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Abstract. The Mahalanobis distance (MD) is a widely used measure in
Statistics and Pattern Recognition. Interestingly, assuming that the data
are generated from a Gaussian distribution, it considers the covariance
matrix to evaluate the distance between a data point and the distribution
mean. In this work, we generalize MD for distributions in the exponential
family, providing both, a definition in terms of the data density function
and a computable version. We show its performance on several artificial
and real data scenarios.

1 Introduction

The Mahalanobis distance (MD) [5], widely used in Statistics and Machine
Learning for classification and outlier detection tasks, is a scale-invariant metric
that provides a measure of distance between two points taking into account the
correlation between the variables. It can be seen as the composition of the linear

transformation TM : x
TM−−→ x′ = Σ− 1

2x, where Σ is the covariance matrix of a
vector of random variables x, plus the computation of the ordinary Euclidean
distance (ED) between the transformed data. This is illustrated in Fig. 1 for two
data points from a bivariate Gaussian distribution. The distance in probability
(dM ) from B to the mean μ is larger than the distance from A to μ, which is
correctly detected by the MD, but not by the ED (dE).

The Mahalanobis distance is a particular case of the Bregman Divergence
(see Def. 1), a generalization of the concept of distance. We will show that
this connection allows us to generalize the concept of distance from a point
to the center of a distribution (the densest point) for density functions in the
exponential family, a quite general case. The rest of this paper is organized as
follows. In Section 2 we introduce the new distance, in terms of the data density
function and then we provide a computable version of the distance. In Section
3 we show the performance of the generalized MD for outlier detection and
classification problems.
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Fig. 1. The effect of the Mahalanobis transformation TM

2 A Generalized Mahalanobis Bregman Divergence

Our goal in this section is to define a Generalized Mahalanobis distance to the
center of a general Probability Measure (distribution), that is, a distance for
distributions non necessarily Gaussian.

Consider a measure space (X ,F , μ), where X is a sample space (here a com-
pact set of a real vector space), F a σ-algebra of measurable subsets of X and
μ : F → IR+ the ambient σ-additive measure, the Lebesgue measure. A prob-
ability measure P is a σ-additive finite measure absolutely continuous w.r.t. μ
that satisfies the three Kolmogorov axioms. By Radon-Nikodym theorem, there
exists a measurable function f : X → IR+ (the density function) such that
P (A) =

∫
A fdμ, and f = dP

dμ is the Radon-Nikodym derivative.

In the Multivariate Gaussian case, say f = Nd(μ,Σ) where μ ∈ R
d and

Σ ∈ R
d×d are respectively the mean vector and the covariance matrix, it holds

that for x ∈ R
d, f(x|μ,Σ) ∝ e−

1
2d

2
M (x,μ) and MD is defined by:

dM (x, μ) =
√
(x− μ)TΣ−1(x− μ).

Next we show that MD is as a particular case of the Bregman Divergence:

Definition 1. (Bregman Divergence): Let X ⊂ R
d be a compact domain and

ξ a strictly convex and differentiable function ξ : X → R. Define the Bregman
Divergence (BD) for a pair of points (x,y) ∈ X as follows

BDξ(x,y) = ξ(x) − ξ(y)− 〈x − y,∇ξ(y)〉, (1)

where ∇ξ(y) is the gradient vector evaluated at the point y. Taking ξ(x) =
xTΣ−1x, it is immediate to verify that BD is the square of MD.

In general, there exists a bijective correspondence between Bregman diver-
gences and the class of (regular) exponential distributions [1,3]. An example is
the mentioned Normal distribution whose corresponding BD is the square of the
MD. However, the square of the MD can be expressed in an alternative and
interesting way as follows:

f(x) ∝ e−
1
2 d

2
M(x,μ) =⇒ d2M (x, μ) ∝ log

(
1

f(x)

)

, (2)
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Now, if f belongs to the regular exponential family, f can be expressed by
f(x) ∝ e−

1
2BDξ(x,μ) for appropriate ξ [1,3] and, thus:

f(x) ∝ e−
1
2BDξ(x,μ) =⇒ BDξ(x, μ) ∝ log

(
1

f(x)

)

, (3)

which gives us the hint to generalize the MD to any distribution in the expo-
nential family.

Definition 2. (GeneralizedMahalanobisDistance):Givena (d-dimensional)
distribution f in the exponential family and denote by mo the mode of f , that is,
f(mo) = maxx f(x), we define the Generalized Mahalanobis distance (GM) be-
tween x ∈ X and the mode (mo) of f by

d2GM (x,mo) = log

(
f(mo)

f(x)

)

. (4)

When x = mo, d
2
GM (x,mo) = log(1) = 0, and d2GM (x,mo) increases when x

moves off from the mode mo. What is the connection between BD and GM? As
already told, BD is only defined for distributions on the exponential family. In
the important case of the normal distribution1, BDξ(x,mo) = 2d2GM (x,mo). In
the case of the gamma distribution1 with shape parameter α, BDξ(x,mo) =
α

α−1d
2
GM (x,mo) (provided that there exist a mode: α > 1). Thus, BD and

GM are “formally” equivalent for distributions in the exponential family. The
advantage of the GM are two: First, it is always defined for any continuous
regular distribution, but BD is not out of the exponential family. Second, it is
possible to derive a sample version of the GM by just providing an estimator of
f(x).

From a practical point of view, we are interested in the GM to solve classifi-
cation and outlier detection problems. Thus the relevant information here is not
the exact value of the distance, but the relative order among the distances from
data points to the center of the distribution (the densest point). Therefore, we do
not need to know f(x), but given x and y, it is enough to know if f(x) < f(y)
or f(x) > f(y). To this aim, we just need to estimate the α-level sets of f :
Given a probability measure P with density function fP, the minimum volume
sets (or α-level sets) are defined by Sα(fP) = {x ∈ X| fP(x) ≥ α}, such that
P (Sα(fP)) = 1 − ν , where 0 < ν < 1. If we consider an ordered sequence α1 <
. . . < αm, then Sαi+1(fP) ⊆ Sαi(fP). Let us define Ai(P) = Sαi(fP)− Sαi+1(fP),
i ∈ {1, . . . ,m − 1}. We can choose α1 � 0 and αm ≥ maxx∈X fP(x) (which
exists, given that X is compact and fP continuous). If the {αi}mi=1 sequence is
long enough, we can assume constant density for the points contained in Ai(P),
that is, they have the same value f(x).

If x ∈ Ai(P), and because of the definition of Ai(P), then f(x) ≈ αi and thus:

d2GM (x,mo) = log

(
f(mo)

f(x)

)

≈ log

(
f(mo)

αi

)

. (5)

Next we introduce the algorithm to estimate the Ai(P) sets.

1 Proof is omitted for lack of space.
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Table 1. Algorithmic formulation of Theorem 1

Obtention of Rn = Ŝα(f):

1 Choose a constant ν ∈ [0, 1].
2 Consider the order induced in the sample sn by the sparsity measure gn(x), that is,
gn(x(1)) ≤ · · · ≤ gn(x(n)), where x(i) denotes the ith sample, ordered after g.

3 Consider the value ρ∗n = g(x(νn)) if νn ∈ N, ρ∗n = gn(x([νn]+1)) otherwise, where [x]
stands for the largest integer not greater than x.

4 Define hn(x) = sign(ρ∗n − gn(x)).

2.1 Level Set Estimation

Usually the available data are given as a finite sample. We will consider an
iid sample sn(P) = {xi}ni=1 drawn from the density function fP. To estimate

level sets from a data sample (useful to obtain Ŝα(fP)) we present the following
definitions and theorems, concerning the One-Class Neighbor Machine [7,8].

Definition 3 (Neighbourhood Measures). Consider a random variable X
with density function f(x) defined on IRd. Let Sn denote the set of random
independent identically distributed (iid) samples of size n (drawn from f). The
elements of Sn take the form sn = (x1, · · · ,xn), where xi ∈ IRd. Let M :
IRd×Sn −→ IR be a real-valued function defined for all n ∈ IN. (a) If f(x) < f(y)
implies lim

n→∞P (M(x, sn) > M(y, sn)) = 1, then M is a sparsity measure.

(b) If f(x) < f(y) implies lim
n→∞P (M(x, sn) < M(y, sn)) = 1, then M is a

concentration measure.

The Support Neighbour Machine [7,8] solves the following optimization problem:

max
ρ,ξ

νnρ−
n∑

i=1

ξi

s.t. g(xi) ≥ ρ− ξi ,
ξi ≥ 0, i = 1, . . . , n ,

(6)

where g(x) = M(x, sn) is a sparsity measure, ν ∈ [0, 1], ξi with i = 1, . . . , n are
slack variables and ρ is a threshold induced by the sparsity measure.

Theorem 1. The set Rn = {x : hn(x) = sign(ρ∗n − gn(x)) ≥ 0} converges to a
region of the form Sα(f) = {x|f(x) ≥ α}, such that P (Sα(f)) = 1− ν.

Therefore, the Support Neighbour Machine estimates a density contour cluster
Sα(f) (around the mode). Theorem 1 [7,8] can be expressed in algorithmic form
as in Table 1: Hence, we take Âi(P) = Ŝαi(fP) − Ŝαi+1(fP), where Ŝαi(fP) is
estimated by Rn defined above (for further details on the estimation refers to
[7,8]). Whit the estimation of level sets and the relation presented in Equation
2, we will test with some experiment the performance of the proposed distance.
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3 Experimental Section

To demonstrate the capability of the proposed distance, we test it in one artificial
and two real data experiments.

Artificial Experiments

The goal of the first experiment is to demonstrate that the GM adequately cap-
tures a significant amount of outliers in non-Gaussian scenarios. We keep the
distribution simple and visually tractable in this example. We simulate 1000
points from a bimodal and asymmetric bi-logistic distribution [9], with param-
eters BL(α = 0.5, β = 0.9). The values of the parameters α = 0.5 and β = 0.9
where selected in order to obtain a bi-modal distribution in the sampled data.
We replace some of these observations with contaminated observations (noise)
normally distributed with parameters Nd(μ = (3, 3),Σ = 5I2×2). The simula-
tion process was: first we generate a vector u of size 1000, uniformly distributed
in [0, 1]. Then for each value of u ≤ .95 we generate a data point from the
BL(α = .5, β = .9) distribution, in the other case we generate a data from a
Nd(μ = (3, 3),Σ = 5I2×2).

Table 2. Outlier detection performance

Metric/Technique % of: Outliers False-positives False-negatives
captured (Type I error) (Type II error)

pc-Outlier[2] 36.5% 23.2% 65.8%
sign-Outlier[2] 23.1% 7.4% 76.9%
locoutPercent[2] 13.4% 7.3% 86.4%
Percentile 5% Euclidean Distance 3.8% 10.7% 96.1%
Percentile 5% Mah. Distance 23.1% 10.4% 76.9%
Percentile 5% Gen. Mah. Distance 38.5% 10.3% 65.4%

We use a battery of different algorithms [2,10] to identify contaminated points
(outliers) for the simulated data. The results are summarized in Table 2. Our
metric outperforms the other metrics in the detection of the contaminated points.
We also get the lowest rate of unidentified outliers (false-negatives rate) and
a very competitive rate of false identification of outliers (false-positives rate)
compared to other more sophisticated techniques. In Figure 2, we present the
points revealed as contaminated points in all the considered cases. The GM
adequately capture those points that are far apart from the “center” of the
bimodal and asymmetric sampled distribution.

Real Data Experiments

For the first real example, we consider a collection of 1774 documents (corre-
sponding to 13 topics) extracted from three bibliographic data bases (LISA,
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Fig. 2. Contaminated points detected for each of the method/metric

Table 3. Classification percentage errors for a three-class text database and four clas-
sification procedures. In parenthesis the St. Error on test samples are shown.

Method % of: Train Error Test Error

SVM 0.000% 0.005% (0.000)
LDA 6.100% 7.035% (0.007)
QDA (Mahalanobis) 6.426% 6.960% (0.001)
Generalized Mahalanobis 2.553% 2.761% (0.002)

INSPEC and Sociological Abstracts). Each document is converted into a vector
into the Latent Semantic Space using the Singular Value Decomposition. We
considers 3 classes of similar topics: “dimensionality reduction” and “feature se-
lection” (311 documents), “optical cables” and “power semiconductor devices”
(384 documents) and “rural areas” and “retirement communities” (165 docu-
ments). In order to implement the classification we divide the 860 documents
into a training sample (516 documents, 60% of the data) and a test sample
(the remaining 344 documents). In order to give a robust classification result we
repeat the experiment 100 times. We report in Table 3 the average error rate
on the test sample and the standard error for each classifier. We can see that
our metric clearly outperforms Mahalanobis distance. This is explained because
we are dealing with highly dimensional data and few observations, therefore it
is difficult to estimate an appropriate covariance matrix in order to adequately
compute the Mahalanobis distance to the centers. Our distance does not suffer
this inconvenience and is capable to approximate the classification performance
of a variety of very sophisticated classification methods.
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Fig. 3. Textures images: a) blanket, b) canvas, c) seat, d) linseeds and e) stone

Table 4. Outlier detection performance

Metric/Technique % of: Outliers False-positives False-negatives
captured (Type I error) (Type II error)

pc-Outlier[2] 60% 13.23% 28.65%
sign-Outlier[2] 40% 5.13% 37.75%
locoutPercent[2] 35% 2.80% 39.39%
Percentile 5% Euclidean Distance 25% 4.00% 42.85%
Percentile 5% Mah. Distance 35% 3.60% 39.39%
Percentile 5% Gen. Mah. Distance 100% 5.10% 0.00%

The second real data example considers the detection of outliers in sample
of texture images. We consider the texture images from the Kylberg texture
database [4]. We use 500 texture images with a resolution of 576 × 576 pixels.
The first 480 texture images are very similar textures (Fig. 3 a) to c)). We
also consider 20 “outliers” images with different textures (Fig. 3 d) and e)). We
represent each image using the 32 parameters of the wavelet coefficient histogram
proposed in [6]. We report the results in Table 4. Only the proposed distance
is able to capture all the outliers in the sample. We also get an acceptable
performance regarding the Type I Error rate (with 5.1%).

Future Work: The list of tasks for next future include an exhaustive simulation
study of the performance of the proposedmetric (some of this work is not included
because the lack of space), the generalization of the proposed metric to define a
Generalized “inter-point” Mahalanobis distance, and the study of properties of
the proposed metric and its relations with the strictly convex and differentiable
function ξ that originates the definition of the Bregman Divergences.
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