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Abstract. Nonnegative matrix factorization (NMF) aims to decompose
a given data matrix X into the product of two lower-rank nonnegative
factor matrices UV T . Graph regularized NMF (GNMF) is a recently
proposed NMF method that preserves the geometric structure of X dur-
ing such decomposition. Although GNMF has been widely used in com-
puter vision and data mining, its multiplicative update rule (MUR) based
solver suffers from both slow convergence and non-stationarity problems.
In this paper, we propose a new efficient GNMF solver called rank-one
residue approximation (RRA). Different from MUR, which updates both
factor matrices (U and V ) as a whole in each iteration round, RRA up-
dates each of their columns by approximating the residue matrix by their
outer product. Since each column of both factor matrices is updated op-
timally in an analytic formulation, RRA is theoretical and empirically
proven to converge rapidly to a stationary point. Moreover, since RRA
needs neither extra computational cost nor parametric tuning, it enjoys
a similar simplicity to MUR but performs much faster. Experimental re-
sults on real-world datasets show that RRA is much more efficient than
MUR for GNMF. To confirm the stationarity of the solution obtained by
RRA, we conduct clustering experiments on real-world image datasets
by comparing with the representative solvers such as MUR and NeNMF
for GNMF. The experimental results confirm the effectiveness of RRA.

Keywords: Nonnegative matrix factorization, Manifold regularization,
Rank-one residue iteration, Block coordinate descent.

1 Introduction

Given n data points arranged in a nonnegative matrix X ∈ R
m×n
+ and m stands

for the dimension of the data, nonnegative matrix factorization (NMF) decom-
poses X into the product of two lower-rank nonnegative factor matrices, that is,
UV T , where U ∈ R

m×r
+ and V ∈ R

n×r
+ signify the basis of the low-dimensional

space and the coefficient, respectively. Although NMF performs well in several
tasks, it completely ignores the property where many datasets, for example,
human faces or hand-written digits, reside in a manifold that lies in a low-
dimensional space. Recently, Cai et al. [3] proposed graph regularized NMF
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(GNMF) to address this problem. GNMF assumes that the neighborhoods of
one data point in high-dimensional space should be as close as possible to the
images of that point in low-dimensional space. Since GNMF preserves the geo-
metric structure of the data set, any label information can be propagated along
the surface of the manifold to its neighbourhoods. Such an advantage greatly
enhances the clustering performance of NMF and makes GNMF a powerful tool
in data mining [2][18].

Recently, many GNMF variants have been proposed for various applications.
Zhang et al. [18] proposed a topology preserving NMF (TPNMF) for face recog-
nition. TPNMF considers the manifold structure in face datasets and preserves
the local topology while face images are transformed to a subspace. For the
same purpose, Gu et al. [6] proposed neighborhood preserving NMF (NPNMF).
NPNMF represents each data point by a linear combination of its neighbours
in high-dimensional space and keeps such relationships in low-dimensional space
with the same combination coefficient. Yang et al. [17] developed non-negative
graph embedding (NGE) to integrate both intrinsic graph and penalty graph
in NMF in the spirit of marginal fisher analysis [16]. Guan et al. [7] proposed
a manifold regularized discriminative NMF (MD-NMF) for classification tasks.
MD-NMF preserves both local geometry and label information of data points
simultaneously by expecting data points in the same class close to be each other
and data points in different classes far from each other. Shen and Si [13] pro-
posed an NMF on multiple manifolds method (MM-NMF) to model the intrinsic
geometrical structure of data on multiple manifolds. MM-NMF assumes the data
points are drawn from multiple manifolds, if one data point can be reconstructed
by several neighbourhoods on the same manifold in high-dimensional space, it
can also be reconstructed in a similar way in low-dimensional space.

Although GNMF and its variants perform well in many fields, the multi-
plicative update rules (MUR) based algorithm suffers two drawbacks: 1) MUR
converges slowly because it is intrinsically a first-order gradient descent method,
and 2) MUR does not guarantee convergence to any stationary point [10]. These
two deficiencies seriously prohibit GNMF from practical applications. To rem-
edy these problems, Guan et al. [8] has recently proposed a NeNMF method for
optimizing GNMF. NeNMF applies Nesterovs’s method to alternatively update
each factor matrix. Since Nesterovs’s method updates each factor matrix in a
second-order convergence rate, it converges rapidly for optimizing GNMF. How-
ever, NeNMF needs a stop condition to check when to stop Nesterovs’s method,
and it is non-trivial to determine such tolerance on many datasets.

In this paper, we propose an efficient rank-one residue approximation (RRA)
method for GNMF and its variants. RRA decomposes the reconstruction UV T

into a summation of r rank-one matrices, i.e., X ≈ ∑r
i=1 U·iV T

·i . In contrast
to MUR which recursively updates the whole factor matrix, RRA recursively
updates each column of each factor matrix with the remaining variables fixed,
that is, UkV

T
k ≈ X − ∑r

l �=k UlV
T
l for each 1 ≤ k ≤ r. It is obvious that each

column of U can be updated in an analytic formulation based on non-negative
least squares, but it is difficult to update columns of V due to the incorporated
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manifold regularization term. In this paper, we show that each column of V
can also be updated in an analytic formulation. Since the objective function
is continuously differentiable on a Cartesian product of 2r closed convex sets,
RRA is proved to converge to a stationary point. However, an inverse of the
Hessian matrix is needed in updating each column of V and such matrix inverse
operator costs too much computational time. To overcome such deficiency, we
introduce the Sherman-Morrison-Woodbury (SMW) formula to approximate the
inverse of Hessian matrix. Since the approximation can be efficiently calculated
in advance, the SMW-based formula greatly reduces the time cost of RRA. Ex-
perimental results on real-world datasets show the efficiency of RRA compared
with representative GNMF solvers. To evaluate the effectiveness of RRA for
GNMF, we conduct clustering experiments on two popular image datasets in-
cluding COIL-20 [12] and CMU PIE [14], the experimental results show that
RRA is effective.

The rest of the paper is organized as follows. Section 2 briefly reviews the
graph regularized NMF (GNMF) method and its state-of-the-art solvers. Section
3 presents the RRA method for GNMF. Section 4 evaluate the efficiency and
effectiveness and gives the experimental results, while Section 5 summaries this
paper.

2 Related Works

Nonnegative matrix factorization (NMF) is a popular dimension reduction
method which has been widely used in pattern recognition and data mining.
Given a dataset X = [x1, x2, . . . , xn] ∈ R

m×n
+ , where each column of X presents

an data point, NMF aims to find two lower-rank nonnegative matrices U ∈ R
m×r
+

and V ∈ R
n×r
+ , where r ≤ min{m,n} is the reduced dimensionality, such that

their product UV T approximates the original matrix X :

X = UV T + E (1)

where E denotes the residual error. Assuming the entries in E to be I.I.D.
Gaussian distributed, we get the objective function of NMF:

min
U≥0,V ≥0

1

2
‖X − UV T ‖2F (2)

where ‖·‖F signifies the Frobenius norm. The smaller the cost function, the
better the approximation of UV T .

Since NMF does not consider the intrinsic geometrical structure of dataset,
it does not always perform well in some real-world datasets, for example, face
images and hand-written digits. To remedy this problem, Cai et al. [3] proposed
graph regularized NMF (GNMF), which considers the geometrical structure of
the dataset in NMF. The basic assumption is that data points reside on the
surface of a manifold that lies in a low-dimensional space, that is, if two data
points are close enough in high-dimensional space they are still close in low-
dimensional space. To this end, GNMF constructs an adjacent graph G on a
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scatter of data points to represent the local geometric structure. In graph G,
each node associates an data point and an edge is established between two nodes
once one node belongs to the k nearest neighbourhoods of another. Based on G,
we can build an adjacent matrix W as follows:

Wij =

{
1, xj ∈ Nk(xi) | xi ∈ Nk(xj)
0, otherwise

(3)

where Nk(xi) denotes the k nearest neighbourhoods of xi. We are now ready
to preserve the geometrical structure of X in the low-dimensional space, the
objective is to minimize

n∑

i=1

n∑

j=1

‖vi − vj‖22Wij = tr(V TLV ) (4)

where L = D−W is the Laplacian matrix of G, whereD is a diagonal matrix and
Djj =

∑
l Wjl , and tr(·) signifies the trace operator over a symmetric matrix.

Combing (2) and (4) together, we arrive at the objective of GNMF:

min
U≥0,V≥0

f(U, V ) =
1

2
‖X − UV T ‖2F +

β

2
tr(V TLV ) (5)

where β > 0 is a trade-off parameter over the manifold regularization term.
Although f(U, V ) is jointly non-convex w.r.t. both U and V , it is convex

w.r.t. either U or V . Therefore, we can apply block coordinate descent method
[1] to solve (5). Cai et al. [3] proposed a multiplicative update rule (MUR) to
recursively update matrices U and V , respectively. At the t− th iteration round,
Ut+1 and Vt+1 are updated as follows:

Ut+1 = Ut ◦ XVt

UtV T
t Vt

(6)

and

Vt+1 = Vt ◦ XTUt+1 + βWVt

VtUT
t+1Ut+1 + βDVt

(7)

where ◦ signifies the element-wise multiplication.
Although MUR is proved to reduce the objective function f(U, V ), it converges

slowly in terms of number of iteration because it is intrinsically a first-order gra-
dient descent method. In addition, MUR suffers from non-stationarity problems
like NMF [10].

Recently, to remedy the problem of MUR, Guan et al. [8] proposed a NeNMF
algorithm to update both factor matrices by solving the following two sub-
problems

min
U≥0

1

2
‖X − UV T ‖2F (8)

and

min
V≥0

1

2
‖X − UV T ‖2F (9)
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Since NeNMF solves both (8) and (9) with Nesterovs’s method [8], it converges
rapidly because Nesterovs’s method is intrinsically a second-order gradient de-
scent method. However, NeNMF needs a tolerance to check the stopping of the
Nesterovs’s method. If the tolerance is set too small, NeNMF costs too much
extra iterations for solving (8) and (9). If the tolerance is set too large, NeNMF
gets a low-quality solution for either (8) or (9). Therefore, it is not easy to use
NeNMF in practical applications because it is non-trivial to determine a suitable
tolerance on many datasets.

3 Rank-one Residue Approximation for GNMF

In this section, we proposed an efficient rank-one residue approximation (RRA)
algorithm to overcome the deficiencies of both MUR and NeNMF by recursively
updating columns of U and V with an analytic formulation.

The main idea is inspired by the well-known rank-one residue iteration (RRI,
[9]) method and hierarchical alternating least squares (HALS, [5]) method for
NMF. In contrast to MUR and NeNMF which alternately updates the whole U
and V , RRA recursively updates columns of them with the remaining variables
fixed. For the k − th column of U and V , the sub-problems are

min
U·k≥0

1

2
‖Rk − U·kV T

·k ‖2F (10)

and

min
V·k≥0

1

2
‖Rk − U·kV T

·k ‖2F +
β

2
V T
·kLV·k (11)

where Rk denotes the residue of X after eliminating the k− th column of U and
V , i.e., Rk = X −∑

l �=k U·lV T
·l . The formula (11) is derived from the following

equation: tr(V TLV ) =
∑r

k=1 V
T
·kLV·k.

The problem (10) should be solved in two cases, that is, V·k = 0 and V·k �= 0.
If V·k = 0, eq. (10) has an infinite number of solutions. Therefore, the k − th
column of both U and V should be taken off in the remaining computation. If
V·k �= 0, according to [3], the sub-problem (10) has a closed-form solution

U·k =

∏
+(RkV·k)
‖V·k‖22

(12)

where
∏

+(x) = max (0, x) is an element-wise projection that shrinks negative
entries of x to zero. Similar to (10), the problem (11) should be considered in
two cases, that is, U·k = 0 and U·k �= 0. If U·k = 0, the k− th column of both U
and V does not take part in the remaining computation and should be taken off.
If U·k �= 0, below we show how to solve (11) in an analytic formulation though
it is not as direct as (12).

We solved the constrained optimization (11) by using the Lagrangian multi-
plier method [1]. The Lagrangian function of (11) is

L =
1

2
‖Rk − U·kV T

·k ‖2F +
β

2
V T
·kLV·k − 〈V·k, λ〉 (13)
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where λ is the Lagrangian multiplier for the constraint V·k ≥ 0. Based on the
K.K.T. conditions, the solution of (11) satisfies

⎧
⎨

⎩

V·k ≥ 0, λ ≥ 0,
∂L
∂V·k

= −RT
k U·k + (‖U·k‖22I + βL)V·k − λ = 0

λ ◦ V·k = 0

(14)

where I ∈ R
n×n is an identity matrix. With simple algebra, based on (14), we

update columns of V as follows:

V·k =
∏

+

((‖U·k‖22I + βL)−1RT
k U·k) (15)

by updating columns of U and V alternatively with (12) and (15), respectively,
until convergence, RRA solves GNMF. The following Proposition 1 shows that
alternating (12) and (15) reaches a stationary point. The proof is similar to [9],
we only include it here for completeness.

Proposition 1. Every limited point generated by alternating (12) and (15) is a
stationary point.

Proof. From (10) and (11), we know that the feasible sets of U·k and V·k are
ΩU

k ⊂ R
m
+ and ΩV

k ⊂ R
n
+. According to [11], since X is bounded, we can set an

upper bound for ΩU
k andΩV

k and thus can consider them as closed convex sets.
Therefore, the GNMF problem can be written as a bound-constrained opti-

mization problem

min
[U,V ]∈Ω

1

2
‖X −

r∑

k=1

U·kV T
·k ‖2F +

β

2

r∑

k=1

V T
·kLV·k (16)

where Ω =
∏r

k=1 Ω
U
k ×∏r

k=1 Ω
V
k is a Cartesian product of closed convex sets.

Since the objective function of (16) is continuously differentiable over Ω and
RRA updates the k − th column of Uand V with the optimal solutions of (12)
and (15), according to Proposition 2.7.1 in [1], every limit point generated by
alternating (12) and (15) is a stationary point.

For completeness, we must consider cases when either U·k or V·k is zero. In
these cases, eq. (12) and (15) do not give unique solutions, and Proposition
2.7.1 in [1] cannot be applied. As mentioned above, such columns should be
taken off without changing the value of the objective function of (16). Therefore,
these columns do not destroy the theoretic analysis. It completes the proof.

Since L is a positive semi-definite matrix, the matrix inverse operator (‖U·k‖22I
+ βL)−1 in (15) is well-defined if U·k �= 0. However, the matrix inverse operator
is inefficient because its time cost is O(n3). Fortunately, the matrix ‖U·k‖22I+βL
has a nice property, that is, it is composed of a symmetric positive semi-definite
matrix and a diagonal matrix. This property motivates us to apply the well-
known Sherman-Morrison-Woodbury (SMW, [15]) formula to approximate the
matrix inverse operator efficiently. That is why our method is called rank-one
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Algorithm 1. Rank-one Residue Approximation for GNMF

Input: X ∈ R
m×n
+ , L ∈ R

n×n, 1 ≤ r ≤ min(m,n), β
Output: U ∈ R

m×r
+ , V ∈ R

n×r
+

1: Initialize: U1 ∈ Rm×r
+ , V 1 ∈ Rn×r

+ , t = 1

2: Calculate: L = ΘΣΘT ≈ Θ̃Σ̃Θ̃T , R1 = X − U1V 1T

3: repeat
4: for k = 1 . . . r do
5: Calculate: Rt

k = Rt + U t
·kV

t
·k

T

6: Update: U t+1
·k =

∏
+(R

t
kV

t
·k))/‖V t

·k‖22)
7: Calculate: At

k ≈ (‖U t+1
·k ‖22I + βL)−1

8: Update: V t+1
·k =

∏
+(A

t
kR

t
k
T
U t+1

·k )

9: Update: Rt = Rt
k − U t+1

·k V t+1
·k

T

10: end for
11: Update: Rt+1 = Rt

12: Update: t← t+ 1
13: until The Stopping Condition (18) is Satisfied.
14: U = U t, V = V t

residue approximation (RRA). In particular, we can approximate the matrix
inverse in (15) as

(‖U·k‖22I + βL)−1 = β−1(
‖U·k‖22

β
I +ΘΣΘT )

−1

≈ β−1(
‖U·k‖22

β
I + Θ̃Σ̃Θ̃T )−1

= (
1

‖U·k‖22)
I − β

‖U·k‖42)
Θ̃(Σ̃−1 +

β

‖U·k‖22
)−1Θ̃T ) (17)

where L = ΘΣΘT is a SVD of L, and Θ̃Σ̃Θ̃T is its approximation by taking the
first p most important components. The value p is usually determined by keeping
95% of the energy, i.e.,

∑p
i=1 σ

2
i /

∑n
i=1 σ

2
i ≤ 95%, where σ2

i is the i− th largest
singular value. The following section will discuss how to choose the percentage of
energy kept. The main time cost of (17) is spent on the calculation of the second
term, whose time complexity is O(n2p) because the inverse operator is performed
over a diagonal matrix. Since p � n, the SMW formula greatly reduces the time
cost of (16) from O(n3 +mn) to O(n2p+mn).

By recursively updating columns of U and V with (12) and (15), respectively,
we can solve GNMF efficiently without tuning extra parameters. The total pro-
cedure is summarized in Algorithm 1, where the stopping condition is given as
follows:

|f(U t, V t)− f(U t+1, V t+1)| ≤ ε|f(U1, V 1)− f(U2, V 2)| (18)

where ε is the tolerance, for example, ε = 10−3.
The proposed RRA algorithm avoids parameter tuning thus it is more flexible

and convenient in practical applications. In Algorithm 1, since the SVD of L
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can be calculated beforehand and the residue Rt
k can be updated recursively as

lines 5 and 9 in O(mn) time, the time complexity of RRA is mainly spent on
line 7 because the matrix-vector multiplication in lines 6 and 8 cost O(mn) time.
In summary, the time complexity of one iteration round of RRA is O(mnr +
prn2). According to [8], the time complexity of one iteration round of NeNMF is
O(mnr+mr2 + nr2) +K ×O(mr2 + nr2), where K is the number of iterations
performed by Nesterovs’s method. An unsuitable tolerance leads to a rather large
K for NeNMF and pulls down its efficiency. RRA overcomes such deficiency and
performs more efficiently than NeNMF without any parameter tuning. Although
the time complexity of one iteration round of MUR is O(mnr + rn2) [3], RRA
costs less time in total than MUR because it converges in far less iteration
rounds.

4 Experiments

In this section, we evaluate the efficiency of our RRA method by comparing
it with state-of-the-art GNMF solvers including MUR and NeNMF in terms of
CPU seconds. In addition, we evaluate the clustering performance of the RRA
based GNMF on popular image datasets, such as, COIL-20 [12] and CMU PIE
[14] to confirm its effectiveness.

4.1 Preliminaries

We followed [3] to evaluate RRA on two popular image datasets including COIL-
20 [12] and CMU PIE [14]. The COIL-201 image library contains images of 20
objects viewed from different angles. Totally 72 images were taken for each object
and each image was cropped to 32×32 pixels and rescaled to an 1024-dimensional
long vector. The CMU PIE2 face image database contains face images of 68
individuals. There are totally 42 facial images for each individual taken under
different lighting and illumination conditions. Similarly, each image was cropped
to 32 × 32 pixels and rescaled to a 1024-dimensional long vector. In summary,
the COIL-20 is composed of a 1024× 1440 matrix and CMU PIE is composed
of a 1024× 2856 matrix.

4.2 Efficiency Evaluation

We evaluated the efficiency of RRA by comparing its CPU seconds with those
spent by both MUR and NeNMF on whole COIL-20 and CMU PIE datasets. For
GNMF, we set the number of neighborhoods to k = 5, the trade-off parameter
β = 1, and r = 10, 50, 100, 200 to study the scalability of RRA. To keep the
fairness of comparison, all GNMF solvers start from an identical point and stop
when they reach an identical objective value. Then the CPU seconds it costs are
compared for the purpose of evaluation.

1 http://www1.cs.columbia.edu/CAVE/software/softlib/coil-20.php
2 http://www.ri.cmu.edu/projects/project_418.html

http://www1.cs.columbia.edu/CAVE/software/softlib/coil-20.php
http://www.ri.cmu.edu/projects/project_418.html
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Fig. 1. Objective values versus CPU seconds of MUR, NeNMF, and RRA on COIL-20
dataset. (a) r=20, (b) r=50, (c) r=100, (d) r=200

Figure 1 compares the objective values versus CPU seconds of MUR, NeNMF
and RRA on COIL-20 dataset. It shows that RRA performs much more rapidly
than MUR and NeNMF because it reaches lower objective values in the same
number of CPU seconds. In other words, to get a similar solution RRA costs far
less CPU seconds. When the reduced dimensionality r = 20, NeNMF performs
comparably with RRA because its time complexity O(mnr+mr2 +nr2) +K ×
O(mr2+nr2+ rn2) is dominated by O(mnr)+K×O(rn2) which is comparable
with the time complexity of RRA, that is, O(mnr + prn2). From subfigures (a)
to (d), we can see that RRA always performs better and better than MUR, but
it performs closely to NeNMF when the reduced dimensionality is 200.

Figure 2 compares the objective values versus CPU seconds of MUR, NeNMF
and RRA on the CMU PIE dataset. From Figure 2, we have the same observation
as Figure 1. It confirms that RRA is much more efficient than MUR and NeNMF.
To study the speedup rate of RRA versus MUR and NeNMF, we repeated the
experiments on the PIE dataset with r varying from 10 to 100. MUR, NeNMF,
and RRA start from the identical initial point and stop when the same objective
value is reached. Then, we calculated the speedup rate as the ratio of time costs
of MUR (or NeNMF) dividing those of RRA. Such trial was repeated ten times
with different randomly generated initial point.

Figure 3 gives the speedup rates of RRA versus NeNMF and MUR. It shows
that RRA is much faster than both MUR especially when the reduced dimen-
sionality is 10. RRA is also faster than NeNMF when the reduced dimensionality
is 10, and costs comparable CPU time in other cases. This observation shows
that RRA is much efficient when the reduced dimensionality is relatively small.
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Fig. 2. Objective values versus CPU seconds of MUR, NeNMF, and RRA on PIE
dataset. (a) r=20, (b) r=50, (c) r=100, (d) r=200.
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Fig. 4. AC and NMI of GNMF by MUR, NeNMF, and RRA on COIL-20 dataset.
NMF is used as a baseline.

4.3 Image Clustering

Based on Proposition 1, RRA converges to a stationary point of GNMF while
MUR does not. To evaluate the stationary level of RRA, we compared the clus-
tering performance of GNMF solved by RRA and MUR, respectively, on both
COIL-20 and CMU PIE datasets in terms of accuracy (AC) and normalized mu-
tual information (NMI). The details of AC and NMI can be found in [3]. To keep
the fairness of comparison, all GNMF solvers start from an identical initial point
and stop when the same stopping condition (18) is satisfied. In this experiment,
we randomly selected r = 2, . . . , 10 individuals from both datasets and the se-
lected images are clustered by using GNMF based on different solvers, that is,
RRA, NeNMF, and MUR. Such trails were repeated ten times and the average
AC and NMI are used to compare their performance. The standard NMF is also
compared as a baseline.

Figure 4 compares the averaged AC and NMI by MUR, NeNMF, and RRA
based GNMF on the COIL-20 dataset. It shows that the RRA slightly outper-
forms MUR and NeNMF in terms of AC and NMI. There are two reasons for this
observation: 1) RRA gets a stationary point (see Proposition 1) which better
approximates the data points and thus might perform better in clustering, and
2) RRA approximates the graph Laplacian L in (4) with the largest eigenvectors
(see (17)), according to the spectral graph theory [4], these eigenvectors associate
with most smooth functions over graph G, that is, RRA eliminates some outlier
functions on the graph and thus RRA propagates the geometrical information
better than the original GNMF method. For this reason, RRA clusters the data
points better.

Figure 5 compares the averaged AC and NMI by MUR, NeNMF, and RRA
based GNMF on the PIE dataset. Figure 5 confirms our analysis Figure 3. In
summary, RRA is effective for optimizing GNMF.
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Fig. 5. AC and NMI of GNMF by MUR, NeNMF, and RRA on PIE dataset. NMF is
used as a baseline.

Table 1. CPU seconds versus the percentage of energy kept for RRA on the PIE
dataset

the percentage of energy kept 65% 75% 85% 95% 100%

CPU Seconds 199.18 184.59 183.92 177.76 209.47

4.4 Parameter Selection

In RRA, the percentage of energy kept in (17) controls the approximation qual-
ity of the SMW formula to the Hessian inverse as well as the time complexity
because one iteration round of RRA costs O(mnr + prn2) time. The more en-
ergy kept, the larger the value p. It implies the higher the approximation quality
and the less iteration rounds RRA spent. However, a large p means that each
iteration round consumes much CPU time. So the percentage of energy kept
must be carefully selected to balance the two facts. To study this point, we test
RRA on PIE dataset when setting the reduced dimensionality to 10 and varying
the percentage of energy kept from 65% to 95% with a step-size 10%. Table 1
compares the CPU time spent. To keep the fairness of comparison, all trials of
RRA start from identical initial point and stop when same objective values are
reached.

Table 1 shows that the time cost decreases with increasing of the percentage of
energy kept. That is because the approximation quality is improved and iteration
number is reduced in this case. However, the percentage of energy kept cannot
be chosen too large such as 100% because that will increase the time complexity
of each iteration round. In our experiment, 95% is a good choice.

5 Conclusion

In this paper, we proposed a novel efficient rank-one residue approximation
(RRA) solver for graph regularized non-negative matrix factorization (GNMF).
Unlike the existing GNMF solvers which recursively update each factor matrix
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as a whole, RRA recursively updates each column of both factor matrices in
an analytic formulation. Although RRA needs a time-consuming matrix inverse
operator, it can be approximated by using the Sherman-Morrison-Woodbury for-
mula. Since the objective function of GNMF is continuously differentiable over
a Cartesian product of several closed convex sets and RRA finds the optimal so-
lution for each column of both factor matrices, RRA theoretically converges to a
stationary point of GNMF. Experimental results and real-world image datasets
confirm both the efficiency and the effectiveness of RRA.
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