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Abstract. We present case studies which show how the paradigm of
learning-based testing (LBT) can be successfully applied to black-box
requirements testing of industrial reactive systems. For this, we apply
a new testing tool LBTest, which combines algorithms for incremental
black-box learning of Kripke structures with model checking technology.
We show how test requirements can be modeled in propositional linear
temporal logic extended by finite data types. We then provide benchmark
performance results for LBTest applied to three industrial case studies.

1 Introduction

Learning-based testing (LBT) [7] is an emerging paradigm for black-box require-
ments testing that automates the three basic steps of: (1) automated test case
generation (ATCG), (2) test execution, and (3) test verdict (the oracle step).

The basic idea of LBT is to automatically generate a large number of high-
quality test cases by combining a model checking algorithm with an incremental
model inference or learning algorithm. These two algorithms are integrated with
the system under test (SUT) in an iterative feedback loop. On each iteration of
this loop, a new test case can be generated either by: (i) model checking a learned
model Mi of the system under test (SUT) against a formal user requirement req
and choosing any counterexample to correctness, (ii) using the learning algorithm
to generate a membership query, or (iii) random generation. An LBT tool must
interleave these three TCG methods to achieve an overall testing strategy that is
efficient. Whichever TCG method is chosen, the new test case ti is then executed
on the SUT, and the outcome is judged as a pass, fail or warning. This is done by
comparing a predicted output pi (obtained from Mi) with the observed output
oi (from the SUT). The new input/output pair (ti, oi) is also used to update the
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current model Mi to a refined model Mi+1, which ensures that the iteration can
proceed again. If the learning algorithm can be guaranteed to correctly learn in
the limit, given enough information about the SUT, then LBT is a sound and
complete method of testing. In practice, real-world systems are often too large
for complete learning to be accomplished within a feasible timescale. By using
incremental learning algorithms, that focus on learning just that part of the SUT
which is relevant to the requirement req, LBT becomes much more effective.

While algorithms for LBT have been analyzed and benchmarked on small
academic case studies (see [9] and [12]), there has so far been no published
evaluation of this technology on real-world case studies. So the scalability of this
approach is unclear. The work presented here therefore has two aims:

1. to describe the problems and potential of using LBT on real world systems
from a variety of industrial domains;

2. to show that learning-based testing is scalable to large industrial case studies,
by measuring concrete performance parameters of the LBT tool LBTest.

The organization of this paper is as follows: In Section 3, we give an introduc-
tion to requirements testing with the LBTest tool focussing on its requirements
language. In Section 4, we describe industrial case studies with the LBTest tool
from three different industrial domains: web, automotive and finance. Finally in
Section 5, we give some conclusions and future directions of research.

2 Related Work

A tutorial on the basic principles of LBT and their application to different types
of SUTs can be found in [10]. The origin of some of these ideas can be traced
perhaps as far back as [17]. Experimental studies of LBT using different learning
and model checking algorithms include [12], [7], [8] and [9]. These experiments
support the thesis that LBT can substantially outperform random testing as a
black-box requirements testing method.

Several previous works, (for example Peled et al. [13], Groce et al. [5] and Raf-
felt et al. [14]) have also considered a combination of learning and model check-
ing to achieve testing and/or formal verification of reactive systems. Within the
model checking community, the verification approach known as counterexam-
ple guided abstraction refinement (CEGAR) also combines learning and model
checking (see e.g. Clarke et al. [3] and Chauhan et al. [1]). The LBT approach
can be distinguished from these other approaches by: (i) an emphasis on test-
ing rather than verification, and (ii) use of incremental learning algorithms, as
well as other optimisations, specifically chosen to make testing more effective
and scalable. This related research does not yet seem to have lead to practical
testing tools. LBTest is the first LBT tool to be used in industrial environments.

Inductive testing (Walkinshaw et al. [16]) is a black-box testing technique that
also uses automata learning algorithms. However, this approach is more focussed
on finding untrapped exceptions then testing formal user requirements (model
checking is not used). Despite its different aim, [16] confirms our own findings
that learning algorithms give more efficient search methods than random testing.
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In contrast with model-based testing tools, such as Conformiq Designer [4] or
ModelJUnit [15], which perform test case generation using a design model (such
as a UML model), LBTest reverse engineers its own models for testing purposes.
Thus LBTest is advantageous in agile development since its models do not have
to be manually designed or re-synchronised with code changes.

3 Requirements Testing with LBTest

A platform for learning-based testing known as LBTest [11] has been developed
within the EU project HATS FP7-231620. This platform supports black-box
requirements testing of fairly general types of reactive systems. The main con-
straint on applying LBTest is that it must be possible to model a particular
SUT by a deterministic finite state machine.

The inputs to LBTest are a black-box SUT and a set of formal user require-
ments to be tested. The tool is capable of generating, executing and judging a
large number of tests cases within a short time. In large case studies, the main
limitation on test throughput is the average execution time of a single test case
on the SUT. (This will be seen in case study 3 of Section 4.3.)

For user requirements modeling, the formal language currently supported in
LBTest is propositional linear temporal logic (PLTL) extended by finite data
types. PLTL formulas can express both: (i) safety properties which are invariants
that may not be violated, and (ii) liveness properties, including use cases, which
specify intended dynamic behaviors. A significant contribution of LBTest is its
support for liveness testing. Our case studies in Section 4 will provide examples
of both safety and liveness testing.

Currently in LBTest, only one (external) model checker is supported, which is
NuSMV [2]. Further interfaces are planned in the future. The learning algorithm
currently available in LBTest is the IKL algorithm [12], which is an algorithm for
incremental learning of deterministic Kripke structures. New learning algorithms
are also in development for future evaluation.

3.1 PLTL as a Requirements Modeling Language

In the context of reactive systems analysis, temporal logics have been widely
used to formally model user requirements. From a testing perspective, linear
time temporal logic (LTL) with its emphasis on the properties of paths or ex-
ecution sequences, is a natural choice. The design philosophy of LBTest is to
generate, execute and judge as many test cases as possible within a given time
limit. This requirement places stringent requirements on the efficiency of model
checking LTL formulas. Therefore, only model checking of propositional linear
temporal logic (PLTL) formulas is currently considered. However, in an effort to
make PLTL more user-friendly (by hiding low-level Boolean encodings) LBTest
supports an extended PLTL with user-defined symbolic finite data types.

To use LBTest correctly it is important to understand the precise syntax of
the requirements modeling language. Our data type model is based on the well



Case Studies in Learning-Based Testing 167

known algebraic model of abstract data types, involving many-sorted signatures
and algebras (see e.g. [6]).

3.1.1 Definition
A finite data type signature Σ consists of a finite set S of sorts or types, and for
each sort s ∈ S, a finite set Σs of constant symbols all of the same type s.

3.1.2 Definition
Let S be a finite set of sorts containing a distinguished sort in ∈ S, and let Σ be
a finite data type signature. The syntax of the language PLTL(Σ) of extended
propositional linear temporal logic over Σ has the following BNF definition:

φ ::= ⊥ | � | s = c | s �= c| (¬φ) | (φ1 ∧ φ2) | (φ1 ∨ φ2) |(φ1 → φ2) | (Xφ) |
(Fφ) | (Gφ) | (φ1Uφ2)| (φ1Wφ2)| (φ1R φ2)

where s ∈ S and c ∈ Σs. This logic has a simple but strict typing system.
The atomic formulas of PLTL(Σ) are equations and inequations over the

data type signature Σ for defining input and output operations. Only a single
variable symbol of each type is allowed, to support a simple black-box interface
to the SUT. We overload each type symbol s ∈ S to also name a unique SUT
read or write variable of type s. The distinguished sort in ∈ S denotes the single
SUT write variable, while every other type s ∈ S denotes an SUT read variable.

The language PLTL(Σ) can be given a formal Kripke semantics, in a rou-
tine way, over any algebra that interprets the data type signature Σ. A precise
definition is omitted for brevity. Informally, the symbols ⊥, �, ¬, ∧, ∨ and →
denote the usual Boolean constants and connectives. The symbols X , F , G, U ,
W and R denote the temporal operators. Thus, Xφ means that φ is true in the
next state, Fφ means that φ is true sometime in the future, Gφ means that φ is
always true in the future and U is the binary operator which means that φ1 will
remain true until a point in the future when φ2 becomes true. The two operators
W and R stand for weak until and release respectively.

4 Case Studies in Learning-Based Testing

We can now present three industrial case studies which were tested with LBTest.
These were: (i) an access server (FAS) from Fredhopper , (ii) a break-by-wire
system (BBW) from Volvo Technology, and (iii) a portfolio compression service
(triReduce) from TriOptima . These case studies represent mature applications
from the domains of web, automotive and finance. The tool was able to find
errors in each of them, which is a promising achievement. These case studies
have the following basic characteristics:

– FAS is an e-commerce application which has been developed and evolved
over 12 years. Its various modules have been tested with automated and
manual techniques. Requirements modeling involved events and finite data
types.
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Fig. 1. (a) an FAS Deployment and (b) Interactions in the Replication System

– BBW is relatively new embedded application from the automobile industry,
which has not yet been widely adopted. It has strict timing constraints to
ensure the safety of the vehicle. Requirements modeling involved events and
infinite data types.

– triReduce service has been developed using Django, a popular web frame-
work for the Python programming language. It involves significant use of dy-
namically changing databases, so test set-up and tear-down are non-trivial.
Requirements modeling involved events and finite data types.

Requirements modeling for the BBW case study was particularly challenging
due to the presence of the infinite floating point data type. This required an
extension of LBTest to support partition testing by discretising each floating
point domain.

4.1 Case Study 1: Access Server

The Fredhopper Access Server (FAS) is a distributed, concurrent OO system
developed by Fredhopper that provides search and merchandising services to e-
Commerce companies, including structured search capabilities within the client’s
data. Fig. 1(a) shows the deployment architecture used to deploy an FAS to a
customer. An FAS consists of a set of live environments and a single staging en-
vironment. A live environment processes queries from client web applications via
web services. A staging environment is responsible for receiving data updates in
XML format, indexing the XML, and distributing the resulting indices across all
live environments according to the Replication Protocol. The Replication Pro-
tocol is implemented by the Replication System which consists of a SyncServer
at the staging environment and one SyncClient for each live environment. The
SyncServer determines the schedule of replication jobs, as well as their contents,
while SyncClient receives data and configuration updates according to the sched-
ule. Fig. 1(b) shows the interactions in the Replication System. Informally, the
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Replication Protocol is as follows: the SyncServer begins by listening for connec-
tions from SyncClients. A SyncClient creates and schedules a ClientJob object
with job type Boot that connects immediately to the SyncServer. The Sync-
Server then creates a ConnectionThread to communicate with the SyncClient’s
ClientJob. The ClientJob asks the ConnectionThread for replication schedules,
notifies the SyncClient about the schedules, receives a sequence of file updates
according to the schedule from the ConnectionThread and terminates.

The existing QA practise at Fredhopper is to run a daily QA process. The
core component (~160,000 LoC) of FAS, including the Replication System has
2500+ unit tests (more with other parts of FAS). There is also a continuous
build system that runs the unit tests and a set of 200+ black box test cases
automated using the WebDriver Selenium for every code change / 3rd library
change to FAS. Moreover, for every bug fix or feature addition, specific manual
test cases are run by a QA team and for every release, a subset of standard
manual test cases (900+) is executed by the QA team.

The SUT was a Java implementation of the SyncClient, consisting of about
6400 lines of Java code organized into 44 classes and 2 interfaces. Specifically,
we were interested to test the interaction between a SyncClient and a ClientJob
by learning the SyncClient as a Kripke structure over the input data type

Σin = {setAcceptor, schedule, searchjob, businessJob, dataJob,

connectThread, noConnectionThread}
Four relevant output data types were identified as follows:

Σschedules = {φ, {search}, {business}, {business, search}, {data},

{data, search}, {data, business}, {data, business, search}}.
Σstate = {Start,WaitToBoot,Boot,WaitToReplicate,WorkOnReplicate,

WorkOnReplicate,End},
Σjobtype = {nojob,Boot, SR,BR,DR}, Σfiles = {readonly,writeable}.

Eleven informal user requirements were then formalized in PLTL(Σ). Below,
for brevity, we only reproduce some of these requirements formally.
Requirement 1: If the SyncClient is at state Start and receives an acceptor,
the client will proceed to state WaitToBoot and execute a boot job.

G(state = Start ∧ in = setAcceptor → X(state = WaitToBoot ∧ jobtype = Boot))

Requirement 2: If the SyncClient’s state is either WaitToBoot or Booting
then it must have a boot job (Jobtype = Boot), and if it has a boot job, its state
can only be one of WaitToBoot, Booting, WaitToReplicate or End.1

G(state ∈ {WaitT oBoot, Booting} → jobtype = Boot ∧
1 The membership relation ∈ used in Requirement 2 and elsewhere does not belong

to PLTL(Σ) but is a macro notation that can be replaced automatically.
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jobtype = Boot → state ∈ {WaitT oBoot, Booting, WaitT oReplicate, End})
Requirement 3: If the SyncClient is executing a Boot job (Jobtype = Boot)
and is in state WaitToBoot and receives a connection to a connection thread,
it will proceed to state Booting.
Requirement 4: If the SyncClient is executing a Boot job (Jobtype = Boot)
and is in state Booting and receives schedules (schedule), it will proceed to state
WaitToReplicate and it will queue all schedules (schedules = { data, business,
search}).
Requirement 5: If the SyncClient is executing a replication job jobtype ∈ {
SR, BR, DR} and is in state WaitToReplicate and receives a connection to a
connection thread, the client will proceed to state WorkOnReplicate
Requirement 6: If the SyncClient is waiting either to replicate or boot and
there is no more connection, the client proceeds to the End state.
Requirement 7: Once the SyncClient is in the End state, it cannot go to
another different state.
Requirement 8: If it is not in the End state then every schedule that the
SyncClient possesses will eventually be executed as a replication job.

G(state �= End →

search ∈ schedules → (F (jobtype = SR U state = End)) ∧
business ∈ schedules → (F (jobtype = BR U state = End)) ∧

data ∈ schedules → (F (jobtype = DR U state = End)) )

Requirement 9: The SyncClient cannot modify its underlying file system (files
= readonly) unless it is in state WorkOnReplicate.
Requirement 10: If the SyncClient is executing a replication job for a particular
type of schedule, then that job can only receive schedules for that particular type
of schedule.
Requirement 11: If the SyncClient has committed to a schedule of a partic-
ular type and eventually that schedule is executed as a replication job then that
schedule will be removed from the queue.

Table 1 gives the results obtained by running LBTest to test these 11 user
requirements on the FAS SyncClient. For each requirement, Table 1 breaks down
the total number of test cases used into three figures (columns 5, 6 and 7) which
count the test cases generated by each of the three different TCG methods:
model checker, learner and random. The total testing time (column 3) is the
time taken to execute all three types of test cases. For each requirement, Table
1 gives the final verdict (column 2) i.e. pass/fail/warning. Column 4 gives the
size of the learned hypothesis model at test termination. To terminate each
experiment, a maximum time bound of 5 hours was chosen. However, if the
hypothesis model size had not changed over 10 consecutive random tests, then
testing was terminated earlier than this.
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Table 1. Performance of LBTest on Fredhopper Access Server case study

PLTL Re-
quirement

Verdict Total
Testing
Time

(hours)

Hypothesis
size

(states)

Model
checker
tests

Learning
tests

Random
tests

Req 1 pass 5.0 8 0 50,897 45
Req 2 pass 5.0 15 2 49,226 13
Req 3 pass 1.7 11 0 16,543 17
Req 4 pass 2.1 11 0 20,114 14
Req 5 pass 2.5 11 0 24,944 17
Req 6 pass 2.3 11 0 23,215 16
Req 7 pass 2.1 11 0 18,287 17
Req 8 warning 1.9 8 15 18,263 12
Req 9 warning 3.8 15 18 35,831 18
Req 10 pass 2.7 11 0 26,596 19
Req 11 pass 4.6 11 0 45,937 21

Thus for example: Requirement 1 was tested for a total of 5 hours using 50,942
test cases, of which 50,897 were generated by the learning algorithm, 45 were
generated randomly, and 0 were generated by the model checker. We see that
learner generated queries dominate, though generally this is influenced by the
kind of learning algorithm used (here IKL [12]). Around 10,000 test cases per
hour were generated, executed and evaluated. This test throughput does not
vary much across the 11 different requirements. On large SUTs, test throughput
is mainly determined by the average execution speed of a single test case. Since
Requirement 1 was passed, we can infer that the model checker was called 45
times, but on each occasion it failed to find a counterexample, so that a random
test case was used instead.

4.1.1 Discussion of Errors Found
Nine out of eleven requirements were passed. For Requirements 8 and 9, LBTest
gave warnings (due to a loop in the counterexample) corresponding to tests of
liveness requirements that were never passed. The counterexample for both these
requirements was “setAcceptor,Schedule,businessJob,businessJob”. After the first
instance of symbol “businessJob” , a loop occurred in the counterexample which
was unfolded just once. This counterexample violated Requirement 8 because
if we keep reading the input businessJob from the state reached after the first
“businessJob” the SUT does not go to the end state as specified. It also violates
Requirement 9 because the start state is reached after reading this sequence
rather than WaitOnReplicate or End states as specified. Neither of these states
is ever reached if we keep reading the input businessJob from this state. A careful
analysis of these requirements showed that both involved using the U (strong
Until) operator. When this was replaced with a W (weak Until) operator no
further warnings were seen for Requirement 9. Therefore this was regarded as an
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Fig. 2. A High Level Simulink Model of the BBW System

error in the user requirements. However, LBTest continued to produce warnings
for Requirement 8, corresponding to a true SUT error. So in this case study
LBTest functioned to uncover errors both in the user requirements and in the
SUT.

4.2 Case Study 2: Brake-by-Wire

The Volvo Technology BBW system is an embedded vehicle application with
ABS function, where no mechanical connection exists between the brake pedal
and the brake actuators applied to the four wheels. A sensor attached to the
brake pedal reads the pedal’s position percentage, which is used to compute
the desired global brake torque. A software component distributes this global
brake torque request to the four wheels. At each wheel, the ABS algorithm
uses the corresponding brake torque request, the measured wheel speed, and
the estimated vehicle speed to compute the actual brake torque on the wheel.
For safety purposes, the ABS controller in the BBW system must release the
corresponding brake actuator when the slip rate of any wheel is larger than the
threshold (e.g., 20%) and the vehicle is moving at a speed of above certain value,
e.g., 10 km/h. A Simulink model of the BBW system is shown in Figure 2.

The BBW is a typical distributed system, which is realised by five ECUs (elec-
tronic control units) connected via a network bus. The central ECU is connected
to the brake and acceleration (gas) pedals. The other four ECUs are connected
to four wheels. The software components on the central ECU manage the brake
pedal sensor, calculation of the global brake torque from the brake pedal po-
sition, and distribution of the global torque to the four wheels. The software
components on each wheel ECU measure the wheel speed, control the brake ac-
tuator, and implement the ABS controller. The BBW is a hard real-time system
with some concrete temporal constraints that could not be modeled in PLTL.
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For this it runs ’continuously’ with high frequency sampling using two clocks (5
and 20 ms). The BBW has:

– two real-valued inputs : received from the brake and gas pedals to identify
their positions, denoted by breakPedalPos and gasPedalPos respectively. The
positions of both pedals are bounded by the interval [0.0, 100.0].

– nine real-valued outputs : denoting the vehicle speed vehSpeed, rotational speeds
of the four wheels (front right, front left, rear right and rear left) ωSpeedFR,
ωSpeedFL,ωSpeedRR andωSpeedRL respectively.These speeds are bounded
by the interval [0.0, 111.0]. The torque values on these wheels are denoted by
torqueOnFR, torqureOnRL, torqueOnRR and torqueOnRL respectively. All
torque values are bounded by the interval [0.0, 3000.0]Nm.

The SUT consisted of a Java implementation of the BBW consisting of about
1100 lines of code.

The problem of discretely modeling floating point data types was addressed
by partition testing. For this, the two inputs were discretised into a set of four
input events given by Σin = {brake, acc, accbrake, none}, where the values brake
and acc represented the conditions brakePedalPos = 100.0 and accPedalPos =
100.0 respectively. Also accbrake represented the condition brakePedalPos =
100.0 ∧ accPedalPos = 100.0 and none represented brakePedalPos = 0.0 ∧
accPedalPos = 0.0 respectively.

Exploiting symmetrical user requirements on all four wheels, four finite output
data types for the vehicle speed and one single wheel (front right) were identified
as:

Σspeed = {vehicleStill, vehicleMove, vehicleDecreased}
ΣwheelRotateFR = {zero, nonZero}

ΣtorqueFR = {zero, nonZero}
ΣslipFR = {slipping, notSlipping}

The floating point values of each output variable were mapped to the corre-
sponding set of output events in Σ by using discretisation formulas. Effectively,
each event represents a partition class. These formulas are defined in Table 2,
and they were implemented within the SUT adapter which was used to connect
the BBW to LBTest.

Note that in Table 2, vehSpeedi represents the vehicle speed at i-th event
and hence the speed change at i-th event is vehSpeedi−vehSpeedi−1. The units
of measurement for vehSpeedi are km/h and the vehicle is considered as still
at the i-th event if vehSpeedi ≤ 10 otherwise it is considered to be in motion.
The vehicle is considered to be decelerating at the i-th event if vehSpeedi <
vehSpeedi−1 and vehSpeedi−1 > 0. The units of angular speed of the wheels
are also converted into km/h inside the Java code of the SUT from the usual
rpm. This was essential to calculate the slip rate of the wheels. The slip rate
(denoted by slip) of a wheel (e.g front right) is the ratio of the difference of
vehSpeed−ωSpeedFR and the vehicle speed vehSpeed. The vehicle is considered
slipping when the slip rate slip > 0.2 otherwise the vehicle is considered not



174 L. Feng et al.

Table 2. BBW Discretisation Formulas

Output Value Discretisation Formula
vehicleStill vehSpeed ≤ 10.0

vehicleMove vehSpeed > 10.0

vehicleDecreased vehSpeedi < vehSpeedi−1 ∧ vehSpeedi−1 > 0

nonZero : wheelRotateFR ωSpeedFR > 0

Zero : wheelRotateFR ωSpeedFR = 0

nonZero : torqueFR torqueOnFR > 0

Zero : torqueFR torqueOnFR = 0

slipping 10 ∗ (vehSpeed− ωSpeedFR) > 2 ∗ vehSpeed

slipping. After this partitioning of the input and output values, three informal
requirements were formalized in PLTL(Σ) as follows:
Requirement 1: If the brake pedal is pressed and the wheel speed (e.g., the
front right wheel) is greater than zero, the value of brake torque enforced on
the (front right) wheel by the corresponding ABS component will eventually be
greater than 0.

G( in = brake → F (wheelRotateFR = nonZero → torqueFR = nonZero) )

Requirement 2: If the brake pedal is pressed and the actual speed of the vehicle
is larger than 10 km/h and the slippage sensor shows that the (front right) wheel
is slipping, this implies that the corresponding brake torque at the (front right)
wheel should be 0.

G( (in = brake ∧ speed = vehicleMove ∧ slipFR = slipping) → torqueFR = zero )

Requirement 3: If both the brake and gas pedals are pressed, the actual vehicle
speed shall be decreased.

G(in = accbrake → X(speed = vehicleDecreased))

Table 3. Performance of LBTest on the Brake-by-Wire case study

PLTL Re-
quirement

Verdict Total
Testing
Time
(min)

Hypothesis
Size (States)

Model
Checker
Tests

Learning
Tests

Random
Tests

Req 1 Pass 34.4 11 0 1501038 150
Req 2 Fail 1.0 537 18 34737 2
Req 3 Pass 16.0 22 0 1006275 130



Case Studies in Learning-Based Testing 175

4.2.1 Discussion of Errors Found
Table 3 shows the results of testing BBW with LBTest using the three LTL
requirements defined above. Noteworthy are the large volumes of test cases and
short session times, due to fast execution of individual test cases. Requirements 1
and 3 were passed, while LBTest continued to give errors for Requirement 2 with
different counterexamples during several testing sessions we ran. The shortest
counterexample found during these sessions was “acc,acc,acc,acc,acc,brake”. This
means that when the brake pedal is pressed, after the vehicle has acquired a speed
greater than 10 km/h, and at that time when the slip rate of a wheel is greater
than 20%, then the SUT does not always have zero torque on the slipping wheel.
All other counterexamples suggested a similar pattern of behaviour.

4.3 Case Study 3: triReduce

TriOptima is a Swedish IT company in the financial sector which provides
post-trade infrastructure and risk management services for the over-the-counter
(OTC) derivatives market. Financial markets involve a constantly changing and
strict regulatory framework. To keep up with such changes, agile software de-
velopment methodologies are important. However, short development cycles are
difficult without test automation, and ATCG is therefore a valuable addition to
quality assurance methods.

A derivative is a financial instrument whose value derives from the values of
other underlying variables. It can be used to manage financial risk. Millions of
derivatives are traded every day. Yet many of these trades are not necessary to
maintain a desired risk position versus the market. Financial institutions can
participate in portfolio compression activities to get rid of unnecessary trades.
The triReduce portfolio compression service runs in cycles, each cycle focuses on
a different product type, for example interest rate swaps or credit default swaps.
Each cycle has four main steps:

1. Preparation. Before participating, each financial institution must complete a
legal process which results in a protocol adherence.

2. Sign up. Parties can log in to the service to review the schedule for upcoming
compression cycles and sign up, indicating they will participate.

3. Linking. During this phase, each participating party uploads their portfolio
of trades, complementing the other participants in the cycle. The trades are
automatically matched, determining which trades are eligible for compres-
sion. During linking, each participant sets their parameters for controlling
movements in the market and credit risk.

4. Live execution. After calculating a multilateral unwind proposal, the differ-
ent parties verify this and indicate acceptance. When all participants have
indicated acceptance, the proposed trades are legally terminated.

TriOptima delivers the triReduce service through a web application that is
developed in Python using the Django Framework. Django is based on a Model-
View-Controller-like (MVC) software architecture pattern, where the models are
tightly coupled to relational database models, implemented as Python classes.
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In general, testing TriOptima involves isolating test case executions so that the
ordering of test cases in a suite does not matter. Clearing the databases and
caches between test executions would properly isolate them. However, setting
up and tearing down the entire database is not feasible in this case since triRe-
duce has a code base almost 100 times larger than the FAS at about 619 000 LoC
(including large dependencies like Django). It is a database intensive application
with customers uploading trade portfolios containing thousands of trades. Han-
dling this data efficiently takes several hundred database models and relational
database tables. Creating these blank database tables and their indexes can take
time in the order of minutes. Therefore, a special SUT adapter was written to
effectively isolate each test case execution by performing an efficient database
rollback between individual test cases. This SUT adapter was implemented in a
general way that could be used for any other Django web application.

Authentication solves the problem of deciding who a certain user is. Autho-
rization solves the problem of deciding if a certain (authenticated) user is allowed
to perform a certain operation. A central component of any Django application is
its user authentication system. A central and extremely important part of triRe-
duce is deciding what a user may or may not do in the system. For example, a
simplified view of the user authorization in triReduce can be described as follows.
A user is a member of a party (a legal entity). There are also user accounts for
TriOptima staff. To sign up for a triReduce compression cycle, the party must
have the correct protocol adherence stored in the system. (The protocol can be
seen as a legally binding contract between TriReduce and the party.) Only staff
users may add or remove protocol adherences for parties. Because of their criti-
cal importance for system integrity, requirements related to authentication and
authorization were the focus of this LBTest case study.

For this specific focus, the input data type was defined by:

Σin = {next_subject, login, adhere_to_protocol}
and four relevant output data types were identified as:

Σstatus = {ok, client_error, internal_error}
Σsubject = {none, root, a_alice, b_bob}

Σlogged_in = {anonymous, staff , bank_a, bank_b}
Σprotocol = {not_adheres, adheres}, Σsignup = {prohibited, allowed}.

Five functional requirements were then formalised in PLTL(Σ):
Requirement 1: The status must always be okay.

G(status = ok)

Requirement 2: If Bank A is not logged in, and does log in, then Bank A should
become logged in.

G(logged_in ∈ {bank_b, staff , anonymous} ∧
subject = a_alice ∧ in = login → X(logged_in = bank_a))
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Requirement 3: Cycle signup should be prohibited until a bank adheres to the
protocol.

G((logged_in = bank_a → cycle_signup = prohibited) U

(logged_in = bank_a → adheres_to_protocol = adheres))

Requirement 4: Cycle signup should be prohibited until a bank adheres to the
protocol, and general system status should always be ok, i.e. 3 and 1 together.
Requirement 5: If bank A adheres to the protocol, then cycle signup for bank
A should always be allowed.

G((logged_in = bank_a → adheres_to_protocol = adheres) →
G(logged_in = bank_a → cycle_signup = allowed))

4.3.1 Discussion of Errors Found
Three different types of errors were found within four types of experiments,
which could be classified as follows.

1. Injected Errors. Injecting errors into the SUT was a way of confirming that
LBTest was working as intended. Below, we describe some examples of doing
this, and the results may be seen in Table 4. Here, three versions of triReduce
were used:

– triReduce 1: The standard version.
– triReduce 2: An error is injected, the password of the b_bob user was changed.
– triReduce 3: Another error is introduced, switching the meaning of logging

in as user a_alice and b_bob.

2. Errors in the SUT Adapter. While testing Requirement 3 and observing the
log output, some SUT output contained status states that were not ok. Thus
internal errors were arising in the SUT, which no requirement had covered.
Therefore Requirement 1 and Requirement 3 were combined resulting in Require-
ment 4. After about 55 minutes of LBTest execution it found a counterexample
to Requirement 4. This error was easily traced to the SUT adapter, the code
connecting LBTest to triReduce, and was quickly fixed.

Table 4. Results of injecting errors into triReduce

Req. # SUT Verdict Comment
1 triReduce 1 Pass Stopped after learning a model of 16 states

using 5 hypothesis models, after 18 min.
1 triReduce 2 Warning Counterexample found in the sixth hy-

pothesis (size 8 states) after only 3.8 min.
2 triReduce 1 Pass As previously, stopped after learning 5 hy-

pothesis models in 13 min.
2 triReduce 3 Warning Counterexample found after 98 seconds at

a hypothesis size of 4 states.
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3. Errors in Requirements. Executions of LBTest found an error in the orig-
inal formalisation of Requirement 3, due to using ∧ instead of → (a common
mistake for beginners). LBTest was able to detect this, by producing a spurious
counterexample within a minute on the faulty LTL requirement.

4. Successful Lengthy LBTest Executions. Requirement 5, was tested to see how
LBTest would behave in much longer testing sessions. Two 7 hour testing sessions
were successfully executed with LBTest. Both terminated with a “pass” verdict
after about 86000 SUT executions and hypothesis sizes of up to 503 states. The
log files were manually checked and contained no errors.

5 Conclusions and Future Work

We have applied LBTest, a learning-based testing tool, to three industrial case
studies from the web, automotive and finance sectors. The tool successfully found
errors in all three case studies (albeit injected errors for triReduce). This is de-
spite the fact that one case study (the FAS) had been operational for a relatively
long time. The tool supported formal requirements debugging in two case stud-
ies, which is often considered to be problematic. The successes of these large case
studies suggest that LBT is already a scalable technique, that could be further
improved with better learning algorithms.

The third case study (triReduce), is the largest that has been tested using
LBTest to date. While no SUT errors were found, we note that this study was
performed by a test engineer external to the original LBTest research team. An
early version of LBTest, with limited documentation and guidance was used.
This suggests that LBT technology should be transferable to industry.

These case studies illustrate the scope and potential for LBT within different
industrial domains and problems. They also illustrate the practical difficulties of
using LBT within an industrial environment, including requirements modeling
and implementing appropriate SUT adapters.

Future research will consider more efficient learning algorithms which can re-
duce both the number of test cases and the time needed to discover errors. The
combination of partition testing with LBT, used in the BBW case study, also
merits further research to understand its scope and limits. In [9], we investigated
extensions of LBT with more powerful model checkers for full first-order linear
temporal logic. However, it remains to be seen whether this approach is com-
petitive with the much simpler but less precise partition testing method used
here.

We gratefully acknowledge financial support for this research from the Higher
Education Commission (HEC) of Pakistan, the Swedish Research Council (VR)
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