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Abstract. This paper presents a parallel symbolic execution engine as a
plug-in extension to Eclipse CDT/Codan. It uses the CDT parser and the
control flow graph builder from CDT’s code analysis framework (Codan).
Path satisfiability and bug conditions are checked with an SMT solver
in the logic of arrays, uninterpreted functions and nonlinear integer and
real arithmetic (AUFNIRA). Each worker of the parallel engine keeps
the symbolic program states along its current program path in memory,
to allow for quick backtracking. Dynamic redistribution of work between
workers is enabled by splitting a worker’s partition of the execution tree
at the partition’s top decision node, where a partition is defined by the
start path leading to its root control flow decision node. The runtime be-
haviour of the parallel symbolic execution engine is evaluated by running
it on buffer overflow test programs from the NSA’s Juliet test suite for
static analyzers. Both the speedup of backtracking the symbolic program
state over a previous single-threaded implementation with path replay
and the speedup with an increasing number of workers are investigated.

1 Introduction

Symbolic execution (SE, [I]) is an attractive approach for automated discovery
of common software weaknesses. SE treats program input as variables and trans-
lates operations on them into logic equations. For a path through a program, SE
builds a path constraint from the control flow decisions. Path satisfiability and
the presence of bugs is decided with an automatic theorem prover (constraint
solver [2I3]). Current SE tools normally rely on Satisfiability Modulo Theories
(SMT, [4]) solvers. A more detailed overview of the current state and available
tools is given in [56].

Many SE tools first transform the source code into an intermediate represen-
tation (IR) and run the symbolic execution on the IR. In [7], C/C++ code is
compiled into LLVM [§] bytecode before symbolic execution, while [9] uses CIL
[10] as intermediate code. [I1] analyzes Java bytecode with symbolic execution.

In order to achieve high code coverage in a limited time, parallelization of
SE has been investigated. [I2] presents a parallelized version of [I1], which ini-
tially performs a breadth-first exploration of the symbolic execution tree up to
a certain depth, and then runs multiple workers on disjunct static partitions
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of the execution tree. [I3] presents a parallelized version of [7] with dynamic
redistribution of work between workers.

While SE of intermediate code does have its advantages, there is also a mo-
tivation for symbolic execution of source code: an IR loses source information
by discarding high-level types and the compiler lowers language constructs and
makes assumptions about the evaluation order. However, rich source and type
information is needed to explain discovered bugs to the user [I4].

In order to detect errors as early as possible, bug detection tools should be
integrated into IDEs. The Eclipse IDE is widely used, open source and designed
for extensibility (OSGi architecture [15]). For C/C++ development, Eclipse CDT
features a code analysis framework (Codan, [16]), which includes a control flow
graph (CFG) builder and several code checkers. Codan does not, however, feature
path-sensitivity or symbolic execution, which may lead to detection inaccuracies
for many analyses (false negative and false positive detections).

This paper presents a parallelized SMT-constrained symbolic execution engine
with dynamic work redistribution and backtracking of symbolic program states
as plug-in extension for Eclipse CDT. It builds on previous work [17], which
developed a sequential SE engine with replay of start paths after backtracking
path decisions. The remainder of this paper is organized as follows. Architecture
and design are described in section 2l Section [ evaluates the implementation
with buffer overflow test programs from the Juliet test suite [I8] and benchmarks
both the speedup of backtracking symbolic program states over [I7] and the
speedup with a varying number of workers. Section ] discusses the results.
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Fig. 1. Overview of main classes. WorkPoolManager and Worker are active classes.

2 Architecture and Design

2.1 Trade-offs in Memory, Computation, Communication and
Parallelism

The exploration of (at least a finite) execution tree can in principle be per-
formed in a straight-forward manner with the Worklist algorithm [I9], in which
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unexplored tree nodes (frontier nodes) are put together with the corresponding
symbolic program state in a work list (queue-based tree traversal). In practice
however, this may lead to memory exhaustion, even in distributed computation
setups.

An alternative to reduce memory consumption is to store program paths with-
out symbolic program states. A program path can further be compressed as a
sequence of branches. Minimum memory consumption is achieved when only one
path and one program state are kept in memory. This approach was used in [17]
for a sequential implementation with depth-first exploration of the execution tree
(with a configurable loop depth bound). Restoration of a program state for an
unexplored (frontier) node, on the other hand, requires redundant computation
along the new start path.

The memory versus computation trade-off extends to storing the history of
program states along a path (which requires memory) versus the possibility of
restoring a program state on this path by backtracking (which avoids redundant
computation). The symbolic program state can be backtracked as far as the
required information (variable definitions, equations, etc.) is available. Thus,
there are effectively three possibilities:

Path replay: only the current symbolic program state is kept in memory, with
the possibility for garbage collection of dead symbolic variables. The current
path’s control flow decisions are used to generate the next path [I7].

State cloning: the open symbolic program states (frontier states) are kept in
memory. The program state at a decision node is cloned for each child branch
node. This is used in a distributed implementation in [13].

State backtracking: program states along the current path are kept in mem-
ory. This can be efficiently implemented using single assignment form and
not garbage-collecting dead symbolic variables. This approach is used here.

In a parallelized implementation, it is desirable to balance computation com-
plexity and communication complexity. The communication complexity can be
rated differently for communication between multiple threads on a shared mem-
ory architecture (multi-core and/or hyper-threading CPUs) versus network com-
munication in a distributed setup. There are basically two possibilities:

— symbolic program states are transmitted to new or idle workers (requires
state cloning), or

— start paths are transmitted to new or idle workers (less transmitted data,
but path replay is needed).

The most adequate parallelization depends on the available hardware resources
as well as the size of the software to be analyzed.
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2.2 Design Decisions

The symbolic execution engine performs whole-program analysis with a call
string approach [20] for interprocedural analysis.

Symbolic Program State and Backtracking. The translation into SMT
logic is the same as in [17]. For program variables, the interpretation gener-
ates symbolic variables, whose values are logic formulas in SMTLIB AUFNIRA
syntax. The formulas may contain other symbolic variables as terms. Symbolic
variables must not be overwritten (no destructive assignments) if they might still
be needed in other formulas. A variable is called ’live’ if it may still be needed in
the future, and ’dead’ otherwise. Therefore single assignments are used: for each
assignment to a program variable, a new symbolic variable version with unique
name is generated. Pointers and structs are not directly translated into SMT
logic, they are represented internally during interpretation (e.g. a pointer has a
target and an offset formula). Logic equations are generated at pointer derefer-
ence and at field access to a struct. A path through a program is a sequence of
control flow graph nodes along edges in the CFG, and function calls are treated
as edges between different functions’ CFGs. A symbolic program state comprises
all declared symbolic variables and the internal representation of pointers and
structs along a program path. Due to single assignment form, a symbolic pro-
gram state contains all previous states along the path. To allow for backtracking,
an ActionLog keeps track of the actions performed during interpretation of each
CFG node on the path. An action may be the declaration of a symbolic vari-
able or hiding stack variables at the exit from a function. Through backtracking,
"dead’ variables may become ’live’ again. To backtrack a CFG node, the actions
are reversed: a declared symbolic variable is disposed, and hidden variables are
set visible again (in case of backtracking a function exit).

Execution Tree Exploration and Splitting into Subtrees. A configurable
number of workers analyzes disjunct partitions of the execution tree. Each worker
performs a depth-first exploration of its partition with backtracking of the sym-
bolic program state. For dynamic work redistribution, a worker can split its
partition at the partition’s top decision node. The child branches not taken by
the current worker are returned as start paths for other workers. After a split,
the partition start path is adjusted (prolonged by one branch node). Analysis
starts with one worker, who splits until the configured number of workers is busy.
A worker is initialized by replaying its partition start path. The maximum loop
depth to be explored can be bounded. If a worker reaches an unsatisfiable branch
or a satisfiable leaf of the execution tree, it backtracks and changes a path de-
cision according to depth-first tree traversal. If backtracking reaches the end of
the partition start path, the partition is exhausted. The algorithm is illustrated
in the activity diagrams Fig. @l and Fig. Bl
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2.3 Main Classes

A diagram of the main classes is shown in Fig. [[l The implementation is multi-
threaded, where control flow graphs and syntax trees are shared between worker
threads.

WorkPoolManager extends Codan at the extension point
org.eclipse.cdt.codan.core.model.IChecker. The WorkPoolManager starts
workers and reports found errors through the Codan interface to the Eclipse
marker framework.

ProgramStructureFacade provides access to control flow graphs.

WorkPool is used as synchronization object (synchronized methods). It is used
to track the number of active workers and to exchange split paths.

Worker has a forward and a backward (backtracking) mode. It passes references
to control flow graph nodes for entry (forward mode) or backtracking to the
Interpreter.

Interpreter follows the tree-based interpreter pattern [21]. SMT syntax is gen-
erated by the StatementProcessor (which implements CDT’s AST Visitor) by
bottom-up traversal of AST subtrees (visitor pattern), which are referenced
by CFG nodes. Symbolic variables are stored in and retrieved from Mem-
System. Backtracking additionally relies on ActionLog, which links certain
actions to nodes on the current path, like hiding stack variables at function
exit. The Environment class provides symbolic models of Standard library
functions. The interpreter further offers an interface to BranchValidator and
to checker classes.

SMTSolver wraps the interface to the currently used external solver, which is
[22].

BranchValidator is triggered when entering a branch node. It generates a
satisfiability query for the path constraint. For an unsatisfiable branch it
throws an exception, which is caught by the worker.

BoundsChecker is triggered for memory access. It generates satisfiability
queries for violation of lower and upper buffer bounds and reports an
error in case of satisfiability.

2.4 Communication and Synchronization

Activity diagrams for the active classes are shown in Fig. 2 and Fig. Bl Syn-
chronization of multiple local worker threads for sharing control flow graphs and
abstract syntax trees (ASTs) relies on the following methods:

WorkPool all methods are synchronized. The WorkPoolManager waits if the
configured number of workers is busy or no further split path is available
and is notified for changes (compare Fig. 2).

ProgramStructureFacade offers synchronized methods to retrieve CFG
references.
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Fig. 4. Illustration of the partition split operation. Red indicates worker 1, green worker
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a dashed line. Partition borders are indicated by curves and the text ”Partition n”.
Unexplored parts of the execution tree are shaded.
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Fig.5. Example execution tree (showing only decision and branch nodes) for test
program CWE121 char type overrun memcpy 12 from the Juliet test suite [18]. The
subtree on the lower left was used to illustrate the partition split operation in Fig. @

AST nodes are not thread-safe, so Workers lock AST subtrees at the CFG
node level (the AST subtree which is referenced by the currently interpreted
CFG node).

Index each CDT project has an index, which is the persisted document object
model (DOM). Access results in (possibly blocking) I/O operations on a
database stored in small files, so that workers acquire a read lock for accesses.

The split operation is illustrated in Fig. @l which shows part of the execution
tree of the Juliet test program CWE121 char type overrun memcpy 12. The tree
shows only decision nodes and branch nodes; other CFG node types are not
shown. A path through the execution tree normally contains alternating decision
nodes and branch nodes. This example tree contains an exception because of a
function call expression in a decision node (corresponding to a function call in
the condition of an if-statement). This leads to a repetition of the decision node
as a call node, so that the interpreter can conveniently continue interpretation
with the return value.

The unexplored part of the (sub)tree is shaded. Red lines indicate the paths
which have been explored by worker 1, green lines correspond to worker 2. Parti-
tion start paths are shown as solid lines, and a dashed line indicates the current
position of a worker. Worker 1 splits its partition and generates a split path,
which becomes start path for worker 2. After the partition split, worker 1’s start
path is prolonged by one branch node.

The execution tree is normally not generated during analysis, it is only tra-
versed on-the-fly. The complete execution tree for this example is shown in Fig.[El

2.5 Visualization

CFGs and explored execution trees can be visualized with the Java Univer-
sal Network/Graph library (JUNG, [23]) and exported as vector graphics with
Apache Batik [24]. These two libraries are therefore loaded as Eclipse plug-ins.
Execution tree visualization has been used for Fig. [ Bl
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Table 1. Duration of analysis for two sets of test programs from Juliet (on a quad-

core processor). Shows increase of analysis speed for backtracking the symbolic program
state over path replay and for different number of worker threads.

CWE121 memcpy CWE121 CWE129 fgets

(18 test programs) (30 test programs)
Single-threaded with path- 131's 1026 s
replay [17]
Backtracking, 1 Thread 25 s 102 s
Backtracking, 2 Threads 27 s 58 s
Backtracking, 3 Threads 31s 54 s
Backtracking, 4 Threads 33s 54 s

3 Evaluation

The parallelized symbolic execution engine is evaluated with stack based buffer
overflow test programs from the Juliet suite [18]. In order to achieve a certain
coverage of bugs, language constructs and context depths, Juliet combines ’base-
line’ bugs with different control and data flow variants into test programs. The
test programs contain ’good’ functions in addition to 'bad’ functions to provide
enough possibilities for false positive detections. Juliet contains 39 flow vari-
ants for C programs, and the maximum context depth spanned by a flow variant
(flow 54) is five functions in five different source files (necessary context depth for
accurate bug detection for that flow). The flows are not numbered consecutively.

Two sets of test programs are used, which contain buffer overflows with the
memcpy (set 1) and fgets (set 2) functions. Analyses are run with time measure-
ment as JUnit plug-in tests in Eclipse. Run times are only evaluated for those
programs for which bug detection is accurate, i.e. no false positives and no false
negatives. Therefore flow 18 is excluded, because it contains a goto statement
which leads to an exception in the current version of the CFGBuilder, resulting
in a false negative detection. Flow 54 uses unions, which is not yet implemented
in the translation to SMT syntax, also resulting in a false negative. A false
positive occurs for flow 66, because the current solver version (version 5.1.9 is
used) gives an incorrect satisfiability answer for the corresponding mixture of
array logic and arithmetic. On the other hand, accurate detection is achieved
for flow 12: the solver reports that the contained modulo function is not yet im-
plemented, but luckily guesses the correct satisfiability answer. As in [I7], bugs
have been accurately detected with 36 of the 39 C flow variants (90%), while
the percentage of detectable 'baseline’ bugs is unsatisfying, because only a small
part of the standard library functions is interpreted.

Table[lshows benchmarks for single-thread execution with path replay, single-
thread execution with backtracking, and multi-threaded execution with partition
splitting for a varying number of threads. The plug-in is run in Eclipse 4.2 on
a Core 2 Quad CPU Q9550 on 64-bit Linux kernel 3.2.0. Even for the tiny
test programs, backtracking already shows a 5-10x speedup over path replay.
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The overhead of partition splits and thread creation hampers multi-threading
speedup, and actually leads to a setback for the tiny memcpy programs. The
fgets test programs contain several loops, which leads to bigger execution trees
and a 2x speedup with 3 threads.

4 Discussion

This paper presented a parallelized symbolic execution engine with Eclipse CDT
integration and showed significant speedup over a previous sequential implemen-
tation. Workers are run as multiple local threads on shared control flow graphs
and syntax trees. While the symbolic execution currently aims at path coverage
(with a loop depth bound), less comprehensive coverage criteria also need to be
supported in order to scale analyses to bigger programs. Future work includes a
straightforward extension to a distributed setup with a dynamic two-level hierar-
chical partitioning of the execution tree (first over Eclipse processes on different
machines, then over local threads).

Acknowledgement. This work has been partially funded by the German Min-
istry for Education and Research (BMBF) under grant 011S13020.

References

1. King, J.: Symbolic execution and program testing. Communications of the
ACM 19(7), 385-394 (1976)
Dechter, R.: Constraint Processing. Morgan Kaufmann Publishers (2003)

3. Harrison, J.: Handbook of Practical Logic and Automated Reasoning. Cambridge
University Press (2009)

4. Barrett, C., Stump, A., Tinelli, C.: The SMT-LIB Standard Version 2.0 (December
2010),
http://goedel.cs.uiowa.edu/smtlib/papers/
smt-lib-reference-v2.0-r10.12.21.pdf

5. Cadar, C., Sen, K., Godefroid, P., Tillmann, N., Khurshid, S., Visser, W., Pasare-
anu, C.: Symbolic execution for software testing in practice — preliminary assess-
ment. In: Int. Conf. Software Eng. (2011)

6. Pasareanu, C., Visser, W.: A survey of new trends in symbolic execution for soft-
ware testing and analysis. Int. J. Software Tools Technology Transfer 11, 339-353
(2009)

7. Cadar, C., Dunbar, D., Engler, D.: KLEE: Unassisted and automatic generation of
high-coverage tests for complex systems programs. In: USENIX Symp. Operating
Systems Design and Implementation (2008)

8. Lattner, C., Adve, V.: LLVM: A compilation framework for lifelong program anal-
ysis and transformation. In: Int. Symp. Code Generation and Optimization (2004)

9. Correnson, L., et al.: FRAMA-C User Manual, release oxygen-20120901. CEA LIST
(2012), http://frama-c.com/download/frama-c-user-manual.pdf

10. Necula, G.C., McPeak, S., Rahul, S.P., Weimer, W.: CIL: Intermediate language
and tools for analysis and transformation of C programs. In: Nigel Horspool,
R. (ed.) CC 2002. LNCS, vol. 2304, pp. 213-228. Springer, Heidelberg (2002),
http://dl.acm.org/citation.cfm?id=647478.727796

o


http://goedel.cs.uiowa.edu/smtlib/papers/smt-lib-reference-v2.0-r10.12.21.pdf
http://goedel.cs.uiowa.edu/smtlib/papers/smt-lib-reference-v2.0-r10.12.21.pdf
http://frama-c.com/download/frama-c-user-manual.pdf
http://dl.acm.org/citation.cfm?id=647478.727796

206

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.
22.

23.

24.

A. Ibing

Visser, W., Pasareanu, C., Khurshid, S.: Test input generation with Java
Pathfinder. In: Int. Symp. Software Testing and Analysis (2004)

Staats, M., Pasareanu, C.: Parallel symbolic execution for structural test genera-
tion. In: Int. Symp. Software Testing and Analysis, pp. 183-193 (2010)

Bucur, S., Ureche, V., Candea, G.: Parallel symbolic execution for automated real-
world software testing. In: EuroSys (2011)

Kremenek, T.: Finding software bugs with the Clang static analyzer. LLVM De-
velopers’ Meeting (August 2008),
http://1lvm.org/devmtg/2008-08/Kremenek_StaticAnalyzer.pdf

Archer, S., VanderLei, P., McAffer, J.: OSGi and Equinox: Creating Highly Mod-
ular Java Systems. Addison Wesley (2010)

Laskavaia, A.: Codan- C/C++ static analysis framework for CDT. In: EclipseCon
(2011)

Ibing, A.: SMT-constrained symbolic execution for Eclipse CDT/Codan. In: Work-
shop on Formal Methods in the Development of Software (2013)

United States National Security Agency, Center for Assured Software: Juliet Test
Suite v1.1 for C/C++ (December 2011),
http://samate.nist.gov/SRD/testCases/suites/

Juliet Test Suite v1.1 for C Cpp.zip

Nielson, F., Nielson, H., Hankin, C.: Principles of Program Analysis. Springer
(2010)

Sharir, M., Pnueli, A.: Two approaches to interprocedural data flow analysis. In:
Muchnik, S., Jones, N. (eds.) Program Flow Analysis: Theory and Applications,
pp. 189-233. Prentice-Hall (1981)

Parr, T.: Language Implementation Patterns. Pragmatic Bookshelf (2010)
Cimatti, A., Griggio, A., Schaafsma, B.J., Sebastiani, R.: The mathSAT5 SMT
solver. In: Piterman, N., Smolka, S.A. (eds.) TACAS 2013 (ETAPS 2013). LNCS,
vol. 7795, pp. 93-107. Springer, Heidelberg (2013)

Madadhain, J., Fisher, D., Smyth, P., White, S., Boey, Y.: Analysis and visualiza-
tion of network data using JUNG. J. Statistical Software (2005)

Apache: Batik Java svg toolkit, http://xmlgraphics.apache.org/batik/


http://llvm.org/devmtg/2008-08/Kremenek_StaticAnalyzer.pdf
http://samate.nist.gov/SRD/testCases/suites/Juliet_Test_Suite_v1.1_for_C_Cpp.zip
http://samate.nist.gov/SRD/testCases/suites/Juliet_Test_Suite_v1.1_for_C_Cpp.zip
http://xmlgraphics.apache.org/batik/

	Parallel SMT-Constrained Symbolic Execution
for Eclipse CDT/Codan

	1 Introduction
	2 Architecture and Design
	2.1 Trade-offs in Memory, Computation, Communication and Parallelism
	2.2 Design Decisions
	2.3 Main Classes
	2.4 Communication and Synchronization
	2.5 Visualization

	3 Evaluation
	4 Discussion
	References




