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Abstract. Time-of-Flight cameras are the state of art sensors for a fast
detection of depth data in a scene. This kind of sensors can be very
useful for tracking, in particular in indoor ambient, since, using light in
near-infrared spectrum, they are less affected by abrupt change in illu-
mination. In this paper we propose a new method for the tracking of
multiple subjects based on Kalman filter. The first step of our solution is
a ToF based foreground segmentation, that retrieves all significant clus-
ters in the scene, followed by a robust tracking system able to correctly
handle occlusions and possible merging between clusters.
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1 Introduction

From their introduction in 2003 [I], Time-of-Flight (ToF) cameras are quickly
become the state of art sensors for achieving a real-time (from 20 fps of the
older models to 54 fps of the newer ones) depth measurement of a scene. ToF
cameras do not need reference points or external illumination sources, they work
emitting light in near-infrared spectrum and distances are estimated according
to the time spent by the reflected light to come back from objects to the sensor.
This kind of active sensors have trigged the interest of many researchers, in
various fields, such as 3D object reconstruction, human-computer interaction,
tracking, augmented reality or also medicine and bio-informatics.

In this paper we focus on the problem of real-time tracking of multiple sub-
jects. Our approach is based on the use of a Kalman filter. In particular we
extend the standard Kalman filter of the OpenCV library, with some automatic
methods specifically designed to associate, as well as possible, the detected clus-
ters with the respective trackers. The tracker works on the clusters retrieved by
a fast foreground segmentation that exploit the particular kind of data provided
by a ToF camera (depth data and intensity of reflected light).

A preliminary implementation of this solution was presented in [2], then the
results achievable by a more complete version was presented in [3]. In this paper
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we introduce new improvements such as a more precise initial association be-
tween clusters and trackers (that guarantees a correct tracking of both near and
far clusters) and the handle of clusters merging due to occasional imprecision
in the segmentation (e.g. subjects too close). From the computational point of
view, the current implementation is more efficient than the original one and the
new features does not influences the overall performance of the system.

The paper is organized as follow: section 2] supplies a brief overview of the
sensor; section [3] provides the state of the art of tracking method based on ToF
cameras; section (] describes the segmentation method; section [ analyzes in
details the tracking procedure; section [6] shows the experimental results; section
[ at last, draws some conclusions.

2 Time-of-Flight Camera Overview

Time-of-Flight cameras are active imaging sensors that can provide distance
measures of an ambient using laser light in near-infrared spectrum. There are two
main technologies: pulsed light and modulated light. In the first case a coherent
wavefront (similar to a ”light wall”) hits the targets and then the distances are
measured analyzing the deformation in the reflected "wall”. In the second case,
currently the most widespread technology, the camera emits a modulated light
and the depth information are gained by phase delay detection.

Respect to other depth measuring systems, such as stereo cameras or laser
scanners, ToF cameras supply some advantages: they can work in real-time,
the depth data are directly provided by the sensors without complex additional
computations; they do not need external light (the illumination is self-provided);
they can operate in any kind of scenario without external reference points or
colors contrast; the shape of the objects does not influence the measures.

On the other hand there are also some disadvantages that must be considered
for a better use of these devices. ToF cameras have still a limited resolution (e.g.
176x144 of Mesa SR4000 or 200x200 of PMD CamCube 3.0) and they are affected
by different kinds of noise: the ”flying pixels” due to areas with abrupt changes
in depth (e.g. the corners of an object); the "motion artifacts”, measurement
errors proportional to the speed of moving subjects; the noise cause by sunlight
that can significantly alter the result and limit the applicability of these sensors
to indoor use. Finally the precision of the measures strictly depends on the
reflectivity of the objects, if it is too high it can saturate the sensor, while if it
is too low the object can be not correctly detected [4].

All the experiments in this work are been made with a modulated light cam,
the Swissranger SR3000. This ToF camera is able to supply simultaneously two
images per frame: a distance map and the map of the intensity of the reflected
light. Both of them have QCIF resolution (176x144 pixels) and a color depth
of 16 bits. The 55 active leds emit in the near infrared around 850nm with a
frequency of 20Mhz, a value that guarantees a nominal range without ambiguities
of 7.5m. The depth accuracy goes from a few centimeters to millimeter in optimal
conditions. The distance accuracy depends on distance range, signal intensity
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and the background illumination. The field of view (FOV) is about 47.5 x 39.6
degrees [B]. The camera has been used at 18-20 fps in order to maintain a good
ratio between noise and real-time capability: the noise depends directly on the
frame rate.

3 State of Art

A lot of approaches have been used for obtaining a good ToF-based tracking.
In [6] the retrieved clusters are projected on the ground plane for creating a
so called ”flat-map”, then an Expectation Maximization algorithm has been
applied to that map. A method for multiple people tracking based on Shape
from Silhouettes (SfS) is proposed in [7]: it appears robust but greatly limited
by the high numbers of the cams needed (six in the proposed solution) and by
the small dimension of the room. In [8] instead a traditional Kalman filter has
been used with the camera placed to provide a top-down view of the scene. This
particular position simplifies the tracking problem, but significantly decreases
the visible area, moreover almost all the details of the detected subjects are lost.

All these methods segment the scene and retrieve the clusters by a background
subtraction algorithm. This solution, even if wide diffused, suffers of known prob-
lems such as ghosts appearing at changes in background objects or absorption
of still people . The generation of the model can also be computationally expen-
sive, especially if it needs a high resolution or a dynamic adaptation to ambient
changes (such as light variations).

An alternative approach, based only on the analysis of depth data, can be
found in [9]. The described algorithm allows the detection and the classification
of objects in the scene studying the probability density function (pdf) of depth
image and its histogram distribution. Then an appropriate distance metric, based
on the integrated square error between the pdfs, is used to recognize the clusters
through consecutive frames.

A particular category of solutions involves the combination of traditional RGB
cameras with a ToF one. In [I0] is proposed an approach that exploits two parti-
cle filter-based visual trackers, one for each stream data type (RGB and depth).
Depending from the scene the system uses the one that guarantees the better
performances (generally RGB for outdoor and depth for indoor). In [11], instead,
the fusion of color and depth data is adopted for compensating the respective
weaknesses of the two type of sensors. More specifically the segmentation and
the tracking are achieved using a well designed method based on mean shift
algorithm.

4 Segmentation

The proposed ToF-based segmentation method provides different advantages: no
need of preprocessing operation (no learning phase); no need of a priori knowl-
edge of the environment (the system is therefore robust to background changes);
the shape of objects has no influence on the results.
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The main steps are summarized in Fig. [I} firstly a thresholding based on val-
ues in the intensity map is applied to the distance map; then a region growing
algorithm, that starts from seeds planted in the peaks of the intensity, is exe-
cuted on the filtered distance map to produce separate clusters corresponding
to foreground objects.

Intensity Map Depth Map
SR3000 Input

Filtered Depth map Segmentation Result

Fig. 1. The main steps of foreground segmentation from the ToF data input to the full
body extraction

In the intensity map, foreground objects are brighter than those in background
(they received more light), so, the reflectance data can be successfully used as a
mask on the depth map to reduce the area of investigation on which the region
growing will be applied (Eq. [2]). The region growing is applied on the distance
map and not directly on the intensity one, due to the greater stability of depth
information (intensity is enough precise for a preliminary thresholding, but it
varies too much due to different reflection properties of the objects framed). The
best seeds for region growing are found applying an opportune intensity threshold
(Aseed ), estimated using the Otsu’s method, a well known thresholding algorithm
based on image histogram.

The similarity measure S between a cluster pixel  and a neighboring pixel y
is defined as follow:

S(@,y) = la — Dy (1)
where D, is the distance value of pixel y and i, is a local parameter related to
the mean distance value around = (Eq.[B]). The lower S is, the more similar pixels
are. When a seed is planted, pu, is initialized to D,. Considering a 4-connected
neighborhood, a pixel z belonging to a cluster C absorbs a neighbor y according
to the following conditions:

{zeC, S(z,y) <0, I, >\ D, <3} — {yeC} (2)

A is the intensity threshold, proportional to Ageeq, dynamically calculated for
each frame (Otsu’s threshold Asecq proves to be very effective to find the peak
values of the intensity image, but it has turned out to be too strict for the
thresholding required in this phase); 6 is a constant parameter, experimentally
estimated, related to clusters separation; § is an optional parameter used for
excluding a priori all points beyond a fixed distance. It quickly reduces the
search area and can be very useful in those applications in which the maximum
operating distance is known a priori or if the shot is made too close to a wall.
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When a neighbor y of seed x is absorbed, the average distance value p, is
computed in an incremental manner as follows:

_ Mz kot D, 3)
a+1

where « is a learning factor of the local mean of D. If pixel y has exactly «

neighbors in the cluster, and if the mean of D in this neighbor is exactly g,

then 1, becomes the mean of D when y is added to the cluster.

Every region grows excluding the just analyzed pixels from successive steps.
The process is iterated for all seeds in descending intensity order. Regions too
small are discarded for removing the possible false positive areas over the thresh-
old (for example little surfaces with high reflectivity).

The performance of the method, varying its parameters, has been analyzed
n [12]: all the tests show a correctness (the ratio between true positive and the
sum of true positive and false positive) between 94% and 97% and completeness
(the ratio between true positive and the sum of true positive and false negative)
between 92% and 96%.

Hy

5 Tracking

The multi-subjects tracking method presented in this work is based on the use
of Kalman filter. As mentioned in section [3 this solution for ToF based tracking
was first studied, with good results, by [§]. Respect to that paper the proposed
implementation adopts a more general approach, the camera has not been placed
to provide a top-down view, but a frontal view. The purpose of this choice is to
obtain a more versatile solution, with a major visible area combined with a better
angle of view. Our tracking method can also correctly handle the occlusions and
the merging between clusters.

5.1 Kalman Tracker

A Kalman filter is characterized by a six dimensions state, (z,y, 2, Uz, Uy, V)
which refers to the position of the assigned cluster: (z,y, z) represent the cen-
troid, while (vg, vy, v.) is the velocity vector. All these parameters are expressed
in image coordinates, since the SR3000 supplies data already organized in 3D
Cartesian coordinates. When the tracking starts, at each detected cluster is as-
signed a new Kalman tracker, that it is initialized with the current position
of the centroid of the real cluster. At time ¢, each Kalman predicts the most
probable position of its correspondent cluster at the next frame. So, at time
t+1, the predicted coordinates of each Kalman will be compared with the real
positions of the centroids of each clusters retrieved, in order to find again the
previous objects. The association between measured clusters and Kalman track-
ers is evaluated by minimum square euclidean distance between their centroids.
In particular each Kalman tracker connects itself with the nearest object that
is not yet been assigned to another closer Kalman (Eq. ). The Kalman and
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the cluster associated in this way are excluded by the respective set of possible
candidates; the system iterates until all the visible clusters are connected with a
Kalman. Since sometimes the ToF noises (especially motion artifacts) can gener-
ate false small clusters that last less than a second, a Kalman tracker is assigned
to a new cluster only if it is in scene at least from 5-7 frames.

According to Kalman filter behavior, after the association, the prediction is
corrected with the real measurement in order to refine the state estimation.

For reducing to minimum the errors each Kalman tracker searches correspon-
dences only in a limited spherical area. The set P. of all the cluster that are
enough near at least to one Kalman tracker is defined as follow:

{\/de(c, k) < a} —{ce P} (4)

where d.(c, k) is the euclidean distance between the coordinates of retrieved
cluster ¢ and of Kalman tracker k; « is an association threshold experimentally
defined considering the limited field of view and the limited resolution of the
ToF camera.

The assignment procedure can be summarized by the following equation:

(\/de(c, k) = min [\/de(x,y)} Vo € P.,Vy € K) — (c ass. to k) (5)

where K is the set of all active Kalman trackers, and (c ass. to k) indicates that
cluster ¢ has been recognized as the cluster assigned to Kalman k at previous
frame.

After all these steps, if one or more retrieved clusters are not associated to
any Kalman, they are considered as new objects entered in scene, so an equiva-
lent number of Kalman trackers are initialized. Otherwise, if one or more active
Kalman trackers are not associated, probably there is an occlusion. In this case
the Kalman maintains all the precedent data and tries to estimate the most
probable path of the disappeared cluster using its last detected movements; the
research area is also doubled in order to compensate estimation errors. If the
cluster reappears shortly (within 30-40 frames) in a position closed to the pre-
dicted one it is immediately recognized and reassigned to its precedent tracker.
On the contrary, if the cluster does not reappear in a fixed time, it is considered
out of scene, so its Kalman is reset and can be reassigned to a new subject.

The described behaviour of a Kalman tracker can be defined by three possible
states: 0, not assigned; 1, assigned to a visible cluster; 2, assigned to a not visible
cluster probably occluded. The possible changes between these states are showed
in Fig. 2l with a 2D example: the crosses are the retrieved clusters, the arrows
are their directions, the points are the Kalman trackers and the circles are their
search areas. Figure presents a typical situation with two moving clusters
assigned to two Kalman trackers. When one cluster is occluded by the other
(Fig. , its correspondent Kalman goes in state 2 (note the research area
increased). From this situation there are two possible exits: the cluster reappears
near to the predicted position, so it is associated again to its precedent Kalman
that returns in state 1 (Fig. ; the cluster does not reappear, so the Kalman
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' '
x
(a) (b) (c) ()

Fig. 2. 2D representation of Kalman trackers behaviour: (a) standard situation, two
clusters in movement (the crosses) assigned to two Kalmans (the points), no occlusions;
(b) one cluster occludes the other; (c) the occluded cluster reappears and it is assigned
again to its precedent Kalman tracker; (d) the occluded cluster does not come back, a
new cluster enters in scene and it is assigned to a new Kalman tracker

comes back to state 0 (Fig. . At the same time, if a cluster out of all the
research areas comes in the scene, it will be assigned to a new Kalman tracker
(Fig. . Note as in Fig. (Fig. the green tracker is associated to the green
cross even if the blue one is nearest; this happens according with Eq. [l because
the blue tracker is closer to blue cluster, so the green tracker associates itself
with the second closer object inside its search area.

5.2 Feedback for Smart Seeding

The Kalman predictions can be actively used for increasing the precision of
the seeding and so correcting cluster detection mistakes. Considering a case in
which there are two subjects. If one of them gets too close to the sensor (Fig.
[B left) its intensity values grow too much so all the seeds will be concentrated
on it. As a consequence the faraway cluster is excluded from region growing and
disappeared in the final results (Fig. Bl top right), even if it has been correctly
included, after thresholding, in the filtered range image (Fig. Bl middle).

This issue can be overcome using the predictions of Kalman trackers as addi-
tional input for the seeding phase [3]. At time ¢ new seeds are planted in pixels
around to all centroids coordinates predicted at time ¢-1. This smart seeding
allows the concurrent detection and tracking of middleground and foreground
objects (Fig. Bl bottom right).

However such solution does not work well if a new subject enters in scene
when the first one is close to the camera. In this case the new subject is initially
undetected because he has not an assigned Kalman tracker. In this situation
we plant seeds also in distance peaks of the filtered range image. This approach
is not so precise as Kalman seeding, because there is not a direct correlation
between distance and presence of a subject, but it is fast and simple and it can
correctly handle such kind of issue. Moreover adding the distance seeding is not
computationally expensive, so it can be successfully combined with the Kalman
seeding for retrieving new entering clusters.
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Fig. 3. Segmentation without and with Kalman seeding

5.3 Control for Clusters Merging

A final improvement involves the incorrect clusters merging. The region growing
is able to correctly divide near clusters if their Z coordinates are enough different
(Fig. @ left). However, if two clusters have distance values too much similar, they
will be wrongly fused in a single cluster (Fig. Hl center). This is not a common
situation and, even when occurs, it is usually of short duration (also a little
movement can vary enough the Z) — so, most of the times, it can be correctly
handled as a traditional occlusion. For those cases in which the fusion takes too
much time, and can confuse the tracker, a simple control can be adopted.

Fig. 4. Cluster merging correction: (left) two correctly separated clusters; (center)
wrong merging of two clusters in one; (right) clusters subdivision after corretion

At time ¢, after the segmentation, the system saves the current positions, the
size and the number of the current clusters. Different axes of vertical symmetry
are traced between each near clusters. At time ¢+1, if there is a reduction in the
number of clusters and there is a cluster with a size consistent with the sum of
two or more previous clusters, a merging may have occurred (Fig. E3). In that
case if there is one axis that passes through this cluster, that axis is chosen as
lines of separation for splitting the cluster in two parts (Fig. @l right). When we
track people, another practical index of a clusters merging is the presence of a
cluster with two heads (that can be recognized with a standard face detection
system). The obtained subdivision is only an approximation not much precise,
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in particular for the shape of the split clusters; however the positions of the
centroids are still quite accurate, so they can be used for maintaining a correct
tracking. This correction should be used mainly when the moving area is very
reduced (i.e. the clusters are very close) and when it is crucial not to confuse the
subjects tracked even for a moment.

6 Experimental Results

A series of evaluation tests have been made to prove that the tracking system
is able to manage the concurrent movements of multiple subjects and is also
robust to the occlusions. The only possible sources of errors are moving objects
with abrupt changes of direction or new clusters that appear closed to a just
active Kalman. Figure[Blshows some frames of an example sequence. The colored
spheres on the top of the three subjects are the markers of Kalman trackers, note
how the correspondence between clusters and trackers is always maintained.

Fig. 5. Tracking sequence of three moving subjects with multiple occlusions

The test starts with three people placed at different distances. Then the first
one crosses the stage until exiting from the framed area. Clusters temporarily
occluded (Fig. Bl second image) correctly maintain their "labels” when they are
again visible (Fig. Bl third image). A similar event happens when the second
subject occludes the third one (Fig. Bl fourth and fifth images); in this case,
also, the first subject re-enters in scene in a position closed to the exit one and
after a short time, so it is correctly recognized.

Even if there is not a theoretical limit to the number of clusters that can
be followed at the same time, the limited resolution of the SR3000 reduces the
useful number for a correct working to a maximum of 3-4 objects. When the
number is bigger, the risk to fill all the field of view of the camera with clusters
all closed to each other, with a consequent increase of possible sources of errors,
is very high.

7 Conclusions

This paper presents a new robust approach to the multi-subjects tracking, based
on Kalman filter, that does not need any a-priori information about ambient or
clusters. Due to the use of a ToF camera our system can work in any indoor
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scenario, in particular without controlled illumination sources. The algorithm
allows the concurrent tracking of moving subject, correctly handling occlusions
or accidentally clusters merging. A flexible seeding system that uses Kalman,
depth and intensity data guarantees a fast detection of people placed at difference
distance from the camera. Now we are studying how to improve the description
of the clusters in order to recognize reentering objects after a longer time than
the actual few seconds.

References

10.

11.

12.

Oggier, T., Lehmann, M., Kaufmann, R., Schweizer, M., Richter, M., Metzler,
P., Lang, G., Lustenberger, F., Blanc, N.: An all-solid-state optical range camera
for 3D real-time imaging with sub-centimeter depth resolution (SwissRanger). In:
Proceeding of the SPIE, vol. 5249, pp. 634-645 (2003)

Bianchi, L., Gatti, R., Lombardi, L., Lombardi, P.: Tracking without Background
Model for Time-of-Flight Cameras. In: Wada, T., Huang, F., Lin, S. (eds.) PSIVT
2009. LNCS, vol. 5414, pp. 726-739. Springer, Heidelberg (2009)

Dondi, P., Lombardi, L.: Fast Real-Time Segmentation and Tracking of Multiple
Subjects by Time-of-Flight Camera. In: 6th International Conference on Computer
Vision Theory and Applications (VISAPP 2011), pp. 582-587 (2011)

Kolb, A., Barth, E., Koch, R., Larsen, R.: Time-of-Flight Cameras in Computer
Graphics. Journal of Computer Graphics Forum 29, 141-159 (2010)

CSEM: SwissRanger SR-3000 Manual, Mesa Imaging (2006)

Hansen, D.W., Hansen, M.S., Kirschmeyer, M., Larsen, R., Silvestre, D.: Cluster
tracking with Time-of-Flight cameras. In: Proceedings of Computer Vision and
Pattern Recognition Workshops (CVPRW 2008), pp. 1-6. IEEE Computer Society
(2008)

Guomundsson, S.A., Larsen, R., Aanaes, H., Pardas, M., Casas, J.R.: TOF imaging
in Smart room environments towards improved people tracking. In: Proceedings
of Computer Vision and Pattern Recognition Workshops (CVPRW 2008), IEEE
Computer Society (2008)

. Bevilacqua, A., Di Stefano, L., Azzari, P.: People Tracking Using a Time-of-Flight

Depth Sensor. In: Proceedings of the AVSS 2006, Video and Signal Based Surveil-
lance, p. 89. IEEE Computer Society (2006)

. Parvizi, E., Jonathan Wu, Q.M.: Multiple Object Tracking Based on Adaptive

Depth Segmentation. In: Proceedings of Canadian Conference of Computer and
Robot Vision, pp. 273-277. IEEE Computer Society (2008)

Sabeti, L., Parvizi, E., Jonathan Wu, Q.M.: Visual Tracking Using Color Cameras
and Time-of-Flight Range Imaging Sensors. Journal of Multimedia 3(2), 28-36
(2008)

Bleiweiss, A., Werman, M.: Fusing Time-of-Flight Depth and Color for Real-Time
Segmentation and Tracking. In: Kolb, A., Koch, R. (eds.) Dyn3D 2009. LNCS,
vol. 5742, pp. 58-69. Springer, Heidelberg (2009)

Bianchi, L., Dondi, P., Gatti, R., Lombardi, L., Lombardi, P.: Evaluation of a fore-
ground segmentation algorithm for 3D camera sensors. In: Foggia, P., Sansone, C.,
Vento, M. (eds.) ICIAP 2009. LNCS, vol. 5716, pp. 797-806. Springer, Heidelberg
(2009)



	Multisubjects Tracking by Time-of-Flight Camera

	1 Introduction
	2 Time-of-Flight Camera Overview
	3 State of Art
	4 Segmentation
	5 Tracking
	5.1 Kalman Tracker
	5.2 Feedback for Smart Seeding
	5.3 Control for Clusters Merging

	6 Experimental Results
	7 Conclusions
	References




