most as large as XYZ (with N being smaller than B). It
also allows to see immediately that the RTV framework only covers a fraction
of all 8 possibilities for the CAP choices (although the NNB type is actually not
meaningful, as we discuss later), and that we fill in the missing types BBN, as
often ruled out by meta-reductions, and the dual BNB type where the primitive
but not the adversary is treated as a black-box.

Extending the RTV framework in another dimension, we differentiate further
based on the (in)efficiency of the primitives and adversaries. We append the
suffix ‘a’ to denote an efficiency requirement on the adversary, i.e., a BBBa-
reduction only works for all probabilistic polynomial-time (PPT) adversaries
A, while a BBB-reduction is a fully black-box reduction that transforms any
adversary A into an adversary against another primitive. Likewise, we use ‘p’
to indicate that we restrict primitives to those which are efficiently computable;
the suffix ‘ap’ naturally combines both restrictions.
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2.1 Overview

At the top of the RTV hierarchy there are fully black-box reductions—or, BBB-
reductions in our CAP terminology. These BBB-reductions from a primitive P
to a primitive Q is a pair (G,S) consisting of a construction G and a reduc-
tion algorithm S. Both treat the primitive in a black-box way and the reduction
treats the adversary in a black-box way. So, for all adversaries A and all instan-
tiations f of the primitive Q, we have that, if the adversary Af breaks Gf , then
the reduction SA,f with black-box access to the adversary A and f breaks the
implementation f . As a consequence, the existence of primitive Q implies the
existence of the primitive P .

fully

relativizing

semi

∀∃-semi

weakly

∀∃-weakly

free reduction

(a)

BBB

BBBa

fully≡ ∗BB
NBB

NBBaBBN

BBNa∗BN
NBN

NBNaBNN

BNNasemi≡ ∗NN
NNN

relat. NNNawBNN

wBNNa
weakly

wNNN

wNNNa

free reduction

BNB

BNBa

(b)

Fig. 1. (a) shows the relation of notions in the RTV framework. The dashed arrows
indicate equivalence for a restricted class of reductions. In our framework (b), it is
instructive to look at the vertical planes for fully, ∗BN, semi, and weakly. The left
side corresponds to inefficient adversaries, the right side to efficient ones. The front is
the ∀∃ layer, i.e., non-black-box constructions, and the back corresponds to black-box
constructions. As NNB-reductions are not meaningful, we only need the BNB type
(in gray). The w∗NN notions are equivalent to the weakly notions of RTV. A notion
A implies notion B if there is a path of edges between both notions and notion A is
located above notion B.

The RTV framework discusses several variants and relaxations of fully black-
box reductions, called semi, weakly, and relativizing reductions. For semi black-
box reductions (aka. BNN-reductions) S can depend on both, the description
of the adversary A and of the instantiation f , and only the construction is
black-box. For weakly black-box reductions (which are also of the BNN type)
the adversary is additionally restricted to be efficient and does not get access
oracle to the primitive (but may depend on it). There is a relativizing reduction
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between the primitives P and Q, if for all oracles, the primitive P exists relative
to an oracle whenever Q exists relative to this oracle. Figure 1a illustrates the
relationships between these classes.

We augment the RTV framework by new classes which represent, among oth-
ers, reductions that are ruled out by certain meta-reductions. That is, we first
introduce the notion of BBN-reductions where S has to work for all (black-box)
adversaries, but may depend on the code of f . The other case, where S is univer-
sal for all black-box f but may depend on A, is called BNB-reduction. In both
cases the initial ‘B’ indicates that the construction still makes black-box calls to
the primitive. We remark that semi black-box and weakly black-box reductions
are of the same BNN type in our notation as they only differ in regard to the
adversary’s access to f . As pointed out in [33] weakly black-box reductions are
close to free reductions, and black-box separations are presumably only possible
at the semi level or above. In a sense, our CAP model only captures these levels
above, and other types like free or relativizing (or weakly) reductions are special.
For the sake of completeness, we symbolically denote (but do not define) weakly
reductions w∗NN and remark that they essentially correspond to the weakly
type of RTV. Note that weakly black-box reductions are called mildly black-box
in some versions of RTV.

The RTV framework also considers the type of construction (black-box vs. non-
black-box) and uses the prefix ∀∃ to indicate that construction G does not need
to be universal for all f but can, instead, depend on the description of f . In our
CAP terminology this “flips” the initial ‘B’ to an ‘N’. By this, we get 8 combina-
tions, of which 7 are reasonable. The notion of NNB-reduction is not meaningful,
because we are restricted by the following dependencies: the construction may
depend on the primitive, the reduction may depend on the adversary, and the
reduction should be universal for the primitive. Thus, there is only one way to
order the quantifiers (∀A∃S∀f∃G) which does not seem to be a reasonable no-
tion of security, because the construction can now depend on the adversary (and
if it does not, we are in the other cases).

We note that the notion of an NBB-reduction is debatable, because it relies on
a universal reduction which works for arbitrary constructions. That is, the order
of quantifiers is ∃S∀f∃G∀A. But since there may indeed be such reductions,
say, a trivial reduction from a primitive to itself, we do not exclude this type of
reduction here.

2.2 Definitions of Reductions

We next provide definitions of BBB (aka. fully black-box) reductions, BNB and
BBN reductions; the remaining definitions are delegated to the full version of
this paper [1].

A primitive Q = (FQ,RQ) is represented as a set FQ of random variables,
corresponding to the set of implementations, and a relation RQ that describes
the security of the primitive as tuples of random variables, i.e., a random vari-
able A is said to break an instantiation f ∈ FQ, if and only if (f,A) ∈ RQ.
Following [33], we say that a primitive exists if there is a polynomial-time
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CAP [33] name Remark(s)

BBB fully known meta reductions: [8, 22]
BBN
BNB known reduction: [19]
BNN semi (weakly)
NBB ∀∃-fully formally not defined in [33], only “trivial” reductions
NBN known meta reductions: [6, 22, 14, 31]
NNB not meaningful
NNN ∀∃-semi (∀∃-weakly)

Fig. 2. CAP indicates whether the construction (C), the adversary in the reduction
(A), or the primitive in the reduction (P) is treated in a black-box (B) or non-black-box
(N) way

computable instantiation f ∈ FQ such that no polynomial-time random variable
breaks the primitive. Indeed, [33] demand that primitive sets FQ are non-empty,
but do not motivate this further. We drop this requirement here as reductions
explicitly depend on primitives, such that one can enforce such non-empty sets
by investigating only such primitives if necessary. Still, we remark that all our
implications and separations would work in this case as well.

For efficient primitives or adversaries we stipulate that the random variable
is efficiently computable in the underlying machine model which, unless men-
tioned differently, is assumed to be Turing machines; the results remain valid for
other computational models like circuit families. Considering security as a gen-
eral relation allows to cover various (if not all) notions of security: games such
as CMA-UNF for unforgeability of signature schemes, simulation-based notions
such as implementing a UC commitment functionality, and even less common
notions such as distributional one-way functions. In the full version of this pa-
per [1] we define as examples the DDH assumption (cast as a primitive) and
the indistinguishability of the ElGamal encryption scheme . We also present the
reduction from the ElGamal encryption to the DDH assumption and identify its
type according to our terminology. Note that a “black-boxness” consideration in
this particular setting is indeed meaningful, because the DDH assumption can
hold in a variety of group distributions and the concrete procedures that sam-
ple from these group distributions can be abstracted away. In the full version
we discuss another example of weak one-way functions (and the construction
of strong one-way functions [37]) to highlight that the type of reduction hinges
on the exact formulation of the underlying primitive: the construction and the
reduction is then either of the NBN type or of the BBB kind.

We stress that the distinction between the mathematical object describing the
adversary as a random variable, and its implementation through, say, a Turing
machine is important here; else one can find counter examples to implications
among black-box reduction types proven in [33]. The problem is roughly that the
relation may simply be secure because it syntactically excludes all oracle Turing
machines Af . We note that Reingold et al. [33] indeed define the relations for
adversarial machines. Our discussion in [1] shows that only interpreting such
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adversaries as abstract objects sustains the implications in [33]. However, for
sake of convenience, we too often refer to Af by the machine implementing it,
even when considering the mathematical random process for relationsRQ. In this
case it is understood that we actually mean the abstract random variable instead.
The same holds for the constructions of the form Gf and the first component of
the security relations. An alternative approach, also presented in the full version
is to rely on machines, but to formally introduce semantical relations. These
relations roughly require that, for any algorithm A in RQ, any oracle machine
Af with the same output behavior is also in RQ.

We now turn to the actual definitions. Many (but not all) reductions in cryp-
tography fall into the class of so-called fully black-box reductions, a very re-
strictive notion, where the reduction algorithm is only provided with black-box
access to the primitive and the adversary. Throughout the paper, if there is a
XYZ-reduction from primitive P to a primitive Q, we notate this as (P ↪→ Q)-
XYZ-reduction. Note that the correctness is requirement is the same for all
definitions. Therefore, the shorthand notation towards the end of each definition
covers the security requirement only.

Definition 1 ((P ↪→ Q)-BBB or Fully Black-Box Reduction). There ex-
ists a fully black-box (or BBB-)reduction from a primitive P = (FP ,RP) to a
primitive Q = (FQ,RQ) if there exist probabilistic polynomial-time oracle algo-
rithms G and S such that:

Correctness. For every f ∈ FQ, it holds that Gf ∈ FP .
Security. For every implementation f ∈ FQ and every machine A, if (Gf ,Af ) ∈

RP , then (f,SA,f ) ∈ RQ, i.e.,

∃PPTG ∃PPTS ∀f ∈ FQ ∀A ((Gf ,Af ) ∈ RP ⇒ (f,SA,f ) ∈ RQ).

Definition 2 ((P ↪→ Q)-BNB-reduction). There exists a BNB-reduction
from a primitive P = (FP ,RP) to a primitive Q = (FQ,RQ) if there exists
a probabilistic polynomial-time oracle machine G such that:

Correctness. For every f ∈ FQ, it holds that Gf ∈ FP .
Security. For every machine A, there is a probabilistic polynomial-time oracle

algorithm S such that: for every implementation f ∈ FQ, if (Gf ,Af ) ∈ RP ,
then (f,SA,f ) ∈ RQ, i.e.,

∃PPTG ∀A ∃PPTS ∀f ∈ FQ ((Gf ,Af ) ∈ RP ⇒ (f,SA,f ) ∈ RQ).

Definition 3 ((P ↪→ Q)-BBN-reduction). There exists a BBN-reduction
from a primitive P = (FP ,RP) to a primitive Q = (FQ,RQ) if there exists
a probabilistic polynomial-time oracle machine G such that:

Correctness. For every f ∈ FQ, it holds that Gf ∈ FP .
Security. For every implementation f ∈ FQ, there is a probabilistic polynomial-

time oracle algorithm S such that for every machine A, if (Gf ,A) ∈ RP ,
then (f,SA,f ) ∈ RQ, i.e.,

∃PPTG ∀f ∈ FQ ∃PPTS ∀A ((Gf ,Af ) ∈ RP ⇒ (f,SA,f ) ∈ RQ).
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Name Summary of definition

BBB ∃PPTG ∃PPTS ∀f ∈ FQ ∀A ((Gf ,Af ) ∈ RP ⇒ (f,SA,f ) ∈ RQ)

BNB ∃PPTG ∀A ∃PPTS ∀f ∈ FQ ((Gf ,Af ) ∈ RP ⇒ (f,SA,f ) ∈ RQ)

BBN ∃PPTG ∀f ∈ FQ ∃PPTS ∀A ((Gf ,Af ) ∈ RP ⇒ (f,SA,f ) ∈ RQ)

BNN ∃PPTG ∀f ∈ FQ ∀A ∃PPTS ((Gf ,Af ) ∈ RP ⇒ (f,SA,f ) ∈ RQ)

NBB ∃PPTS ∀f ∈ FQ ∃PPTG ∀A ((Gf ,Af ) ∈ RP ⇒ (f,SA,f ) ∈ RQ)

NBN ∀f ∈ FQ ∃PPTG ∃PPTS ∀A ((Gf ,Af ) ∈ RP ⇒ (f,SA,f ) ∈ RQ)

NNN ∀f ∈ FQ ∃PPTG ∀A ∃PPTS ((Gf ,Af ) ∈ RP ⇒ (f,SA,f ) ∈ RQ)

weakly-BB ∃PPTG ∀A ∀f ∈ FQ ∃PPTS ((Gf ,A) ∈ RP ⇒ (f,SA,f ) ∈ RQ)

∀∃-weakly-BB ∀f ∈ FQ ∃PPTG ∀A ∃PPTS ((Gf ,A) ∈ RP ⇒ (f,SA,f ) ∈ RQ)

Fig. 3. Overview of notions of reducibility

Note that we always grant S black-box access to f and A, as they may not
be efficiently computable so that the probabilistic polynomial-time reduction
algorithm S cannot efficiently simulate them, even if it knows the code of f ,
respectively, of A. For a compact summary of all definitions, see Figure 3; the
full definitions omitted above appear in the full version of this paper [1].

2.3 Efficient versus Inefficient Algorithms

Reductions usually run the original adversary as a subroutine. However, in many
cases, the reduction does not use the code of the original adversary, but instead
only transforms the adversary’s inputs and outputs. Thus, one might consider
the reduction algorithm as having black-box access to the adversary only. An
efficient reduction can then also be given black-box access to an inefficient ad-
versary, and, maybe surprisingly, most reductions even work for inefficient ad-
versaries. Imagine, for example, the case that one extracts a forgery against a
signature scheme from a successful intrusion attack against an authenticated
channel. Then, the extraction usually still works for inefficient adversaries. On
the other hand, (unconditional) impossibility results often require the reduction
algorithm to be able to deal with inefficient adversaries.

When designing a fine-grained framework for notions of reducibility, one thus
needs to decide whether one considers efficient or inefficient adversaries. Rein-
gold et al. [33] defined their most restrictive notion of reductions, the fully-BB-
reductions (aka. BBB), for inefficient adversaries. In contrast, their notion of
semi-BB-reduction treats only efficient adversaries thus making it easier to find
such a reduction. Surprisingly, even for such a weak notion, they were able to
give impossibility results. The reason is that they used inefficient primitives,
which allow to embed arbitrary oracles so that they could make use of two-
oracle separation techniques. Hence, the efficiency question does not only apply
to adversaries, but also to the primitives (and, consequently, to the combination
of both). We postpone the treatment of the case of primitives for now and refer
the reader to Section 2.6.
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We now define the efficient adversary analogues of the notions of reduction
introduced in the previous section. Note that we still give the reduction S oracle
access to the adversary A in all notions, even though the latter can be dropped
for all cases where S depends on A in a non-black-box way. In these cases, a
probabilistic polynomial-time reduction S can simulate the now likewise efficient
adversarial algorithm A. For consistency, though, we keep the A oracles in the
definitions. To distinguish the two cases of efficient and unbounded adversaries,
denote by BBBa-reduction a reduction only dealing with efficient adversaries.

Definition 4 ((P ↪→ Q)-BBBa-reduction for Efficient Adversaries).
There exists a BBBa-reduction from a primitive P = (FP ,RP ) to a primi-
tive Q = (FQ,RQ) if there exist probabilistic polynomial-time oracle machines
G and S such that:

Correctness. For every f ∈ FQ, it holds that Gf ∈ FP .
Security. For every implementation f ∈ FQ and every probabilistic polynomial-

time machine A, if (Gf ,A) ∈ RP , then (f,SA,f ) ∈ RQ, i.e.,

∃PPTG ∃PPTS ∀f ∈ FQ ∀PPTA ((Gf ,Af ) ∈ RP ⇒ (f,SA,f ) ∈ RQ).

Again, the definitions for the remaining types of reductions are presented in
the full version of this paper [1].

2.4 Relations amongst the Definitions

We first note that a number of implications among the reductions is immediately
clear by simply shifting quantifiers, that is, if we have an for-all quantifier, there is
certainly an existential version of the reduction in question. The next proposition
states this formally, we omit the proof because it is only syntactical.

Theorem 1. Let XYZ and ̂X̂ŶZ be two types of CAP reductions such that
̂X̂ŶZ ≤ XYZ point-wise (where N ≤ B) and let P and Q be two primitives.

If there is a (P ↪→ Q)-XYZ-reduction, then there is a (P ↪→ Q)-̂X̂ŶZ reduction.

Also, if there is a (P ↪→ Q)-XYZa-reduction, then there is a (P ↪→ Q)-̂X̂ŶZa
reduction.

In the full version of this paper [1], we prove via means of counterexamples that
for all notions for inefficient adversaries, almost all the above implications are,
indeed, strict. These separations are split into a number of interesting observa-
tions. For example, we prove that the Goldreich–Levin hardcore bit reduction [19]
has to depend on the success probability of the adversary (Theorem D.3 of [1]).
Moreover, we show that the construction of one-way functions out of weak one-
way functions ([37, 18]) needs to depend on the weakness parameter of the weak
one-way function (Theorem D.2 of [1]). Interestingly, some of the implications
of Theorem 1 are not strict when one is concerned with reductions for effi-
cient adversaries. Maybe surprisingly, NNNa-reductions and NBNa-reductions
are, indeed, equivalent. Note that this means that knowledge of the code of the
adversary does not lend additional power to the reduction:
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Theorem 2 (Equivalence of NNNa and NBNa). For all primitives P and
Q, there is a (P ↪→ Q)-NBNa-reduction if and only if there is a (P ↪→ Q)-
NNNa-reduction.

Proof. Using straightforward logical deductions, it follows that NBNa-reductions
imply NNNa-reductions. For the converse direction, assume that we have two
primitives P and Q such that there is a (P ↪→ Q)-NNNa-reduction. We now
have to show that there also is a (P ↪→ Q)-NBNa-reduction, that is, we have to
give a reduction algorithm S that depends on f in a non-black-box-way, and yet
S depends on A only in a black-box way. We proceed by case distinction over f .

Case I: Suppose f ∈ FQ such that for all constructions G, the primitive Gf

is a secure implementation of P , i.e., for all polynomial-time adversaries A it
holds that (Gf ,Af ) /∈ RP . Then proving the existence of a reduction satisfying
the implication (Gf ,Af ) ∈ RP ⇒ (f,SA,f ) ∈ RQ is trivial, as the premise of
the implication is never satisfied.

Case II: For any f ∈ FQ outside the class described in Case I, we know that
there exists a PPT construction G such that for all A there is a reduction algo-
rithm S that satisfies (Gf ,Af ) ∈ RP ⇒ (f,SA,f ) ∈ RQ, and such an efficient
A with (Gf ,Af ) ∈ RP exists. For any such f , we now fix a unique adversary
Af , say, by taking the random variable Af with the shortest description accord-

ing to a particular encoding, such that it satisfies (Gf ,Af
f ) ∈ RP . For such an

Af let S be a probabilistic polynomial-time reduction making black-box use of

Af such that (f,SAf ,f ) ∈ RQ. Consider the oracle algorithm Sf
f that has the

same behavior as SAf ,f , but it incorporates Af and only has an f -oracle. The

algorithm Sf
f only depends on f , satisfies (Sf

f , f) ∈ RQ, and is implementable
in probabilistic polynomial time, as S and Af are both polynomial time algo-
rithms. Thus, regardless of construction G, we showed that for all f there is
an efficient reduction S such that (Sf , f) ∈ RQ, namely by choosing Sf = Sf

f .
Thus, we also know that for all f , there is a reduction S such that for all A, if
(A, Gf ) ∈ RP then (Sf , f) ∈ RQ. If now, we add an adversary oracle A that is
ignored1 by S, we also obtain that (Sf , f) ∈ RQ. And thus, there is a (P ↪→ Q)-
NBNa-reduction. 	

We now show that, while a reduction for inefficient adversaries always implies a
reduction for efficient adversaries of the same type, the converse is not true in
general.

Theorem 3. For eachXYZ ∈ {BBB,BNB,BBN,NBB,BNN,NBN,NNN}, there
are primitives P and Q such that there is a (P ↪→ Q)-XYZa-reduction, but no
(P ↪→ Q)-XYZ-reduction.

Proof. For the primitive P we consider a trivial primitive, namely the constant
all-zero function, denoted f0. Let L be an EXPTIME-complete problem. The pair
(f0,A) is in the relation RP if and only if the adversary A is a deterministic
function that decides L. Let FQ also consist of the set that only contains the all-
zero function f0. The relationRQ is empty. Observe that, for efficient adversaries,

1 Here, we require the relation to be machine-independent.
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the primitive P is secure because EXPTIME strictly contains the complexity class
P [23]. Thus, there is a trivial reduction since the premise of the implication

(Gf ,Af ) ∈ RP ⇒ (f,SA,f ) ∈ RQ

is never satisfied for any efficient adversary A. Hence, for all XYZ �= NNB, there
is a (P ↪→ Q)-XYZa-reduction. In contrast, inefficient adversaries can break the
primitive P , while, as RQ is empty, no reduction S can break RQ, even oracle
A. Thus, for all XYZ ∈ {BBB,BNB,BBN,NBB,BNN,NBN,NNN}, there is no
(P ↪→ Q)-XYZ-reduction. 	


2.5 Relativizing Reductions

In complexity theory as in cryptography, most reductions relativize in the pres-
ence of oracles, i.e., if a (secure instantiation of the) primitive P can be built
from a (secure instantiation of the) primitiveQ, then the construction still works,
if additionally, all parties get access to a random oracle (or any other oracle).
We say that there is a relativizing reduction from P to Q, if for all oracles Π ,
the primitive P exists relative to Π , whenever Q exists relative to Π . Often,
separation results rule out such reductions.

Definition 5 (Relativizing Reduction). There exists a relativizing reduction
from a primitive P to a primitive Q, if for all oracles Π, the primitive P exists
relative to Π whenever Q exists relative to Π. A primitive P is said to exist
relative to Π if there is an f ∈ FP which has an efficient implementation when
having access to the oracle Π such that there is no probabilistic polynomial-time
algorithm A with (f,AΠ,f ) ∈ RP .

We remark that, since we define security relations over random variables and
not their implementations, it is understood that the implementation of f may
actually depend on Π , too. According to Reingold et al. [33], relativizing reduc-
tions are a relatively restrictive notion of reducibility that they place between
BBB-reductions and NNNa-reductions. Jumping ahead, we note this is due their
treatment of (in-)efficient adversaries: they require BBB-reductions to also work
for inefficient adversaries A, and so do we. In contrast, for NNNa-reductions,
Reingold et al. allow the reduction algorithm to fail for inefficient adversaries A.
As we can show, all notions of reducibility for inefficient adversaries, including
NNN-reductions, imply relativizing reductions, i.e., we can place relativizing re-
ductions between NNN- and NNNa-reductions showing that, in fact, the notion is
very liberal compared to notions of reductions that treat inefficient adversaries.
In contrast, for efficient adversaries, relativizing reductions imply NNNa- and
(the equivalent) NBNa-reductions and are incomparable to all stronger notions
that treat efficient adversaries.

We now prove that relativizing reductions are implied by NNN-reductions
for inefficient adversaries, i.e., according to Definition C.4 of [1]. The proof is
inspired by Reingold et al. [33] who show that BBB-reductions imply relativizing
reductions.
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Theorem 4. If there is a (P ↪→ Q)-NNN-reduction, then there is a relativizing
reduction from P to Q.

Proof. Assume there is an NNN-reduction between two primitives P and Q
and assume towards contradiction that there is an oracle Π such that Q exists
relative to this oracle, but P does not. Let f ∈ FQ be an instantiation of Q that
is efficiently computable by an algorithm that has oracle access to Π and such
that f is secure against all efficient oracle machines S, i.e., for all probabilistic
polynomial-time machines S, one has (f,SΠ) /∈ RQ. By assumption of a (P ↪→
Q)-NNN-reduction, there exists a PPT oracle algorithm G for f , such that for all
(possibly unbounded) adversaries A there is a PPT reduction algorithm S such
that (Gf ,Af ) ∈ RP implies (f,Sf,A) ∈ RQ. Now, Gf is efficiently computable
relative to the oracleΠ , because G is PPT and f is efficiently computable relative
to Π . Since P does not exist relative to Π , there is an efficient adversary A such
that (Gf ,AΠ) ∈ RP , i.e., by considering that the relations are defined over
random variables, setting A′ := AΠ one also has (Gf ,A′f ) ∈ RP . Thus, the
NNN-reduction gives an efficient reduction S such that (f,SA′,f ) ∈ RQ. As S is
PPT and as f and A′ are efficiently computable relative to oracleΠ , one has that
SA′,f is efficiently computable relative to Π . Thus, f is not “Q-secure” against
all efficient oracle machines with oracle access to Π , yielding a contradiction. 	


This proves that for inefficient adversaries, relativizing reductions are implied by
NNN-reductions, the most liberal notion of reductions for inefficient adversaries.
Conversely, for efficient adversaries, relativizing reductions imply NNNa and
NBNa reductions, but they are not implied by any of the stronger notions. We
adapt the proof due to Reingold et al. [33] for the following theorem.

Theorem 5. If there is a relativizing reduction from P to Q, then there is a
(P ↪→ Q)-NNNa-reduction, and a (P ↪→ Q)-NBNa-reduction.

Proof. It suffices to show that relativizing reductions imply NNNa-reductions
for efficient adversaries, as Theorem 2 proves that NBNa-reductions and NNNa-
reductions are equivalent. Assume that there is a relativizing reduction between
the primitives P and Q, and assume towards contradiction that there is an
f ∈ FQ such that for all constructions G, there is an efficient adversary A such
that for all efficient reductions algorithms S, it holds that (Gf ,Af ) ∈ RP but,
simultaneously, (f,SA,f ) /∈ RQ. Then, by definition, relative to oracle f , the
primitive Q exists, as no efficient algorithm with oracle access to f can break f .
Note that we can view Sf as an algorithm S ′A,f which does not query A but
has the same output distribution, if viewed as random variables. By assumption,
there exists a relativizing reduction between P and Q, and thus, relative to the
oracle f , not only Q exists but also the primitive P . In particular, there is a
probabilistic polynomial-time oracle machine G such that Gf implements P and
such that for all efficient oracle machines A, one has (Gf ,Af ) /∈ RP , i.e., P is
secure against all efficient adversaries that get f as an oracle, a contradiction.
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Theorem 6. For XYZ ∈ {BBB,NBB,BBN,BNB,BNN,NBN,NNN}, there are
primitives P and Q such that there is a (P ↪→ Q)-XYZa-reduction for efficient
adversaries, but no relativizing reduction.

Proof. We show that BBBa-reductions do not imply relativizing reductions; as
BBBa-reductions imply the “lower level” reductions, the other cases follow. We
use the same approach as for Theorem 3.

Let Q be the primitive that contains the constant 0-function f0. We define
the relation RP such that P is trivially secure against all efficient adversaries,
namely, let L be an EXPTIME-complete language, then (f0,A) is in RP if A
is a deterministic function and decides L. As the complexity class P is strictly
contained in EXPTIME, no efficient adversary can break P . Let Q also be the
primitive that contains the constant 0-function f0, but with a different relation,
namely RQ is empty. In particular, no adversary can break Q. Hence, there is a
trivial (P ↪→ Q)-BBBa-reduction, because the premise of the implication

(Gf ,Af ) ∈ RP ⇒ (f,SA,f ) ∈ RQ

is never satisfied for efficient adversaries and the implication is thus trivially
true. In contrast, there is no relativizing reduction between the two primitives.
That is, assume, we add an oracle that decides the EXPTIME-complete language
L, then relative to this oracle, there are suddenly efficient adversaries that break
P . However, as RQ is still empty, there cannot be a reduction S in this oracle
world, giving us a contradiction. 	

Reingold et al. [33] note that BNNa-reductions for efficient adversaries and rel-
ativizing reductions are often equivalent. In particular, they prove that if a
primitive Q allows any oracle Π to be embedded into it, then a (P ↪→ Q)-
BNNa-reduction implies a (P ↪→ Q)-relativizing reduction. However, efficient
primitives Q such as one-way functions (as opposed to random oracles, for ex-
ample), are not known to satisfy this property. We discuss this issue in more
detail in the following section about efficient primitives.

2.6 Efficient Primitives versus Inefficient Primitives

A reduction for efficient primitives is a reduction that only works if f ∈ FQ
is efficiently implementable, i.e., in probabilistic polynomial-time. If we make
this distinction then, according to Figure 1, we unfold another dimension (anal-
ogously to the case of efficient adversaries). As we discuss below our results for
non-efficient primitives hold in this “parallel universe” of efficient primitives as
well, and between the two universes there are straightforward implications and
separations (as in the case of efficient and inefficient adversaries).

Technically, one derives the efficient primitive version XYZp of an XYZ-
reduction by replacing all universal quantifiers over primitives f in FQ by uni-
versal quantifiers that are restricted to efficiently implementable f in FQ. More
concretely, we replace ∀f ∈ FQ by the term ∀PPTf ∈ FQ. For example, the
notion of a BBBp-reduction then reads as follows:
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Definition 6 ((P ↪→ Q)-BBBp or Fully Black-Box Reduction for Ef-
ficient Primitives). There exists a fully black-box (or BBBp-)reduction for
efficient primitives from P = (FP ,RP) to Q = (FQ,RQ) if there exist proba-
bilistic polynomial-time oracle algorithms G and S such that:

Correctness. For every polynomial-time computable function f ∈ FQ, it holds
that Gf ∈ FP .

Security. For every polynomial-time computable function f ∈ FQ and every
machine A, if (Gf ,A) ∈ RP , then (f,SA,f ) ∈ RQ, i.e.,

∃PPTG ∃PPTS ∀PPTf ∈ FQ ∀A ((Gf ,Af ) ∈ RP ⇒ (f,SA,f ) ∈ RQ).

In the same manner, for any XYZ-reduction, we can define the corresponding
XYZp-reduction. Similarly, one can transform all reduction types XYZa for
efficient adversaries into reduction types XYZap for efficient adversaries and ef-
ficient primitives. Most relations that this paper establishes for XYZ-reductions
and XYZa-reductions also hold for XYZp- and XYZap-reductions, except for
the relation to relativizing reductions, where only some of the results carry over,
see Theorem 2.15 of [1]. Building on proof ideas of Theorem 3, we also establish
in Theorem 2.14 of [1] that the implication from reductions for arbitrary prim-
itives to reductions for efficient primitives is strict. We refer the reader to the
full version of this paper [1] for formal theorem statements, proofs and further
discussion of the relations of reductions for efficient primitives.

3 Parametrized Black-Box Reductions

Many reductions in cryptography commonly classified as “black box” technically
do not fall in this class, as a black box reduction algorithm must not have any
information about the adversary beyond the input/output behavior, except for
the sole guarantee that it breaks security with non-negligible probability. Strictly
speaking, this excludes information such as running time, number of queries, or
the actual success probability of a given adversary. This prompts the question of
what the “natural” notion of a black-box reduction should be. Not surprisingly,
the answer is a matter of taste, just like the question whether fully black-box or
semi black-box is the “right” notion of a black-box reduction. As in the case of
different notions of black-box reductions, we can nonetheless give a technically
profound, and yet easy-to-use notion of parametrized black-box reductions (of
any type). In the full version [1] we motivate and formalize two different degrees
of parameterization by distinguishing between parameter-aware and parameter-
dependent reductions. The difference is essentially whether or not the reduction
algorithm receives the parameter values as input.

We note that parametrized black-box reductions and separations rely criti-
cally on the specific parameters. In particular, some of our separations consider
reductions that are required to depend on, say, the success probability of the
adversary, as in the case of the Goldreich–Levin hardcore bit. This separation
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Fig. 4. The effect of parametrization (in the case of ∗BN-reductions). Parametrized
counterparts of each type partly descend towards the corresponding ∗NN-reduction
with full dependency on the adversary.

does not carry over to the parametrized case. In contrast, separations for ef-
ficient/inefficient adversaries as well as the theorems on relativized reductions
still apply.

More pictorially, one can imagine parametrized black-box reductions in light
of our Figure 1 as descending from the ∗B∗ plane for black-box adversaries
towards the ∗N∗ plane, where the reduction can completely depend on the ad-
versary, see Figure 4. The parameters and the distinction between awareness
and dependency determines how far one descends. Analogously, parametriza-
tion for BBB-reductions means to descend from the top node BBB to BNB
(also in the case of efficient adversaries). As such, it is clear that implications
along edge paths remain valid, e.g., a parametrized NBN-reduction still implies
a NNN-reduction.

The case of NBB-reductions, however, shows that parametrization cannot
fully bridge the gap to NNB-reductions. As explained before, the latter type
with quantification ∀A∃S∀f∃G does not seem to be meaningful, because the
construction G would now depend on the adversaryA. Parametrization of NBB-
reductions (with quantification ∃S∀f∃G∀A) still makes sense, though, because
the dependency of S on the adversary is only through the running time or
the input. Put differently, the parametrization allows for the “admissible non-
black-boxness” for the NBB type of reduction. If one parametrizes the black-box
access to the primitive, either for the construction or the reduction, then this
parametrization corresponds to a (partial) shift from back plane to the front
plane resp. from the top ∗BB plane to the ∗BN plane. In the full version of this
paper [1], we establish formal relationships between parameter-awareness and
parameter-depedency.
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4 Conclusion

We provide a comprehensive framework to classify black-box reductions more
precisely. We believe that this is important to fully understand and appreciate
the implications and limitations of black-box separation results. In particular,
we point out how subtleties such as different possibilities to define a primitive,
the distinction between efficient and non-efficient adversaries and primitives,
or parameterization, affect the results. Such details have previously been often
neglected, and our work draws more attention to these issues.
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