
Chapter 13
Dependency Parsing

13.1 Introduction

Parsing dependencies consists of finding links between heads (also called gover-
nors) and modifiers (or dependents) – one word being the root of the sentence
(Fig. 13.1). In addition, each link can be annotated with a grammatical function.

There is a large array of techniques to parse dependencies. In this chapter, we
introduce some of them in order of increasing complexity. We begin with an exten-
sion of shift–reduce to parse dependencies, and we describe how to use symbolic
and machine-learning techniques to guide the parser. We then present other parsing
strategies using constraint satisfaction and statistical lexical dependencies.

13.2 Evaluation of Dependency Parsers

Before we review dependency parsing techniques, let us first describe how we will
evaluate them. As for constituents, we will compare the output of an automatic
parser with its corresponding manual annotation. Most evaluation metrics follow
Lin (1995), who proposed to consider the links between each word in the sentence
and its head. The error count is then the number of words that are assigned a wrong
head (governor). Figure 13.2 shows a manually annotated dependency tree of Bring
the meal to the table and a possible parse. The error count is 1 out of 6 links and
corresponds to the wrong attachment of to. Lin (1995) also described a method to
adapt this error count to constituent structures. This error count is probably simpler
and more intuitive than the PARSEVAL metrics.

P.M. Nugues, Language Processing with Perl and Prolog, Cognitive Technologies,
DOI 10.1007/978-3-642-41464-0__13, © Springer-Verlag Berlin Heidelberg 2014

403

404 13 Dependency Parsing

table

the

to

meal

the

Bring

Which sentence root?

Which head?

meal

Fig. 13.1 Possible roots in the sentence Bring the meal to the table and heads for word meal.
There are N possible roots, and each remaining word has theoretically N � 1 possible heads

<root> Bring the meal to the table <root> Bring the meal to the table

Fig. 13.2 Evaluation of dependency trees: the reference dependency tree (left), and a possible
parse output (right)

13.3 Nivre’s Parser

13.3.1 Extending the Shift–Reduce Algorithm to Parse
Dependencies

Nivre (2003) proposed a dependency parser that creates a graph that he proved to be
both projective and acyclic. The parser is an extension to the shift–reduce algorithm
that we saw in Sect. 12.2. As with the regular shift–reduce, Nivre’s parser uses a
stack S and a list of input words W . However, instead of finding constituents, it
builds a set of arcs A representing the graph of dependencies.

Nivre’s parser uses two operations in addition to shift and reduce, left-arc and
right-arc. Using the notation .head; modifier/ to denote an arc from a head to a
modifier:

Shift pushes the next input word onto the stack.
Reduce pops the top of the stack. We also add a constraint to the reduce operation

to check that the top of the stack has a head and then ensures that the graph is
connected.

Left-arc adds an arc .n0; n/ from the next input word n0 to the top of the stack
n and reduces n from the top of the stack. We set a condition to this operation:
there must not be an arc .n00; n/ already in the graph. Without it, the top of the
stack would have two or more heads.

Right-arc adds an arc .n; n0/ from the top of the stack n to the next input word
n0 and pushes n0 on the top of the stack.

13.3 Nivre’s Parser 405

Table 13.1 The parser transitions, where W is the initial word list; I , the current input word list;
A, the graph of dependencies; and S , the stack. The triple hS; I; Ai represents the parser state. n,
n0, and n00 are lexical tokens. The pair .n0; n/ represents an arc from the head n0 to the modifier n

Parser transitions

Actions State before State after Conditions

Initialization hnil; W;;i
Termination hS; nil; Ai
Left-arc hnjS; n0jI; Ai hS; n0jI; A[f.n0; n/gi Àn00.n00; n/ 2 A

Right-arc hnjS; n0jI; Ai hn0jnjS; I; A[f.n; n0/gi
Reduce hnjS; I; Ai hS; I; Ai 9n0.n0; n/ 2 A

Shift hS; njI; Ai hnjS; I; Ai

Table 13.1 shows the start and final parser states as well as the four transitions
and their conditions.

13.3.2 Parsing an Annotated Corpus

Nivre (2006) proved that for each sentence with a projective dependency graph,
there is a transition sequence that enables his parser to generate this graph. He
called this procedure gold-standard parsing, because it corresponds to the sequence
of parsing transitions taken in the set {left-arc, right-arc, reduce, shift} that produces
the manually-obtained gold-standard graph. The parser has a linear complexity, and
the number of transitions needed to parse a sentence is at most 2n � 1, where n is
the length of the sentence.

To parse a manually-constructed graph, we could set the graph as a search goal
and use the Prolog backtracking mechanism to find the transitions. Although this
is possible, there are more efficient methods. Given a dependency graph, we can
formulate simple conditions on the stack and the current input list to execute left-
arc, right-arc, shift, or reduce. The two first conditions on left-arc and right-arc are
obvious:

• We execute a left-arc if the top of the stack and the next word in the list are linked
by a left arc in the gold-standard graph.

• We execute a right-arc if the top of the stack and the next word in the list are
linked by a right arc in the gold-standard graph.

The reduce condition is slightly more complex. We execute it when the gold-
standard graph contains an arc in either direction between the next word in the list
and a word in the stack, below the top. Finally, we execute a shift when no other
action can be carried out. The operation we have just explained that determines
which transition to apply given a certain parser state is called an oracle. The oracle
at a given step of the parsing process is summarized by the condition below, where
TOP is the top of the stack, FIRST, the first token of the input list, and arc, the
relation holding between a head and a dependent:

406 13 Dependency Parsing

Table 13.2 The transition sequence to apply to the sentence The waiter brought the meal to
produce its dependency graph. The graph uses left or right arrows to give the direction of the
dependency

Trans. Stack Queue Graph

start ; ROOT the waiter brought the meal {}
sh

ROOT the waiter brought the meal {}
sh

the waiter brought the meal {}
ROOT

la
ROOT waiter brought the meal {the waiter}

sh
waiter brought the meal {the waiter}
ROOT

la
ROOT brought the meal {the waiter, waiter brought}

ra
brought the meal {the waiter, waiter brought,
ROOT ROOT! brought}

sh
the meal {the waiter, waiter brought,
brought ROOT! brought}
ROOT

la
brought meal {the waiter, waiter brought,
ROOT ROOT! brought, the meal}

ra
end meal [] {the waiter, waiter brought,

brought ROOT! brought, the meal,
ROOT brought! meal}

1. if arc.TOP; FIRST/ 2 A, then right-arc;
2. else if arc.FIRST; TOP/ 2 A, then left-arc;
3. else if 9k 2 Stack; arc.FIRST; k/ 2 A or arc.k; FIRST/ 2 A, then reduce;
4. else shift.

As an example, let us examine the oracle in action with the sentence:

The waiter brought the meal.

The dependency graph can be represented by the set of links:

fthe waiter; waiter brought; ROOT! brought; the meal; brought! mealg;

where we use left or right arrows to give the direction of the dependency, and the
dummy word ROOT to indicate the root of a sentence. Knowing this graph, we
can invoke the oracle to find the transition sequence. Table 13.2 shows the parser

13.3 Nivre’s Parser 407

states in the form of a stack, an input list, and the graph in construction. We start
with an empty list of actions, and we ask the oracle at each step of the parsing
procedure: What is the next action? When we reach the end of the input list, we
have the complete transition sequence,

[sh, sh, la, sh, la, ra, sh, la, ra]

and we can check that the parser has built a graph that is equal to the one we
constructed manually.

13.3.3 Nivre’s Parser in Prolog

Nivre’s parser is simple to understand, and its implementation in Prolog is easy. Let
us call the top-level predicate

nivre_parser(+Sentence, ?Operations, ?RefGraph)

where Sentence is the input sentence, RefGraph, the manually-annotated
dependency graph, and Operations, the sequence of transitions that produces
this graph. We will design the program to work with two modes. The first one
will use Sentence and RefGraph as input, and for each projective graph, the
program will output a list of transitions. The second mode will use Sentence and
Operations as input to produce a graph.

We represent the input sentences as lists of words with their corre-
sponding position, form, and part of speech, w([id=ID, form=FORM,
postag=POSTAG]), and we use a variation of the CONLL format described in
Sect. 11.9.2 to encode dependencies,w([id=ID, form=FORM, head=HEAD,
deprel=DEPREL]). The input sentence The waiter brought the meal is
represented as:

[w([id=0, form=root, postag=’ROOT’]),
w([id=1, form=the, postag=’DT’]),
w([id=2, form=waiter, postag=’NN’]),
w([id=3, form=brought, postag=’VBD’]),
w([id=4, form=the, postag=’DT’]),
w([id=5, form=meal, postag=’NN’])]

and its dependency graph as:

[w([id=1, form=the, head=2, deprel=det]),
w([id=2, form=waiter, head=3, deprel=sub]),
w([id=3, form=brought, head=0, deprel=root]),
w([id=4, form=the, head=5, deprel=det]),
w([id=5, form=meal, head=3, deprel=obj])]

Finally, the Operations list will consist of symbols corresponding to the
initials of the transitions: {la, ra, re, sh}. For example, the sequence, shift, right-
arc, left-arc, reduce, will be represented by [sh, ra, la, re].

408 13 Dependency Parsing

The Four Transitions

The Prolog program uses four transitions shown in Table 13.1 that we transcribe as
four predicates: left_arc/6, right_arc/6, shift/4, and reduce/3.

The left_arc/6 predicate adds an arc to the graph linking the first word of
the list to the top of the stack with the condition that the first word has no head in
the current graph.

% left_arc(+Words, +Stack, -NewStack, +Graph,
-NewGraph)

left_arc([W | _], [T | Stack], Stack, Graph,
[w([id=IDT, form=FORMT, head=IDW, deprel=_]) |
Graph]) :-

W = w([id=IDW | _]),
T = w([id=IDT, form=FORMT | _]),
\+ member(w([id=IDT, form=FORMT | _]), Graph).

The right_arc/6 predicate adds an arc to the graph linking the top of the
stack to the first word of the list with the condition that the top of the stack has no
head in the current graph.

% right_arc(+Words, -NewWords, +Stack, -NewStack,
% +Graph, -NewGraph)
right_arc([W | Words], Words, [T | Stack],

[W, T | Stack], Graph, [w([id=IDW, form=FORMW,
head=IDT, deprel=_]) | Graph]) :-

W = w([id=IDW, form=FORMW | _]),
T = w([id=IDT | _]),
\+ member(w([id=IDW, form=FORMW | _]), Graph).

The reduce/3 predicate reduces the Stack provided that the word has a head
already in the graph.

% reduce(+Stack, -NewStack, +Graph)
reduce([T | Stack], Stack, Graph) :-

T = w([id=IDT, form=FORMT | _]),
member(w([id=IDT, form=FORMT | _]), Graph).

The shift/4 predicate removes the next word from the list currently being
parsed and pushes it on the top the stack. Here we set it as the head of the Stack
list to produce a NewStack:

% shift(+Words, -NewWords, +Stack, -NewStack)
shift([First | Words], Words, Stack, [First | Stack]).

13.3 Nivre’s Parser 409

The Oracle

The oracle determines which transition to apply given a certain parser state. The
oracle/4 predicate uses the algorithm described in Sect. 13.3.2 and unifies
Operation with a value in the set {la, ra, re, sh}. However, the first Prolog
rule checks whether Operation is already instantiated when the predicate is
called and if yes, it does not execute the algorithm. This will enable the program
to work with two modes: determine a transition sequence from a graph, and also
build a graph from a given transition sequence.

% oracle(+Words, +Stack, +Graph, -Operation)
% Predicts the next transition from the

manually-annoted graph
oracle(_, _, _, Op) :-

nonvar(Op),
!.

oracle([W | _], [T | _], Graph, la) :-
T = w([id=IDT, form=FORMT | _]),
W = w([id=IDW | _]),
member(w([id=IDT, form=FORMT, head=IDW | _]),
Graph),

!.
oracle([W | _], [T | _], Graph, ra) :-

T = w([id=IDT | _]),
W = w([id=IDW, form=FORMW | _]),
member(w([id=IDW, form=FORMW, head=IDT | _]),
Graph),

!.
oracle([W | _], [_ |Stack], Graph, re) :-

member(K, Stack),
K = w([id=IDK, form=FORMK | _]),
W = w([id=IDW, form=FORMW | _]),
(
member(w([id=IDK, form=FORMK, head=IDW | _]), Graph)
;
member(w([id=IDW, form=FORMW, head=IDK | _]), Graph)
),
!.

oracle(_, _, _, sh).

The Top-Level Predicate

The top-level predicate calls an auxiliary predicate that stores the stack and
the current graph. If it fails to produce a transition sequence, it returns a list

410 13 Dependency Parsing

containing the atom fail. We can use the program in two ways with the modes:
nivre_parser(+Sentence, -Transitions, +Graph) and
nivre_parser(+Sentence, +Transitions, -Graph).

nivre_parser(Sentence, Ops, RefGraph) :-
nivre_parser(Sentence, [], Ops, [], RefGraph).

nivre_parser(_, [fail], _).

The auxiliary predicate consists of three rules, where the first two represent
terminal conditions, and the third is the general recursive case. The terminal
conditions correspond respectively to the two possible modes. The first rule is
used when the program produces a transition sequence from a reference graph. The
terminal condition is met when the queue is empty. We check additionally that the
two graphs – the reference graph and the graph built by the parser – are equal.
This is always the case when the reference graph is well-formed and projective. The
second rule corresponds to the application of a transition sequence, and the output
is the graph. Finally, the recursive rule calls the oracle and executes the predicted
transition.

nivre_parser([], _, [], CurGraph, RefGraph) :-
nonvar(RefGraph),
!,
subset(RefGraph, CurGraph),
subset(CurGraph, RefGraph).

nivre_parser([], _, [], Graph, Graph).
nivre_parser(Words, Stack, [Op | Ops], Graph,

RefGraph) :-
oracle(Words, Stack, RefGraph, Op),
execute_action(Op, Words, NWords, Stack, NStack,

Graph,NGraph),
nivre_parser(NWords, NStack, Ops, NGraph,

RefGraph).

The execute_action/7 predicate calls the predicted operation and produces
a new parser state. Its purpose is merely to select the arguments of the transitions.

% execute_action(+Op, +Words, -NewWords, +Stack,
% -NewStack, +Graph, NewGraph)
execute_action(la, Words, Words, Stack, NStack, Graph,

NGraph) :-
left_arc(Words, Stack, NStack, Graph, NGraph).

execute_action(ra, Words, NWords, Stack, NStack,
Graph,NGraph) :-

right_arc(Words, NWords, Stack, NStack, Graph,
NGraph).

execute_action(re, Words, Words, Stack, NStack, Graph,

13.4 Guiding Nivre’s Parser 411

Graph) :-
reduce(Stack, NStack, Graph).

execute_action(sh, Words, NWords, Stack, NStack,
Graph,Graph) :-

shift(Words, NWords, Stack, NStack).
execute_action(Op, _, _, _, _, _, _) :-

\+ member(Op, [la, ra, re, sh]),
write(’Illegal action. Returning’), nl.

Running the Parser

Applying the parser to The waiter brought the meal yields:

?- nivre_parser([w([id=0, form=root, postag=’ROOT’]),
w([id=1, form=the, postag=’DT’]), ...], A,

[w([id=1, form=the, head=2, deprel=det]),
w([id=2, form=waiter, ...]).

A = [sh, sh, la, sh, la, ra, sh, la, ra] .

Conversely, given this transition sequence, the parser produces the original
dependency graph.

13.4 Guiding Nivre’s Parser

So far, we gave the parser a solution in the form of a reference graph to find the
transition sequence. In most practical cases, this is not what we want. We generally
have a sentence as input, and our goal is to automatically build a graph. We will
now introduce techniques to carry this out. We will start with symbolic rules that
resemble phrase-structure rules for dependencies: dependency rules. We will then
move on to consider machine-learning techniques so that we can train our parser
on manually-annotated corpora. The combination of machine learning and Nivre’s
parser produces highly efficient systems.

13.4.1 Parsing with Dependency Rules

Dependency Rules

Writing dependency rules or D-rules consists in describing possible dependency
relations between word categories (Covington 1990): typically a head part of speech
to a dependent part of speech (Fig. 13.3).

412 13 Dependency Parsing

Fig. 13.3 Examples of
D-rules

These rules mean that a determiner can depend on a noun (1) (or that a noun can
be the head of a determiner), an adjective can depend on a noun (2), and a noun can
depend on a verb (4). The rules express ambiguity. A preposition can depend either
on a verb (5) as in Bring the meal to the table or on a noun (3) as in Bring the meal
of the day. Finally, rule 6 means that a verb can be the root of the sentence.

In our example, D-rules use parts of speech, which means that before parsing,
we must use a POS tagger to annotate each word of the input list. D-rules can also
involve the lexical value of the words or their semantic category or as, for instance,

of noun.

which means that the word of depends on a noun. When the rules involve word
values, they are said to be lexicalized.

D-rules are often related to one or more functions. The first rule in Fig. 13.3
expresses the determinative function, the second one is an attributive function, and
the third rule can be a subject, an object, or an indirect object function. Using a
unification-based formalism, rules can encapsulate functions, as in:

2
664

category W noun
number W N
person W P
case W nominative

3
775

2
4

category W verb
number W N
person W P

3
5

which indicates that a noun marked with the nominative case can depend on a verb.
In addition, the noun and verb share the person and number features. Unification-
based D-rules are valuable because they can easily pack properties into a compact
formula: valence, direction of dependency relation (left or right), lexical values, etc.
(Covington 1989; Koch 1993).

Using D-Rules with Nivre’s Parser

We can use D-rules to guide Nivre’s parser. We need first to write a grammar, a set
of rules, for the language we want to process and write a guide predicate so that
at a given point of the analysis it will examine the grammar and select a transition
among the four possible ones.

Most languages have directional constraints for the dependencies. For instance,
a determiner is always before the noun in English, French, and German. We can
formulate these constraints using oriented D-rules to represent left, POS.n0/
POS.n/, and right, POS.n/ ! POS.n0/, dependencies. In the first case, the head
is to the left of the dependent, and in the second one, it is the opposite. Oriented
D-rules reduce ambiguity significantly.

13.4 Guiding Nivre’s Parser 413

Table 13.3 Conditions on the left-arc and right-arc transitions to run Nivre’s parser with D-rules

Actions Parser transitions Conditions

Left-arc hnjS; n0jI; Ai ! hS; n0jI; A[f.n0; n/gi POS.n/ POS.n0/ 2 R

Àn00.n00; n/ 2 A

Right-arc hnjS; n0jI; Ai ! hn0jnjS; I; A[f.n; n0/gi POS.n/! POS.n0/ 2 R

The guide links the D-rules to the parsing actions. To carry out a left-arc, the
grammar must contain the rule POS.n/ POS.n0/ and to carry a right-arc, the
grammar must contain the rule POS.n/ ! POS.n0/. Table 13.3 shows the new
conditions to run Nivre’s parser with D-rules.

The D-rule constraints are not sufficient to write a complete guide as the
transition selection is still ambiguous. We can always apply a shift, and the grammar
may contain conflicting rules; for instance, a preposition can depend on a noun and
a noun can depend on a preposition. When two or more transitions are applicable,
we need a procedure to select a unique one. In its original article, Nivre (2003)
experimented with three parsing strategies that depended on the transition priorities.
The first two are:

• The parser uses the constant priorities for the transitions: left-arc > right-arc >
reduce > shift.

• The second parser uses the constant priorities left-arc > right-arc and a rule to
resolve shift/reduce conflicts. If the top of the stack can be a transitive head of
the next input word according to the grammar, then shift; otherwise reduce.

Both strategies are easy to implement.

D-Rules and Nivre’s Parser in Prolog

Before we start writing a guide, we need to write a grammar. We represent the D-
rules with a drule/4 predicate, where each rule contains the parts of speech of
the head and the dependent, the function, and the dependency direction. A simple
grammar of English using the Penn Treebank tagset will be:

%drule(+HeadPOS, +DepPOS, +Function, +Direction)
drule(’ROOT’, ’VBD’, root, right).
drule(’NN’, ’DT’, determinative, left).
drule(’NN’, ’JJ’, attribute, left).
drule(’VBD’, ’NN’, subject, left).
drule(’VBD’, ’PRP’, subject, left).
drule(’VBD’, ’NN’, object, right).
drule(’VBD’, ’PRP’, object, right).
drule(’VBD’, ’IN’, adv, _).
drule(’NN’, ’IN’, pmod, right).
drule(’IN’, ’NN’, pcomp, right).

414 13 Dependency Parsing

Let us now write a guide predicate that resembles those proposed by Nivre
(2003). It consists of five rules that describe transition priorities. The first rule tries
a left-arc. It looks for a D-rule that links the top of the stack to the first word in
the queue. If this fails, the second rule tries a right-arc. It looks for a D-rule that
links the first word in the queue to the top of the stack. If we cannot execute these
actions, either because there is no D-rule or because their conditions are not met,
we try shift with a lookahead condition that the top of the stack can be the head of
the second-next word in the queue. We look for a corresponding D-rule. If this does
not work, we try reduce and then shift.

% guide(+Words, +Stack, -Operation)
guide([W | _], [T | _], la) :-

T = w([id=_, form=_, postag=POST | _]),
W = w([id=_, form=_, postag=POSW | _]),
drule(POSW, POST, _, left).

guide([W | _], [T | _], ra) :-
T = w([id=_, form=_, postag=POST | _]),
W = w([id=_, form=_, postag=POSW | _]),
drule(POST, POSW, _, right).

guide([_, W | _], [T | _], sh) :-
T = w([id=_, form=_, postag=POST | _]),
W = w([id=_, form=_, postag=POSW | _]),
drule(POST, POSW, _, right).

guide(_, _, re).
guide(_, _, sh).

We need to slightly modify nivre_parser/5 to run it with the guide:

nivre_parser([], _, [], Graph, Graph).
nivre_parser(Words, Stack, [Op | Ops], Graph,

RefGraph) :-
guide(Words, Stack, Op),
execute_action(Op, Words, NWords, Stack, NStack,

Graph,NGraph),
nivre_parser(NWords, NStack, Ops, NGraph,

RefGraph).

Applying the parser to The waiter brought the meal, where each word was tagged
with its part of speech, yields the correct graph:

[w([id=5, form=meal, head=3, deprel=_G1015]),
w([id=4, form=the, head=5, deprel=_G915]),
w([id=3, form=brought, head=0, deprel=_G775]),
w([id=2, form=waiter, head=3, deprel=_G675]),
w([id=1, form=the, head=2, deprel=_G535])]

with the transition sequence [sh, sh, la, sh, la, ra, sh, la, ra].

13.4 Guiding Nivre’s Parser 415

Evaluating the Parser

Using annotated corpora, it is possible to derive automatically a grammar of
D-rules, then run and assess the parser. There are a few freely available corpora that
we can download. Talbanken05 in Swedish (Einarsson 1976; Nilsson et al. 2005) is
one example. It contains annotated Swedish sentences and was used in the CoNLL
2006 shared task (Buchholz and Marsi 2006). It comes with a training set and a test
set as well as an evaluation procedure that is comparable to the one described in
Sect. 13.2.

We can use the training set to extract dependency rules and then run the parser
on the test set. Nivre’s parser does not guarantee to produce connected graphs. This
means that some words from the input sentence will have no head in the graph. In
this case, we assign them a ROOT head. The result score will depend on the number
of rules we use. With the 100 most frequent ones in the CoNLL 2006 training set,
we reach an attachment score of about 57 % in the test set.

Although this result is far from the state of the art, we obtained it with a minimal
guide. There are many ways to improve it, and this means that using Nivre’s parser
with D-rules is a viable strategy. Here are a list of possible improvements: introduce
lexicalized D-rules, constrain the parser to produce connected graphs, and constrain
the graph to have only one root. We leave these improvements as an exercise
(Exercise 13.1).

13.4.2 Using Machine-Learning Techniques

D-rules provide a simple way to control a dependency parser. However, they use
limited information to make a decision: the part of speech of two words, the top of
the stack, and the first word in the queue. Most current implementations of Nivre’s
parser use a richer set of features and hence rely on machine-learning techniques to
implement the guide.

We now describe techniques that are similar to those we used with chunking (see
Sect. 10.7.3) and that fit the sequential nature of Nivre’s parser. We modify the guide
so that before each transition it extracts features from the parser state. The features
represent a sort of context to the transition and, using them as an input to a classifier,
the guide predicts the next transition.

We build the classifier from a data set using a machine-learning algorithm. We
collect a set of transition contexts from an annotated corpus using gold-standard
parsing. This produces a list of feature values and the corresponding transition. We
then automatically train a classifier such using ID3, logistic regression, or support
vector machines (Chap. 4) that we have embedded in the guide.

416 13 Dependency Parsing

Table 13.4 Feature vectors extracted while parsing the sentence The waiter brought the meal.
In the left part of the table, the parser prints the parts of speech of the top of the stack and next
in the queue before each transition. In the middle part, the parser prints two words from the stack
and the queue

Stack Queue Stack Queue

POS(T0) POS(Q0) POS(T0) POS(T�1) POS(Q0) POS(QC1) Transitions

nil ROOT nil nil ROOT DT sh
ROOT DT ROOT nil DT NN sh
DT NN DT ROOT NN VBD la
ROOT NN ROOT nil NN VBD sh
NN VBD NN ROOT VBD DT la
ROOT VBD ROOT nil VBD DT ra
VBD DT VBD ROOT DT NN sh
DT NN DT VBD NN nil la
VBD NN VBD ROOT NN nil ra

Predicting the Parser Transitions

We saw that gold-standard parsing could produce a transition sequence from a well-
formed projective graph, and that the output sequence would exactly generate the
input graph. While parsing, each transition has a corresponding parser state from
which we can extract information in the form of feature vectors. To train a classifier,
the idea is to associate a feature vector with the next transition.

The simplest features correspond to words’ parts of speech on the top of the
stack, POS(T0), and the next word in the input queue, POS(Q0). This is more or
less the information provided by D-rules. A generalization is straightforward, and
we can use more data from the stack or the queue and extend the size of the vector
from two to four or more. We can also lexicalize the features and use the word forms
in addition to their parts of speech. Table 13.4 shows feature vectors extracted while
parsing the sentence:

The waiter brought the meal

annotated as

root/ROOT the/DT waiter/NN brought/VBD the/DT meal/NN.

The vectors use the part of the speech of the words and their dimension is two,
POS(T0), POS(Q0), and four, POS(T0), POS(T�1), POS(Q0), POS(QC1).

After the data is collected from an annotated corpus, we can apply a training
procedure to create a 4-class classifier. Once trained, given a feature vector the
classifier will choose a transition in the set {la, ra, sh, re}. We can then embed
this classifier in the guide of Nivre’s parser. When parsing a sentence, the parser
extracts the current context after each transition and asks the guide to predict the next
one. Support vector machines are among the most effective training algorithms we
can use. In the next section, we use the C4.5 implementation of Weka (Sect. 4.3.2).
The C4.5 training procedure is fast and produces decision trees that are easy to
understand.

13.4 Guiding Nivre’s Parser 417

Table 13.5 Parsing performance using different feature sets on Swedish data. The training data
was extracted from projective sentences in the CoNLL 2006 training set. The decision trees were
trained using the C4.5 implementation available from the Weka environment. Words that had no
head after parsing were assigned the ROOT head. The evaluation was carried out on the test set
using the CoNLL 2006 script, which uses the attachment score. See Sect. 13.2 for a definition.
The annotated data as well as the evaluation script are available from the CoNLL 2006 web page
(After data provided by Buchholz and Marsi (2006))

Stack Queue Constraints Graph

POS(T0) POS(T�1) POS(Q0) POS(QC1) POS(QC2) LA RA RE LMS Score

� – � – – – – – – 64.57
� – � – – – – – � 67.42
� – � – – � � � – 72.83
� – � – – � � � � 73.41
� � � � � – – – – 78.05
� � � � � – – – � 78.71
� � � � � � � � – 81.30
� � � � � � � � � 81.64

Feature Vectors and Parsing Performance

The feature set is a key factor in the parsing performance, and designing a good set is
a very significant issue in practice. To realize it, we will experiment with our parser
with two words in the stack and three words in the queue, and we will compare the
results with a context involving just one word. We will also include the leftmost
dependent of the top of the stack.

To help the guide, we will extract three additional Boolean parameters to
check that the transition conditions are met: “can do left-arc”, “can do right-arc”,
and “can do reduce”. These features are intended to have the classifier model
constraints on transitions. Hopefully, it will learn them and, as far as possible, avoid
predicting illegal transitions. If this nevertheless happens and the classifier predicts
a transition that violates the constraints, the guide will fall back to the priorities
la > ra > re > sh. In total, the sets will have from two to eight parameters.

Table 13.5 shows the scores and hints that larger feature sets yield better results.
This rule is true in general until we reach a ceiling in the size of the set. Using, say,
20 words from the queue would probably not improve the parser performance. In
addition, there is a danger with larger sets to be overadapted to the training data. The
classifier will then tend to learn specific properties of the data it is trained on and be
biased toward it. An overadapted feature set will yield superior scores on training
data, but possibly have inferior results on a different corpus. We call this an overfit.

The best score we obtain in Table 13.5 is 81.64. This is below the top score of the
CoNLL 2006 shared task, which was 89.54. However, it is a good result given that
we have only used parts of speech and that C4.5 is not as efficient as support vector
machines. We can easily improve the performance using lexical features, such as the
word form or the lemma. In fact, lexicalization has a strong impact on the parsing
performance. Many attachment ambiguities can only be resolved by the knowledge

418 13 Dependency Parsing

Table 13.6 Model for the feature set, where top denotes the top of the stack and next, the next
in the queue. The feature names follow the CoNLL format described in Table 11.12 (After Nivre
et al. (2006))

Location Description FORM LEMMA CPOS POS FEATS DEPREL

Stack top � � � � � �
Stack top� 1 �
Input next � � � � �
Input nextC 1 � �
Input nextC 2 �
Input nextC 3 �
Graph Head of top �
Graph Leftmost dependent of top �
Graph Rightmost dependent of top �
Graph Leftmost dependent of next �

of the lexical values. As an example of possible extensions, Nivre et al. (2006)
proposed an effective feature set shown in Table 13.6.

Finding Grammatical Functions

We saw in Chap. 11 that the grammatical functions form an important layer in
the description of dependency relations. In addition, the analysis of functions is
essential in many applications. However, so far, our parser has only created the
arcs of the dependency graphs. The time has now come to see how we can identify
functions.

From a technical viewpoint, functions are just labels to add to the arcs, and there
are two main ways to assign them:

1. We can first modify the guide and use a two-step classifier: the first one predicts
the next transition as before and if it is a left-arc or a right-arc, a second classifier
predicts the function. This second classifier will have as many classes as there
are functions and can be trained from the functions extracted from gold-standard
parsing.

2. A second possibility is to extend the left-arc and right-arc transitions to include
the function. The transition sequence to parse The waiter brought the meal is
shown in Table 13.2: [sh, sh, la, sh, la, ra, sh, la, ra]. The
augmented transitions to assign the functions will be:
[sh, sh, la-det, sh, la-sub, ra-root, sh, la-det,
ra-obj].

We will just need one classifier to predict both the transition and the function.
We train this classifier from the new transitions we collect with the gold-standard
parsing procedure.

13.5 Finding Dependencies Using Constraints 419

The annotation format of CoNLL 2006 and 2007 makes provision for
grammatical functions. This means that we can train our transition and function
classifiers on the same corpus. Moreover, classifiers can more or less use the same
features. See Table 13.6 for an example. The evaluation is carried out the same way
as for the bare dependency graphs, but this time it measures the labeled attachment
score: the proportion of arcs that have both a correct head and a correct label. This
label is called DEPREL in the CoNLL format.

Parsing Nonprojective Links

Identifying functions has an interesting side effect: it enables Nivre’s parser to
handle nonprojectivity. By construction, this parser is limited to projective graphs.
However, we saw in Sect. 11.10.2 that is it possible to projectivize nonprojective
graphs. We also saw that we can recover the original nonprojective graphs if we
mark the arc labels with the projectivization operations. This, of course, assumes
that the arcs in the graphs have labels (functions).

Now we can build a nonprojective system. It uses a projective parser that is
preceded by a preprocessing step that projectivizes the training corpus and followed
by a postprocessing step that recovers nonprojective arcs from the parsed sentences.

The preprocessing step corresponds to the procedure explained in Sect. 11.10.2
(Kunze 1967; Nivre and Nilsson 2005). It creates a new set of function labels,
where the new labels annotate the projectivized arcs. Once this preprocessing step
is applied to the training set, we can train the classifiers using a projective parser.
When the classifiers are trained, we can run the parser on sentences. It labels the arcs
with the original functions as well as with nonprojective markers. We finally apply
the postprocessing step to identify these markers and create nonprojective arcs.

13.5 Finding Dependencies Using Constraints

Using constraints is a symbolic strategy that can be an alternative to D-rules.
Although it is not as widely used as machine-learning techniques, it can be of
interest when no annotated corpus is available. The parsing algorithm is then framed
as a constraint satisfaction problem.

Constraint dependency parsing annotates words with dependencies and function
tags. It then applies a set of constraints to find a tag sequence consistent with all
the constraints. Some methods generate all possible dependencies and then discard
inconsistent ones (Harper et al. 1999; Maruyama 1990). Others assign one single
dependency per word and modify it (Tapanainen and Järvinen 1997).

Let us exemplify a method inspired by Harper et al. (1999) with the sentence
Bring the meal to the table. Table 13.7 shows simplified head and function
assignments compatible with a word’s part of speech.

420 13 Dependency Parsing

Table 13.7 Possible
functions according to a
word’s part of speech

Parts of speech Possible heads Possible functions

Determiner Noun det
Noun Verb object, iobject
Noun Prep pcomp
Verb Root root
Prep Verb, noun mod, loc

The first step generates all possible head and function tags. Using Table 13.7,
tagging yields:

Words Bring the meal to the table
Position 1 2 3 4 5 6
Part of speech verb det noun prep det noun
Possible tags <nil, root> <3, det> <4, pcomp> <3, mod> <3, det> <4, pcomp>

<6, det> <1, object> <1, loc> <6, det> <1, object>

<1, iobject> <1, iobject>

Then, a second step applies and propagates the constraint rules. It checks that the
constraints do not conflict and enforces the consistency of tag sequences. Rules for
English describe, for instance, adjacency (links must not cross), function uniqueness
(there is only one subject, one object, one indirect object), and topology:

• A determiner has its head to its right-hand side.
• A subject has its head to its right-hand side when the verb is at the active form.
• An object and an indirect object have their head to their left-hand side (active

form).
• A prepositional complement has its head to its left-hand side.

Applying this small set of rules discards some wrong tags but leaves some
ambiguity.

Words Bring the meal to the table
Position 1 2 3 4 5 6
Part of speech verb det noun prep det noun
Possible tags <nil, root> <3, det> <1, object> <3, mod> <6, det> <4, pcomp>

<1, iobject> <1, loc>

13.6 Covington’s Parser

In the previous sections, we saw that Nivre’s parser was restricted to the class of
projective graphs. Although projective structures are by far the most frequent in
English or French, this restriction impairs the expressivity of the parser, notably in
languages where nonprojectivity is not as anecdotal: German, Latin, Russian, etc.

13.6 Covington’s Parser 421

We now introduce Covington’s parser (1990, 1994a, 2001), which extends
parsing to nonprojective dependencies. Covington’s parser is, in fact, a family
of algorithms. It starts with a brute-force search that considers all the word pair
combinations on which we can gradually set constraints to comply with some
generally accepted properties of dependency graphs: head uniqueness and possibly
projectivity.

The parser is relatively easy to implement, and it can use D-rules or machine
learning techniques. We first introduce a nonprojective version of it and we refine it
to produce projective graphs. Like the other parsers we have already seen, the parser
input will be a tokenized sentence, where words are tagged with their part of speech.

13.6.1 Covington’s Nonprojective Parser

The brute-force version of Covington’s algorithm examines each pair of words in
the sentence and tries to set a link between them if the grammar or any kind of guide
permits it. It can be implemented as a left-to-right pass with the following code:

Algorithm 1 The Covington algorithm
1: procedure PARSE(w1; w2; : : : ; wn)
2: for i 1; n do
3: for j i � 1; 1 do
4: if PERMISSIBLE(wi ; wj) then
5: LINK(wi ; wj)

that scans the word list and attempts to create links with the words to the left of the
current word, wi . The link operation can either create a left-arc wj wi , a right-arc
wj ! wi , or do nothing.

A widely accepted property of dependency graphs is that each word must
have a unique head. We will now use lists to represent data and enforce unique-
ness. We will store the sentence’s words in an input list: InputList. The
parser accepts one word at a time and maintains two other lists: HeadList and
WordList. WordList contains the words already read in a decreasing index
order. HeadList contains the words that have not been assigned a head yet, also
in a decreasing index order. At the beginning of the parse, both HeadList and
WordList are empty.

1. Accept a word W from the input list. Add it to WordList.
2. Search HeadList to find dependents of W starting with the most recently added.

Words found are removed from HeadList.
3. Search the elements of WordList to find at most one head for W. If no head is

found, add W to HeadList.

At the end of the parse, HeadList should contain the head of the sentence.

422 13 Dependency Parsing

At each step of the traversal of both HeadList and WordList, the parser
has to decide whether or not it sets a link between the current word and the
word in the list. We carry this out with a guide using the term we introduced in
Sect. 13.4. Classifiers in the form of decision trees, logistic regression, or support
vector machines will predict the existence or absence of a link and the relation
holding between two words (if any). To train the classifiers, we need to collect data
from a hand-annotated corpus. We extract features using a gold-standard parsing.
In the rest of this section, we will exemplify the guide with dependency rules.
Extending Covington’s parser with machine-learning techniques is left as exercises
(Exercises 13.4 and 13.5).

Let us now implement this algorithm in Prolog. We will use the dependency
rules below. They have three arguments: the head part of speech, the dependent part
of speech, and the grammatical function linking the words. We use a guide/3
predicate between the rules and the parser to make the linking decision easier to
port a classifier.

% drule(HeadPOS, DependentPOS, Function)
drule(noun, det, det).
drule(noun, adj, attribute).
drule(verb, noun, subject).
drule(verb, noun, object).

Let us now write the parsing algorithm. The input–output format will follow the
CoNLL tabular structure. The input will be a sentence in the form of a list of words,
where each word will have an index, a form, and a part of speech:

w([id=Inx, form=Word, postag=POS])

The output will be the dependency graph. We will use the same format as for the
input, and we will add a head index and a grammatical function to the words:

w([id=Inx, form=Word, postag=POS, head=HdInx,
deprel=Funct]).

The parse/2 predicate needs an auxiliary parse/4 to store the lists,
WordList and HeadList. Instead of pushing the current word in WordList,
we push the whole w/1 fact as it is being parsed. If we can find a head to it in
WordList, w/1 will be fully instantiated. Otherwise, we will leave HdInx and
Funct as variables until we find a word to be a suitable head. WorldList will
store the parse result. At the end of the process, we attach the words remaining in
HeadList to the root and we reverse WordList.

parse(InputL, Result) :-
parse(InputL, [], [], ReversedResult),
reverse(ReversedResult, Result).

% parse(+InputL, +HeadList, +WordList, -Result)
% We search dependents of W in HeadList and a head for

13.6 Covington’s Parser 423

% W in WordList
parse([w([Inx, W, POS]) | InputL], HeadL, WordL,

Result) :-
search_headlist(w([Inx, W, POS]), HeadL, NewHeadL,
WordL),
search_wordlist(w([Inx, W, POS]), WordL, NewHeadL,

NextHeadL, HeadInx, Function),
parse(InputL, NextHeadL, [w([Inx, W, POS,

head=HeadInx,deprel=Function]) | WordL], Result).

%The remaining headless words are assigned the ROOT
head parse([], HeadL, WordL, WordL) :-

assign_root(HeadL, WordL).

% assign_root(+HeadList, -WordList)
% assigns roots to the words remaining in WordList
assign_root([], _).
assign_root([w([id=Inx, form=W, postag=POS]) | Rest],

WordL) :-
member(

w([id=Inx, form=W, postag=POS, head=0,
deprel=’ROOT’]),WordL),

assign_root(Rest, WordL).

% search_headlist(+CurWord, +HeadL, -NewHeadL,
-WordL).

% Searches dependency links in HeadL, and possibly
% assigns them the current word as their head
search_headlist(w([id=Inx1, W, postag=POS]),

[w([id=Inx2, D, postag=POS_D]) | HeadL],
NewHeadL, WordL) :-
% Create left arc
drule(POS, POS_D, F),
% We instantiate the relation in WordL
member(w([id=Inx2, D, postag=POS_D, head=Inx1,

deprel=F]),WordL),
search_headlist(w([id=Inx1, W, postag=POS]), HeadL,

NewHeadL, WordL).
search_headlist(CurWord, [Word | HeadL],

[Word | NewHeadL],WordL) :-
% Do nothing
search_headlist(CurWord, HeadL, NewHeadL, WordL).

search_headlist(_, [], [], _).

424 13 Dependency Parsing

% search_wordlist(+CurWord, +WordL, +HeadL,
% -NextHeadL, -Head, -Deprel),
% Tries to find a head in WordL
% We look for the first word that can be the head
% of the current word
% Nothing has been done. Shift CurWord to HeadList
search_wordlist(CurWord, [], HeadL, [CurWord | HeadL],

_, _).
search_wordlist(w([_, _, postag=POS]),

[w([id=Inx2, _, postag=POS_H, _, _]) | _], HeadL,
HeadL,Inx2, F) :-

% Create right arc
drule(POS_H, POS, F).

% We have not found it and we go on
search_wordlist(CurWord, [_ | WordL], HeadL,

NextHeadL,H, F) :-
% Do nothing
search_wordlist(CurWord, WordL, HeadL, NextHeadL,

H, F).

This algorithm, which is nondeterministic, can successfully parse the sentences:

The waiter ran
The waiter brought a meal

However, the good parse is not the first one delivered by Prolog. Notably, the
first parse attaches a to waiter and assigns the dependency brought -> meal
the subject function (Fig. 13.4). Prolog must backtrack to find the correct solution.

?- parse([w([id=1, form=the, postag=det]),
w([id=2, form=waiter, postag=noun]),
w([id=3, form=brought, postag=verb]),
w([id=4, form=a, postag=det]),
w([id=5, form=meal, postag=noun])], R).

R = [w([id=1, form=the, postag=det, head=2,
deprel=det]),

w([id=2, form=waiter, postag=noun, head=3,
deprel=subject]),

w([id=3, form=brought, postag=verb, head=0,
deprel=’ROOT’]),

w([id=4, form=a, postag=det, head=2, deprel=det]),
w([id=5, form=meal, postag=noun, head=3,

deprel=subject])]

13.6 Covington’s Parser 425

The waiter brought a meal
1 2 3 4 5

ROOT

det subject

subject
det

Fig. 13.4 The first parse

Table 13.8 Executing Covington’s parser with The waiter brought a meal

Word Procedure Headlist Wordlist Actions

Init. Œ� Œ�

w1 Headlist
Œ� Œ�

Wordlist
Œw1� Œw1 ‹�

w2 Headlist la
Œ� Œw1 w2�

Wordlist noact
Œw2� Œw2 ‹; w1 w2�

w3 Headlist la
Œ� Œw2 w3; w1 w2�

Wordlist noact noact
Œw3� Œw3 ‹; w2 w3; w1 w2�

w4 Headlist noact
Œw3� Œw3 ‹; w2 w3; w1 w2�

Wordlist noact ra
Œw3� Œw4 w2; w3 ‹; w2 w3; w1 w2�

w5 Headlist noact
Œw3� Œw4 w2; w3 ‹; w2 w3; w1 w2�

Wordlist noact ra
Œw3� Œw4 w3; w4 w2; w3 ‹; w2 w3; w1 w2�

13.6.2 Relations Between Nivre’s and Covington’s Parsers

We can reframe Covington’s parser and describe the link operations in terms of
actions. Using this presentation, we will discover its similarities with Nivre’s parser
and we will be able to apply to it the same machine-learning techniques. When
scanning Headlist, each time we set a link, it corresponds to a left-arc action of
Nivre’s parser. When scanning WordList, we create at most one link from a word
to the current word, which corresponds to a right-arc action of Nivre’s parser. To be
compatible with the transition-based framework, we need to introduce a no-action
that corresponds to list traversal steps, either Headlist or WordList, where we
set no link to or from the current word (Table 13.8).

426 13 Dependency Parsing

13.6.3 Covington’s Projective Parser

Covington (1990) also provided a projective version of this parser. Recall the
definition of a projective graph: if there is a sequence of words wi : : : wj : : : wk in
which there is a dependency between wi and wk , in either direction, then wj does
not have a link preceding wi or following wk . To enforce projectivity, we modify the
rules:

• When searching HeadList, use only the most recent elements and do not skip
a word.

• When searching WordList for a head: first, skip all the words that are direct or
indirect dependents of the current word w. Then, look at the preceding word, its
head, its head’s head, and so on, following a chain of dependency links.

search_headlist_for_dependents(w(W, POS),
[w(D, POS_D) | HeadList], NewHeadList,
WordList) :-

drule(POS, POS_D, F),
% We instantiate the relation in WordList
member(w(D, POS_D, W, F), WordList),
search_headlist_for_dependents(w(W, POS), HeadList,

NewHeadList, WordList).
search_headlist_for_dependents(_, HL, HL, WordList).

% search_wordlist_for_a_head(+Word, +WordList, -Head,
% -Function),
% Tries to find a head in WordList

% We look for the first word that does not depend
% on the current word
search_wordlist_for_a_head(w(W, POS), WordList, H, F) :-

next_with_no_link(w(W, POS), WordList, [],
[w(H, POS_H, _, _) | NewWordList]),

drule(POS_H, POS, F).

% next_with_no_link(+W, +WordList, -InvWordList,
-Result)

% We go to the next word that has no link with the
% current word

next_with_no_link(w(W, POS), [w(H, POS_H, HH, F)
| WordList],InvWordList, Result) :-
link(w(W, POS), w(H, POS_H, HH, F), InvWordList),
next_with_no_link(w(W, POS), WordList,

[w(H, POS_H, HH, F) | InvWordList], Result).

13.7 Eisner’s Parser 427

next_with_no_link(w(W, POS), Result, _, Result).

% link(Word1, Word2, +InvWordList)
% Checks whether there is a link between Word1 and
% Word2 within InvWordList

link(w(W1, POS1), w(W2, POS2, H2, F2),
InvWordList) :-
H2 == W1.

link(w(W1, POS1), w(W2, POS2, H2, F2),
[w(W3, POS3, H3, F3) | InvWordList]) :-

W3 == H2,
link(w(W1, POS1), w(W3, POS3, H3, F3),

InvWordList).
link(w(W1, POS1), w(W2, POS2, H2, F2),

[_ | InvWordList]) :-
link(w(W1, POS1), w(W2, POS2, H2, F2),

InvWordList).

Using this new version of the parser, we get better dependencies (Table 13.9):

?- parse([the, waiter, brought, a, meal], L).

L = [w(the, determiner, waiter, determinative),
w(waiter, noun, brought, subject),
w(brought, verb, _G861, _G862),
w(a, determiner, meal, determinative),
w(meal, noun, brought, subject)]

but meal is still the subject. Backtracking assigns the right function:

L = [w(the, determiner, waiter, determinative),
w(waiter, noun, brought, subject),
w(brought, verb, _G861, _G862),
w(a, determiner, meal, determinative),
w(meal, noun, brought, object)]

We could again improve the parser by enforcing some topology constraints, such
as the object is after the verb when at the active form.

13.7 Eisner’s Parser

Independently, Sleator and Temperley (1993) and Eisner (1996) developed chart-
based dependency parsers that have an O.n3/ complexity. Eisner’s parser applies to
projective graphs and can be combined with statistical or machine-learning methods.
In CoNLL 2007 and 2008, this class of parsers delivered the highest accuracy figures
for English.

428 13 Dependency Parsing

Table 13.9 Executing Covington’s parser with projectivity constraints with The waiter brought
a meal

Word Procedure Headlist Wordlist Actions

Init. Œ� Œ�

w1 Headlist
Œ� Œ�

Wordlist
Œw1� Œw1 ‹�

w2 Headlist la
Œ� Œw1 w2�

Wordlist skip
Œw2� Œw2 ‹; w1 w2�

w3 Headlist la
Œ� Œw2 w3; w1 w2�

Wordlist skip skip
Œw3� Œw3 ‹; w2 w3; w1 w2�

w4 Headlist noact
Œw3� Œw3 ‹; w2 w3; w1 w2�

Wordlist noact
Œw4; w3� Œw4 ‹; w3 ‹; w2 w3; w1 w2�

w5 Headlist la noact
Œw3� Œw4 w5; w3 ‹; w2 w3; w1 w2�

Wordlist skip skip ra
Œw3� Œw4 w3; w4 w5; w3 ‹; w2 w3; w1 w2�

Eisner’s parser builds on an adaption of the CYK algorithm that it modifies to
lower its complexity. We first describe the initial adaptation and then how to alter it
to recreate the final parser.

13.7.1 Adapting the CYK Parser to Dependencies

Alshawi (1996) introduced a parser that resembles the CYK parser (Sect. 12.5.2)
for dependencies. This parser uses the concept of dotted subtree (Eisner 2000): a
sequence of words ws::wt corresponding to the range Œs; t � and a root wi inside this
range: s � i � t , where all the words in the range are descendants of the root. We
denote this subtree: .s; t; i /.

A dotted subtree may not be complete; that is, the projection of the head may
extend beyond the subtree in the final tree. Figure 13.5 shows an example of a dotted
subtree spanning w3::w5 with brought as the head: .3; 5; 3/. This dotted subtree is
not a real subtree as the projection of brought corresponds to the whole sentence.

As with the CYK algorithm, the parser combines dotted subtrees through a
bottom up analysis. It initializes the chart with constituents of length 0 consisting
of the individual words, and merges pairs of adjacent dotted subtrees .s1; t1; i/ and

13.7 Eisner’s Parser 429

The waiter brought a meal
1 2 3 4 5

ROOT

det subject

object

det

Fig. 13.5 Dependency graph of The waiter brought a meal

s1 t1

wi

t1 +1 t2

w j

s1 t2

w j

Fig. 13.6 attach_left operation: Merge two adjacent dotted subtrees rooted, respectively, at wi

and wj , where wj becomes the head of the resulting subtree

s1 t1

wi

t1 +1 t2

w j

s1 t2

wi

Fig. 13.7 attach_right operation: Merge two adjacent dotted subtrees rooted, respectively, at wi

and wj , where wi becomes the head of the resulting subtree

.t1 C 1; t2; j / into a larger tree using two operations: attach_left..s1; t1; i/; .t1 C
1; t2; j // and attach_right..s1; t1; i/; .t1C1; t2; j //. Their respective definitions are:

Initialization: .0; 0; 0/; .1; 1; 1/; .2; 2; 2/; : : : ; .i; i; i /; : : : ; .n; n; n/.
attach_left: The head of the right part, wj , becomes the head of the resulting tree:

.s1; t2; j / (Fig. 13.6) and
attach_right: This time the head of the left part, wi , becomes the head of the new

tree: .s1; t2; i/ (Fig. 13.7).

430 13 Dependency Parsing

Table 13.10 Chart corresponding to a sentence of length n: The chart is filled with constituents
of increasing length, where the cells are filled with dotted subtrees

Chart

Length 0 1 2 : : : i : : : n� 1 n

0 .0; 0; 0/ .1; 1; 1/ .2; 2; 2/ : : : .i; i; i / : : : .n� 1; n� 1; n� 1/ .n; n; n/

1 .0; 1; 0/ .1; 2; 1/ .2; 3; 2/ : : : .i; i C 1; i/ : : : .n� 1; n; n� 1/ �
.0; 1; 1/ .1; 2; 2/ .2; 3; 3/ : : : .i; i C 1; i C 1/ : : : .n� 1; n; n/ �

2 .0; 2; 0/ .1; 3; 1/ .2; 4; 2/ : : : .i; i C 2; i/ : : : � �
.0; 2; 1/ .1; 3; 2/ .2; 4; 3/ : : : .i; i C 2; i C 1/ : : : � �
.0; 2; 2/ .1; 3; 3/ .2; 4; 4/ : : : .i; i C 2; i C 2/ : : : � �

3 : : :

: : : : : :

n� 1 .0; n� 1; 0/ .1; n; 1/ � � � � � �
.0; n� 1; 1/ .1; n; 2/ � � � � � �
.0; n� 1; 2/ .1; n; 3/ � � � � � �
: : :

.0; n� 1; n� 1/ .1; n; n/ � � � � � �
n .0; n; 0/ � � � � � � �

Table 13.11 Chart corresponding to the dependency graph shown in Fig. 13.5. For instance, the
triple .0; 3; 0/ corresponds to the subtree ranging from the root to word brought

LengthnWord index 0 1 2 3 4 5

0 .0; 0; 0/ .1; 1; 1/ .2; 2; 2/ .3; 3; 3/ .4; 4; 4/ .5; 5; 5/

1 .1; 2; 2/ .4; 5; 5/ –
2 .1; 3; 3/ .3; 5; 3/ – –
3 .0; 3; 0/ – – –
4 – – – –
5 .0; 5; 0/ – – – – –

root the waiter brought the meal

After the initialization and similarly to CYK, the parser fills the cells of the chart
with constituents .i; j; k/ of increasing length: j � i equals to 1, then 2, 3, : : :, until
the tree covers the range Œ0; n� with the root at index 0: .0; n; 0/. Each cell is the
combination of two adjacent subtrees (Table 13.10).

Table 13.11 shows an example of the chart with the sentence The waiter brought
the meal, where the cells are filled with triples leading to the complete tree.

We have presented a conversion of the CYK algorithm that enables us to parse
dependencies. Using it, we can associate probabilities to the triples as with the CYK
parser for constituents (Sect. 12.5.3), score the subtrees, and have a unique result for
each sentence.

This version is far from optimal, however, as its time complexity is in O.n5/:
there are O.n3/ triples to fill in the chart, and each triple .i; j; k/ needs to examine
O.n2/ pairs, .i; l; k/ and .l C 1; j; m/, with varying l and m, to build it. We will
see in the next section that we can bring small changes that lower its complexity
to O.n3/.

13.7 Eisner’s Parser 431

s1 t1

wi

t1 +1 t2

w j

s1 i t1

wi

t1 +1 j t2

w j

Fig. 13.8 Splitting the two trees into two parts on the head index. This results in four spans whose
head is to the left or right of the span (light gray)

wi

i t1 t1 +1 j

w j w j

j t2 i

wi

j

w j

j

w j

t2

Fig. 13.9 attach_right creates an arc from wi to wj and a span that contains all the dependents
to the right of wi and to the left of wj (gray)

13.7.2 A More Efficient Version

Eisner’s parser is an improvement of the CYK conversion that constrains the
position of the headword in the triple .i; j; k/ to be either wi or wj . It thus eliminates
the two variables representing the head positions and reduces the parsing complexity
to O.n3/.

To put this idea into practice, we start from the trees in Figs. 13.6 and 13.7 that
we split into two parts to the left and right of their headword. Each of these parts
is called a span. Figure 13.8 shows a partition that creates four spans from the two
trees. To fit the new structure, we need to modify and complement the operations of
the previous section. We use four functions:

1. attach_right that creates a right-arc between two spans rooted at wi , respectively
wj , with its dependents to the right, respectively to the left, and results in a new
span from i to j . Figure 13.9 shows this operation.

2. complete_right that gathers the right dependents of wj (Fig. 13.10).
3. attach_left and complete_left that are the mirrors of the two preceding

functions.

432 13 Dependency Parsing

i

wi

j

w j

j

w j

t2 i

wi

t2

Fig. 13.10 complete_right
gathers the dependents to the
right of wj and creates a span
from i to t2 (gray)

13.7.3 Implementation

Representing the Spans

Eisner’s parser uses a chart, where we fill each cell with spans of increasing length.
Their representation is similar to that of the triples from the previous section: each
span is bounded by two indices, i and j , and has a head, either i or j . However, the
spans need to distinguish whether they have gathered all their dependents to the left,
respectively to the right, and thus whether they need to carry out a complete_left,
respectively complete_right operation. We need then one more parameter to mark
if a span is available for a complete operation.

Using the notation proposed by McDonald (2006), we model a span by a
quadruple .i; j; d; c/, where:

• i and j are the indices of the start and the end of the span,
• d 2 f!; g marks the head of the span, either wi or wj , and
• c 2 f0; 1g is a flag that reflects if the span is either incomplete (0) or complete

(1), meaning that it has dependents to acquire to the left, in the case of a head to
the right, or to the right, in the case of a head to the left.

As examples, Fig. 13.9 shows five spans from left to right before and after an
attach_right operation. We represent them by the following quadruples:

Before: .i; t1;!; 1/, .t1 C 1; j; ; 1/, and .j; t2;!; 1/,
After: .i; j;!; 0/ and .j; t2;!; 1/.

Parsing Algorithm

As with the CYK parser, Eisner’s parser incrementally fills the cells of the chart
with spans of increasing length, where each span results from the composition of
two subspans. Given a span of length k, this composition can be done in k � 1

different ways. To make this analysis possible, we associate a score with each span
and span construction. We will then fill the chart with the maximal scoring spans
and discard the others.

13.7 Eisner’s Parser 433

Fig. 13.11 Eisner parser (After McDonald (2006))

We denote C.i; j; d; c/ the score of span .i; j; d; c/, and we define an attachment
score s.h; d/ between two words, wh and wd , where wh is the head, and wd , the
dependent.

We initialize the chart with spans of length 0 and a score of 0, and we apply a
sequence of attach and complete operations to spans of increasing length from 1 to
n. We fill the quadruples with the optimal spans so that each span score corresponds
to the maximal sum of the scores of two spans it can be created from plus, in the
case of an attach operation, the attachment score. The score C.i; j; d; c/ of span
.i; j; d; c/ will then be the sum of all the scores of the individual links involved in its
construction. Figure 13.11 shows the complete algorithm after McDonald (2006)’s
implementation.

Let us denote W , the sequence of words w0; w1; : : : ; wn, and G its dependency
graph. The score of G is the sum of the individual scores s.i; j /, where .i; j / 2 G,
wi is the head and wj , the dependent:

s.W; G/ D
X

.i;j /2G

s.i; j /:

This final score is given once the chart is filled by the score of the span ranging
from the root w0 to the end of the sentence wn: C.0; n;!; 1/. The dependency tree
can then be extracted from the chart using a mirror chart of back pointers that store
for each span the two spans it originates from.

13.7.4 Learning Graphs with the Perceptron

As we have seen in the previous section, Eisner’s parser requires an attachment score
s.h; d/ between the words wh and wd to carry out an attach operation. We define
such a score as the dot product of a feature vector f.wh; wd / representing the link
and a weight vector weight:

434 13 Dependency Parsing

The waiter brought a meal
1 2 3 4 5

DT NN VBD DT NN

Fig. 13.12 An incorrect
dependency analysis of The
waiter brought a meal

s.h; d/ D weight � f.wh; wd /

and we learn automatically the weight vector from manually parsed corpora using
online learning algorithms such as the perceptron that we saw in Sect. 4.7. The final
score of the dependency graph G of a sentence W is the sum of all the scores:

s.W; G/ D
X

.h;d/2G

weight � f.wh; wd /

This dot product may seem somewhat abstract. Let us make it concrete with a
simple example. We have seen in Sect. 13.4 that D-rules indicate the possibility
of a link. Let us use then the part of speech of the head and the part of speech of
the dependent as elementary features. To apply the perceptron, we must represent
these two parts of speech in the form of a vector of binary digits as introduced in
Sect. 4.10. Given that there are about 50 parts of speech in the Penn Treebank, we
need to create a vector of 100 dimensions to represent a link. Each vector will have
2 bits that are set to 1; the rest being zeros.

Now let us extract the feature vectors representing the links from graph G in
Fig. 13.5, which shows the dependency tree of the sentence The waiter brought the
meal, and from G0 in Fig. 13.12 that shows a wrong analysis of the same sentence.
For each link, we build pairs consisting of the parts of speech of the head and the
dependent that we convert into binary vector. Table 13.12 shows these vectors with
parts of speech limited to the set fROOT; DT; NN; VBDg.

In real parsers, such as that of McDonald (2006), there are many more features,
including the parts of speech and lexical values of the surrounding words and
combinations of them.

The training procedure uses a corpus � D f.Wt ; Gt /gTtD1 of T sentences, where
Wt is a sentence, and Gt , its associated hand-annotated dependency graph. We
initialize the weight vector weight.0/ to 0 and we apply successive updates using the
perceptron. At iteration k, we parse a sentence Wt of the corpus using the weight
vector weight.k/ to compute the score s.Wt ; Gt /. The parser returns the graph OGt.k/.
The perceptron learns the next weight vector weight.kC1/ from differences between
Gt and OGt.k/: we compute its update by subtracting f.Wt; OGt.k// from f.Wt ; Gt /.
And we do so until the weight vector converges or we have reached a preset epoch
number. Figure 13.13 shows this algorithm modified from McDonald (2006).

13.8 Further Reading 435

Table 13.12 Feature vectors extracted from the dependency graph G shown in Fig. 13.5 and G0

in Fig. 13.12. The parts of speech are encoded as Boolean values

Head POS Dependent POS

Feature vectors ROOT DT NN VBD ROOT DT NN VBD

Graph G

f.waiter; The/ (NN, DT) 0 0 1 0 0 1 0 0
f.brought; waiter/ (VBD, NN) 0 0 0 1 0 0 1 0
f.ROOT ; brought/ (ROOT, VBD) 1 0 0 0 0 0 0 1
f.meal; the/ (NN, DT) 0 0 1 0 0 1 0 0
f.brought; meal/ (VBD, NN) 0 0 0 1 0 0 1 0
f.W; G/ DP

.h;d/2G f.wh; wd / 1 0 2 2 0 2 2 1
Graph G0

f.brought; The/ (VBD, NN) 0 0 0 1 0 1 0 0
f.The; waiter/ (DT, NN) 0 1 0 0 0 0 1 0
f.ROOT ; brought/ (ROOT, VBD) 1 0 0 0 0 0 0 1
f.brought; the/ (VBD, DT) 0 0 0 1 0 1 0 0
f.the; meal/ (DT, NN) 0 1 0 0 0 0 1 0
f.W; G0/ DP

.h;d/2G0 f.wh; wd / 1 2 0 2 0 2 2 1

Fig. 13.13 Learning the weight vector weight using the perceptron (Modified from McDonald
(2006))

13.8 Further Reading

While most research in English has been done using the constituency formalism
– and many computational linguists still use it – dependency inspires much of the
present work. Early implementations of dependency theories include Link Grammar
(Sleator and Temperley 1993) and the Functional Dependency Grammar (Järvinen
and Tapanainen 1997) that uses constraint rules and produces a dependency
structure where links are annotated with functions. Covington (1990) described an
algorithm that could parse discontinuous constituents. Constant (1991), El Guedj
(1996), and Vergne (1998) provide accounts in French; Hellwig (1980, 1986) was
among the pioneers in German.

436 13 Dependency Parsing

Some authors reformulated parsing a constraint satisfaction problem (CSP),
sometimes combining it with a chart. Constraint handling rules (CHR) is a simple,
yet powerful language to define constraints (Frühwirth 1998). Constraint handling
rules are available in some Prologs, notably SWI Prolog.

In 2006 and 2007, the Conference on Computational Natural Language Learning
(CoNLL) organized its shared task on multilingual dependency parsing (Buchholz
and Marsi 2006; Nivre et al. 2007). The conference site provides background
literature, data sets, and an evaluation scheme (http://www.cnts.ua.ac.be/conll/). As
a result, two main classes of parsing methods emerged from these shared tasks:
the first one being transition-based, as is Nivre’s parser, and the second one based
on Eisner’s parser. They still dominate the world of dependency parsing today. See
McDonald (2006) and Kübler et al. (2009) for details as well as well as for a third
technique based on maximum spanning trees.

The performance of a parser depends in a large measure on the feature set
it uses. In this chapter, we reviewed relatively simple sets. Table 11.12 shows a
baseline set for transition-based parsing that needs to be experimentally tuned for
each language to analyze. While feature sets can be created manually, Nilsson and
Nugues (2010) describe an automatic procedure to discover features for transition-
based parsers. In Eisner’s parser, we considered first-order features involving a
single arc between a head and a dependent. It is possible to extend the set to second-
order features representing two links, between a head and two adjacent dependents
or between a head, a dependent, and a dependent of the dependent, as well as higher-
order features. Eisner’s parser needs then to be extended to accommodate these
features. See Carreras (2007) for a description. Readers interested in building a high-
performance parser should refer to the original papers, from CoNLL for instance,
that describe the complete feature sets.

Finally, we trained Eisner’s parser using the perceptron. This online learning
technique can also be applied to transition-based parsing combined with beam
search; the features are then extracted from the parser states and transitions
(Johansson and Nugues 2007b). Although, this combination initially yielded results
inferior to those obtained with local classifiers, they are now on a par with the best
published performances (Zhang and Nivre 2011).

Exercises

13.1. Improve Nivre’s parser with D-rules. Use the suggestions proposed in
Sect. 13.4.1.

13.2. Add features to Nivre’s parser and evaluate their contribution. Download an
annotated corpus from the CoNLL 2006 web site and use the evaluation script to
measure the attachment score. You can use features proposed in Table 13.6.

http://www.cnts.ua.ac.be/conll/

Exercises 437

13.3. Implement a function classifier to Nivre’s parser. Download an annotated
corpus from the CoNLL 2006 web site and use the evaluation script to measure
the labelled attachment score. You can use features proposed in Table 13.6.

13.4. Rewrite Covington’s parser to parse an annotated corpus using either the
projective or nonprojective version. Download a corpus from the CoNLL 2006 web
site, for example, and extract features. You can use features proposed in Table 13.6.

13.5. Extend Covington’s parser (projective or nonprojective) with classifiers.
Train classifiers from the features you extracted in Exercise 13.4. You can use
either decision trees or support vector machines. Apply your parser on a corpus
from the CoNLL 2006 web site and use the evaluation script to measure the labeled
attachment score.

13.6. Implement Eisner’s parser.

	13 Dependency Parsing
	13.1 Introduction
	13.2 Evaluation of Dependency Parsers
	13.3 Nivre's Parser
	13.3.1 Extending the Shift–Reduce Algorithm to Parse Dependencies
	13.3.2 Parsing an Annotated Corpus
	13.3.3 Nivre's Parser in Prolog
	The Four Transitions
	The Oracle
	The Top-Level Predicate
	Running the Parser

	13.4 Guiding Nivre's Parser
	13.4.1 Parsing with Dependency Rules
	Dependency Rules
	Using D-Rules with Nivre's Parser
	D-Rules and Nivre's Parser in Prolog
	Evaluating the Parser

	13.4.2 Using Machine-Learning Techniques
	Predicting the Parser Transitions
	Feature Vectors and Parsing Performance
	Finding Grammatical Functions
	Parsing Nonprojective Links

	13.5 Finding Dependencies Using Constraints
	13.6 Covington's Parser
	13.6.1 Covington's Nonprojective Parser
	13.6.2 Relations Between Nivre's and Covington's Parsers
	13.6.3 Covington's Projective Parser

	13.7 Eisner's Parser
	13.7.1 Adapting the CYK Parser to Dependencies
	13.7.2 A More Efficient Version
	13.7.3 Implementation
	Representing the Spans
	Parsing Algorithm

	13.7.4 Learning Graphs with the Perceptron

	13.8 Further Reading
	Exercises

